India’s Mars Orbiter Mission Rising to Red Planet – Glorious Launch Gallery

Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

With India’s Mars Orbiter Mission (MOM) safely and flawlessly injected into her initial elliptical Earth parking orbit following Tuesday’s (Nov. 5) spectacular launch, the flight has quickly transitioned to the next stage – the crucial series of thruster firings to raise MOM’s orbit around Earth dubbed “Midnight Maneuvers” and achieve escape velocity.

Barely a day after blastoff, ISRO engineers successfully completed the first of six orbit raising “Midnight Maneuver” burns at 01:17 hrs IST today (Nov. 6) with MOM’s liquid fueled thruster – see graphic below.

The goal is to gradually maneuver MOM – India’s 1st mission to the Red Planet – into a hyperbolic trajectory so that the spacecraft will escape from the Earth’s Sphere of Influence (SOI) and eventually arrive at the Mars Sphere of Influence after a 10 month interplanetary cruise.

Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013.  Credit: ISRO
Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013. Credit: ISRO

To do this involves a lot of complicated orbital mechanics calculations, as noted by ISRO’s chief during the launch webcast.

“The journey has only begun. The challenging phase is coming,” said Dr. K. Radhakrishnan, Chairman ISRO.

India’s PSLV rocket is not powerful enough to send MOM on a direct flight to Mars.

The launch “placed MOM very precisely into an initial elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

So ISRO’s engineers devised a clever procedure to get the spacecraft to Mars on the least amount of fuel via six “Midnight Maneuver” engine burns over the next several weeks – and at an extremely low cost.

First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO
First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO

The 440 Newton engine fires when MOM is at its closest point in orbit above Earth. This increases the ships velocity and gradually widens the ellipse and raises the apogee of the six resulting elliptical orbits around Earth that eventually injects MOM onto the Trans-Mars trajectory.

The 1st firing lasted 416 seconds and raised the spacecraft’s apogee to 28,825 km and perigee to 252 km.

The remaining burns are planned for November 7, 8, 9, 11, and 16.

MOM is expected to achieve escape velocity on Dec. 1 and depart Earth’s sphere of influence tangentially to Earth’s orbit to begin the 300 day long voyage to the Red Planet.

She will follow a path that’s roughly half an ellipse around the sun.

MOM arrives in the vicinity of Mars on September 24, 2014 for the absolutely essential Mars orbital insertion firing by the 440 Newton liquid fueled main engine which slows the probe and places it into a 366 km x 80,000 km elliptical orbit.

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press center.

Here’s a glorious gallery of launch images of the PSLV-25 rocket & Mars Orbiter Mission (MOM) on Nov. 5, 2013.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff. Credit: ISRO.
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background.  Credit: IRSO
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO’s) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Surreal view of 'T zero' Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Surreal view of ‘T zero’
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO's Mars Orbiter Mission Spacecraft. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO’s Mars Orbiter Mission Spacecraft. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !  There she goes taking our dreams into deeper space !  Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !
There she goes taking our dreams into deeper space ! Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

India’s First Mars Mission Launches Flawlessly on Historic Journey to the Red Planet

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

WOW MOM !
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

India flawlessly launched its first ever mission to Mars today (Nov. 5) to begin a history making ten month long interplanetary voyage to the Red Planet that’s aimed at studying the Martian atmosphere and searching for methane after achieving orbit.

The Mars Orbiter Mission (MOM) thundered to space atop the nations four stage Polar Satellite Launch Vehicle (PSLV) precisely on time at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST) from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota, off India’s east coast.

“Our journey to Mars begins now!” announced an elated ISRO Chairman K. Radhakrishnan at the ISRO spaceport during a live broadcast of MOM’s launch from the mission control center. “We achieved orbit and we can all be proud.”

Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

This was the 25th launch of India’s highly reliable 44 meter (144 foot) tall PSLV booster.

The 700,000 pound thrust PSLV rocket launched in its most powerful, extended XL version with six strap on solid rocket motors.

Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO

“I’m extremely happy to announce that the PSLV-C25 vehicle has placed the Mars orbiter spacecraft very precisely into an elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” Radhakrishnan said, after “much meticulous planning and hard work by everyone.”

ISRO announced that MOM separated from the PSLV 4th stage as planned some 44 minutes after liftoff and that the solar panels successfully deployed.

Confirmation of the 4th stage ignition and spacecraft separation was transmitted by ship-borne terminals aboard a pair of specially dispatched tracking ships – SCI Nalanda and SCI Yamuna – stationed by ISRO in the South Pacific Ocean.

India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

MOM was designed and developed by the Indian Space Research Organization (ISRO) in near record time after receiving approval from the Indian Prime Minister Manmohan Singh in August 2012.

“No mission is beyond our capability”, said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

A series of six burns over the next month will raise the apogee and put MOM on a trajectory for Mars around December 1.

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion firing by the main engine on September 24, 2014 will place MOM into an 366 km x 80,000 km elliptical orbit.

If all continues to goes well with MOM, India will join an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

The 1,350 kilogram (2,980 pound) MOM orbiter is also known as ‘Mangalyaan’ – which in Hindi means ‘Mars craft.’

Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO
Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO

Although the main objective is a demonstration of technological capabilities, the probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMars Trace Gas Orbiter.

MOM and MAVEN will arrive nearly simultaneously in Mars orbit next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Although they were developed independently and have different suites of scientific instruments, the MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for about six to ten months and hopefully much longer.

Stay tuned here for continuing MAVEN and MOM news and my MAVEN launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) await Nov. 5 blastoff. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Countdown Commences for India’s Mars Orbiter Mission (MOM)

Unveiling a breathtaking view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO

The countdown has commenced and the excitement is building for India’s Mars Orbiter Mission (MOM) – which will conduct a detailed study of the Martian atmosphere and is the nation’s first ever mission to the Red Planet.

The 56 hour 30 min countdown started at 6:06 a.m. IST today (Nov. 3), according to an official statement from the Indian Space Research Organization (ISRO) leading to liftoff on Tuesday, Nov 5, from a seaside launch pad in Sriharikota, India.

MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. Half a globe away, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from the Florida Space Coast.

A bird's eye view of the Spaceport of India ! Panaromic view of First Launch Pad with 44 meter tall PSLV-C25 rocket during launch rehearsal - Ready to commence the space voyage of ISRO's Mars Orbiter Mission spacecraft. The Mobile service tower and the Second Launch pad are also seen.Credit: ISRO
A bird’s eye view of the Spaceport of India
Panaromic view of First Launch Pad with 44 meter tall PSLV-C25 rocket during launch rehearsal – Ready to commence the space voyage of ISRO’s Mars Orbiter Mission spacecraft. The Mobile service tower and the Second Launch Pad are also seen.Credit: ISRO

ISRO will broadcast the momentous MOM launch live at – starting at 14:00 hrs IST.

“The Launch Authorisation Board has approved & cleared the PSLV-C25/Mars Orbiter Mission launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST)” from the state-of-the-art Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.

MOM is on schedule to lift off atop the powerful, extended XL version of India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV-C25).

Fueling of the PSLV-C25/Mars Orbiter Mission rocket stages is now in progress following a completely successful dress rehearsal and launch countdown exercise completed on Oct. 31.

“The filling of propellants into the Roll Control Thrusters as well as the Fourth stage of the PSLV C25 rocket [with mixed nitrogen oxides and monomethylhydrazine] is completed,” ISRO declared a short while ago.

903629_10151441040913224_1192855533_o

During the dress rehearsal the vehicle systems were powered, the health was normal and the spacecraft & launch vehicle integrated level checks were completed.

Two tracking ships have been deployed to the Indian Ocean to relay critical in flight telemetry.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars around December 1.

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM).  Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Sriharikota, India. Credit: ISRO

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion engine will fire on September 21, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.

MOM arrives about the same time as NASA’s MAVEN orbiter. They will significantly bolster Earth’s armada of five operational orbiters and surface rovers currently investigating the Red Planet.

MAVEN and MOM will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today.

“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO
India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO

The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO.

‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

Stacking of the  PSLV-C25/Mars Orbiter Mission rocket stages at the Satish Dhawan Space Centre, SHAR, India. Credit: IRSO
Stacking of the PSLV-C25/Mars Orbiter Mission rocket stages at the Satish Dhawan Space Centre, SHAR, India. Credit: IRSO

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMarsTrace Gas Orbiter.

Although there are no NASA instruments on board MOM, NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” MAVEN’s PI Jakosky told me.

“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.

India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA)- if all goes well.

Past attempts to reach the Red Planet from both China and Japan have unfortunately failed.

Some observers speculate that India’s MOM mission will ignite a new Asian Space Race.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and hopefully much longer.

Long live MOM !

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

MAVEN and MOM Missions from NASA and India Plan Martian Science Collaboration in Orbit

MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars. Credit: Ken Kremer/kenkremer.com

After years of hard work by dedicated science and engineering teams, a new pair of Mars orbiter science missions from Earth are in the final stages of prelaunch processing and are nearly set to blast off for the Red Planet in November.

If all goes well, NASA’s MAVEN orbiter and India’s MOM (Mars Orbiter Mission) will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today at a NASA briefing today (Oct. 28).

“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

MAVEN and MOM will join Earth’s armada of five operational orbiters and surface rovers currently exploring the Red Planet.

India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO
India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO

MOM is India’s first mission to Mars. Its also first in line to this year’s Martian on ramp and is slated to lift off in barely one week on Nov. 5 atop the most powerful version of the Polar Satellite Launch Vehicle (PSLV) rocket from a seaside launch pad in Srihanikota, India.

The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO, the Indian Space Research Organization.

NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft launches in three weeks on Nov. 18 atop a United Launch Alliance Atlas V 401 rocket from a seaside pad on Cape Canaveral Air Force Station, Florida.

Both MAVEN and MOM will study the Red Planets atmosphere. Although they are independent and carrying different science payloads the two missions do have some common goals.

“There are some overlapping objectives between MAVEN and MOM,” Jakosky said.

“We have had some discussions with the MOM science team.”

Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Both orbiters are due to arrive at Mars in September 2014 after 10 month interplanetary cruises and will enter different elliptical orbits after main engine braking burns.

MAVEN is the first spacecraft from Earth devoted to investigating and understanding the upper atmosphere of Mars.

The purpose is to study specific processes and determine how and why Mars lost virtually all of its atmosphere billions of years ago and what effect that had on the history of climate change and habitability.

“The major questions about the history of Mars center on the history of its climate and atmosphere and how that’s influenced the surface, geology and the possibility for life,” said Jakosky.

“MAVEN will focus on understanding the history of the atmosphere, how the climate has changed through time, and how that influenced the evolution of the surface and the potential for habitability by microbes on Mars.”

“We don’t know the driver of the change.”

“Where did the water go and where did the carbon dioxide go from the early atmosphere? What were the mechanisms?”

“That’s what driving our exploration of Mars with MAVEN,” said Jakosky.

One of the significant differences between MOM and MAVEN regards methane detection – which is a potential marker for Martian life. Some 90% of Earth’s atmospheric methane derives from living organisms.

MOM has a methane sensor but not MAVEN.

“We just had to leave that one off to stay focused and to stay within the available resources ,” Jakosky told me.

MAVEN carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

MOM’s science complement comprises the tri color Mars Color Camera to image the planet and its two moons, Phobos and Deimos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM).  Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky told me.

“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

Over the course of its one-Earth-year primary mission, MAVEN will observe all of Mars’ latitudes at altitudes ranging from 93 miles to more than 3,800 miles.

MAVEN will execute five deep dip maneuvers during the first year, descending to an altitude of 78 miles. This marks the lower boundary of the planet’s upper atmosphere.

MAVEN has sufficient fuel reserves on board to continue observations for more than a decade.

The spacecraft will function as an indispensible orbital relay by transmitting surface science data through the “Electra” from NASA’s ongoing Curiosity and Opportunity rovers as well as the planned 2020 rover.

Stay tuned here for continuing MAVEN and MOM news and my launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

…………….

Learn more about MAVEN, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

Incredible Vertical-Landing Grasshopper Rocket Has Retired

The SpaceX Grasshopper during its test flight on March 7, 2013. Credit: SpaceX.

Did you take a moment to look at that August video of the Grasshopper rocket deliberately going sideways and then appearing to hover for a bit before returning to Earth? For more video fodder, there’s also this high-flying test the rocket took in October.

We hope you enjoyed these views, because Grasshopper is being retired. SpaceX now wants to focus its energy and resources on to the larger Falcon 9-R first stage, which should see its first test flight in New Mexico this December.

It sounds like SpaceX would have loved to go further, in a sense. “In some ways we’ve kind of failed on the Grasshopper program because we haven’t pushed it to its limit,” SpaceX president Gwynne Shotwell said at the International Symposium for Personal and Commercial Spaceflight (ISPCS) in New Mexico last week, as reported in the NewSpace Journal. “We haven’t broken it.”

Grasshopper took eight test flights during its flight history, which spanned about a year between September 2012 and October 2013. It was intended to test Vertical Takeoff Vertical Landing technology (VTVL). The strange appearance of a rocket leaving Earth and gently, deliberately touching back down again turned heads — even in the general public.

We have coverage — and videos! — of most of its past test flights here (the dates below are flight dates, not publication dates)

Most rockets are single-use only and are discarded either in orbit or (better yet, for space debris concerns) are put in a path to burn up in Earth’s atmosphere. SpaceX, however, wants its next-generation Falcon 9 rocket to have a reusable first stage to cut down on launch costs. (Grasshopper was about 10 storeys high, while the Falcon 9 will be about 14 storeys tall when carrying a Dragon spacecraft on board.)

The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter
The Falcon 9-R during a 10-second test in June 2013. Credit: Elon Musk on Twitter

As for the Falcon 9 series, a rocket flight in September delivered its payload (which included the Canadian Cassiope satellite) to space successfully, but faced some technical problems with the upper stage — and the first stage, as the rocket was supposed to be slowed down for splashdown.

As Space News reported, two burns were planned. The first worked, but the second burn took place while the rocket was spinning, which affected the flow of fuel. A picture shown by SpaceX demonstrated the rocket was intact three meters above the ocean, although it did not survive after it hit.

“Between the flights we’ve been doing with Grasshopper and this demonstration that we brought that stage back, we’re really close to full and rapid reuse of stages,” Shotwell said in the report.

Government Shutdown Stops MAVEN Work; Threatens NASA Mars Launch!

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter is threatened by the today’s US Federal Government shutdown. Launch processing work has now ceased! Spacecraft preps had been in full swing when MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. Credit: Ken Kremer/kenkremer.com

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter is threatened by today’s US Federal Government shutdown. Launch processing work has now ceased! Spacecraft preps had been in full swing when MAVEN was unveiled to the media, including Universe Today, inside the clean room at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through interplanetary space and orbiting Mars.
Credit: Ken Kremer/kenkremer.com[/caption]

KENNEDY SPACE CENTER, FL – The upcoming Nov. 18 blastoff of NASA’s next mission to Mars – the “breathtakingly beautiful” MAVEN orbiter – is threatened by today’s (Oct. 1) shutdown of the US Federal Government. And the team is very “concerned”, although not yet “panicked.”

MAVEN’s on time launch is endangered by the endless political infighting in Washington DC. And the bitter gridlock could cost taxpayers tens of millions of dollars or more on this mission alone!

Why? Because launch preparations at NASA’s Kennedy Space Center (KSC) have ceased today when workers were ordered to stay home, said the missions top scientist in an exclusive to Universe Today.

“MAVEN is shut down right now!” Prof. Bruce Jakosky, MAVEN’s principal Investigator, of the University of Colorado at Boulder, told Universe Today in an exclusive post shutdown update today.

“Which means that civil servants and work at government facilities [including KSC] have been undergoing an orderly shutdown,” Jakosky told me.

The nominal interplanetary launch window for NASA’s $650 Million MAVEN (Mars Atmosphere and Volatile EvolutioN Mission) mission to study the Red Planet’s upper atmosphere only extends about three weeks until Dec. 7.

If MAVEN misses the window of opportunity this year, liftoff atop the Atlas V rocket would have to be postponed until early 2016 because the Earth and Mars only align favorably for launches every 26 months.

Any launch delay could potentially add upwards of tens to hundreds of millions of dollars in unbudgeted costs to maintain the spacecraft and rocket – and that’s money that NASA absolutely does not have in these fiscally austere times.

MAVEN spacecraft preps for Nov. 18 launch to Mars were on schedule when it was unveiled to the media inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. The Oct. 1 US Government shutdown has stopped all work. Credit: Ken Kremer/kenkremer.com
MAVEN spacecraft preps for Nov. 18 launch to Mars were on schedule when it was unveiled to the media inside the clean room at the Kennedy Space Center on Sept. 27, 2013. The Oct. 1 US Government shutdown has stopped all work. Credit: Ken Kremer/kenkremer.com

MAVEN and much of NASA are not considered “essential” – despite having responsibility for hundreds of ongoing mission operations costing tens of billions of dollars that benefit society here on Earth. So about 97% of NASA employees were furloughed today.

What’s happening with the spacecraft right now?

“The hardware is being safed, meaning that it will be put into a known, stable, and safe state,” Jakosky elaborated.

Team members say there are about nine days of margin built into the processing schedule, which still includes fueling the spacecraft.

“We’ll turn back on when told that we can. We have some margin days built into our schedule,” Jakosky told me.

“We’re just inside of 7 weeks to launch, and every day is precious, so we’re certainly as anxious as possible to get back to work as quickly as possible.

And he said the team will do whatever necessary, including overtime, to launch MAVEN to the Red Planet by Dec. 7.

“The team is committed to getting to the launch pad at this opportunity, and is willing to work double shifts and seven days a week if necessary. That plus the existing margin gives us some flexibility. “

“That’s why I’m concerned but not yet panicked at this point.”

But a lengthy delay would by problematical.

“If we’re shut down for a week or more, the situation gets much more serious,” Jakosky stated.

Until today, all of the spacecraft and launch preparations had been in full swing and on target – since it arrived on Aug. 2 after a cross country flight from the Colorado assembly facility of prime contractor Lockheed Martin.

Indeed it was all smiles and thumbs up when I was privileged to personally inspect MAVEN inside the clean room at KSC a few days ago on Friday, Sept 27 during a media photo opportunity day held for fellow journalists.

Until now, “MAVEN was on schedule and under budget” said Jakosky in an interview as we stood a few feet from the nearly fully assembled spacecraft.

See my MAVEN clean room photos herein.

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the cleanroom at the Kennedy Space Center on sept 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on sept 27, 2013. MAVEN was due to launch to Mars on Nov. 18, 2013 from Florida – before the Oct. 1 government shutdown derailed plans. Credit: Ken Kremer/kenkremer.com

And in an ultra rare viewing opportunity, the solar panels were fully unfurled.

“The solar panels look exactly as they will be when MAVEN is flying in space and around Mars.”

“To be here with MAVEN is breathtaking,” Jakosky told me. “

“Its laid out in a way that was spectacular to see!”

Magnetometer science instrument juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Magnetometer science instrument juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

If absolutely necessary it might be possible to extend the launch window a little bit beyond Dec. 7, but its uncertain and would require precise new calculations of fuel margins.

“The nominal 20-day launch period doesn’t take into account the fact that our actual mass is less than the maximum allowable mass,” Jakosky explained.

“The last day we can launch has some uncertainty, because it also requires enough fuel to get into orbit before our mission would begin to be degraded.”

MAVEN team members, including chief scientist Bruce Jakosky (2nd from left)  pose with spacecraft inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. Credit: Ken Kremer/kenkremer.com
MAVEN team members, including chief scientist Bruce Jakosky (2nd from left) pose with spacecraft inside the clean room at the Kennedy Space Center on Sept. 27, 2013. Credit: Ken Kremer/kenkremer.com

It sure was breathtaking for me and all the media to stand beside America’s next Mission to Mars. And to contemplate it’s never before attempted science purpose.

“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Jakosky.

That’s the key to understanding when and for how long Mars was much more Earth-like compared to today’s desiccated Red Planet.

Following a 10 month interplanetary voyage, MAVEN would fire thrusters and brake into Mars orbit in September 2014, joining NASA’s Red Planet armada comprising Curiosity, Opportunity, Mars Odyssey and Mars Reconnaissance Orbiter.

Lets all hope and pray for a short government shutdown – but the outlook is not promising at this time.

Stay tuned.

Ken Kremer

…………….

Learn more about MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, LADEE, the Govt shutdown and more at Ken’s upcoming presentations

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

SpaceX Says Falcon 9 Upper Stage Did Not Explode in Orbit (and it wasn’t a UFO, either)

The launch of SpaceX's Falcon 9 v.1.1 rocket from Vandenberg Air Force Base in California on September 29, 2013. Credit: SpaceX.

When the US Space Surveillance Network indicated they were tracking additional objects in orbit following Sunday’s maiden launch of SpaceX’s next generation rocket, speculation began among satellite trackers that the upper stage of the Falcon 9 v1.1. rocket may have exploded. But SpaceX issued a statement today that their data indicates no such explosion occurred, and that insulation may have come off the second stage, creating extra objects.

Meanwhile, SpaceX CEO Elon Musk confirmed via Twitter that reports of a “fuzzy” UFO over South Africa following the launch came from liquid oxygen released by the Falcon 9 rocket’s second stage.


In the September 29 launch from Vandenberg Air Force Base in California, SpaceX successfully launched and deployed the Canadian Space Agency’s CASSIOPE weather satellite (Cascade, Smallsat, and Ionospheric Polar Explorer) and six additional small satellites.

SpaceTrack was tracking 20 objects from the launch, but only fourteen should have been in orbit (CASSIOPE, 6 small sats, 4 spacers from the POPACS satellite trio, the second stage and two fairings) leaving ssix objects unaccounted for.

“Regarding the rumors you may have heard about the Falcon 9 second stage, in short, our data confirms there was no rupture of any kind on the second stage,” SpaceX spokeswoman Emily Shanklin wrote in an email on October 1.

SpaceX gave this account of what likely happened after launch:

Following separation of the satellites to their correct orbit, the Falcon 9 second stage underwent a controlled venting of propellants (fuel and pressure were released from the tank) and the stage was successfully safed. During this process, it is possible insulation came off the fuel dome on the second stage and is the source of what some observers incorrectly interpreted as a rupture in the second stage. This material would be in several pieces and be reflective in the Space Track radar. It is also possible the debris came from the student satellite separation mechanisms onboard.

The new, more powerful version of the Falcon 9 is powered by a cluster of nine of the new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines and can therefore boost a much heavier cargo load to the ISS and beyond. The Falcon 9 v.1.1 is taller than a standard Falcon 9: about 22 stories high vs. 13.

Musk told reporters at a post-launch news conference that they attempted to reignite the upper stage after payload separation for demonstrating the capability of putting satellites into a geostationary transfer orbit. However, the reignition sequence was aborted after a problem was detected.

Several images and videos were posted online of a UFO seen over South Africa, Madagascar, Botswana, and Malawi. But it was quickly determined to be a cloud of rocket propellant surrounding the spent Falcon 9 upper stage.

SpaceX said they will continue to review their data to help identify the source of the extra debris.

Soyuz Launches Expedition 37/38 to the International Space Station

The Soyuz TMA-10M rocket launches from the Baikonur Cosmodrome in Kazakhstan carrying the Expedition 37 crew to orbit. Credit: NASA/Carla Cioffi.

The next crew of the International Space Station is on their way to orbit. Three members of the Expedition 37 crew members blasted off in a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan at 20:58 UTC (4:58 p.m. EDT) Wednesday, Sept. 25, and will take a fast-track six-hour flight to the Space Station.

Update: The crew has now docked safely to the ISS, at 10:45 pm EDT (02:45 UTC).

Watch a video of the launch, below.

Michael Hopkins of NASA and Oleg Kotov and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) are scheduled to dock their Soyuz spacecraft to the Poisk module on the Russian segment of the at 02:48 UTC on Sept. 26 (10:48 p.m. EDT, Sept. 25) All the action of the launch and docking will be on NASA TV.

The crew is scheduled to open the hatches between the Soyuz spacecraft and the space station about two hours later.
Hopkins, Kotov and Ryazanskiy will be greeted by three Expedition 37 crew members who have been aboard the space station since late May: Commander Fyodor Yurchikin of Rosmosmos and Flight Engineers Karen Nyberg of NASA and Luca Parmitano of the European Space Agency.

The new crew will remain aboard the station until mid-March. Yurchikhin, Nyberg and Parmitano will return to Earth Nov. 11.

NASA says the new crew will take part in several new science investigations that will focus on human health and human physiology. The crew will examine the effects of long-term exposure to microgravity on the immune system, provide metabolic profiles of the astronauts and collect data to help scientists understand how the human body changes shape in space. The crew also will conduct 11 investigations from the Student Spaceflight Experiments Program on antibacterial resistance, hydroponics, cellular division, microgravity oxidation, seed germination, photosynthesis and the food making process in microgravity.

Antares Picture Perfect Blastoff Launches Commercial Space Race

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)
Story updated[/caption]

WALLOPS ISLAND, VA – The new ‘Commercial Space Era’ received a resounding boost today when a privately developed Antares rocket lofting the first ever Cygnus commercial cargo resupply craft thundered to space from America’s newest launch pad at NASA Wallops along the Eastern Shore of Virginia.

The history making launch marks the first time that a spacecraft launched from Virginia is blazing a path to the International Space Station (ISS) – thereby scoring a milestone achievement to keep the orbiting lab complex stocked up with supplies and science experiments from American soil. This is the maiden flight of Cygnus.

Move over SpaceX ! Your space competition from Orbital Sciences has arrived!

It was a ‘picture perfect’ blastoff for the two stage Antares booster at 10:58 a.m. EDT this morning (Sept. 18) from the commercial Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.

The blastoff of Antares was stunningly beautiful with intensely bright flames spewing from the rockets rear. And the incredibly loud roar of the first stage engines reverberated widely and wowed hoards of spectators gathered throughout the local viewing area in Chincoteague, Va. – and woke late sleepers some folks told me later today!

The rumbling thunder of Antares sounded as loud as a space shuttle.

Launch of the Antares rocket at 10:58 a.m. EDT Sept 18 with Cygnus cargo resupply ship bound for the ISS NASA Wallops, VA.  Credit: Ken Kremer (kenkremer.com)
Launch of the Antares rocket at 10:58 a.m. EDT Sept 18 with Cygnus cargo resupply ship bound for the ISS NASA Wallops, VA. LADEE Moon shot launch pad at right. Credit: Ken Kremer (kenkremer.com)

Antares and Cygnus were built by Orbital Sciences Corporation and its team of industrial partners using seed money from NASA’s COTS commercial transportation initiative aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS.

America lost 100% of its capability to send humans and cargo to the ISS when NASA’s space shuttles were retired in 2011. Orbital Sciences and their competitor SpaceX, were awarded NASA contracts to restore the unmanned cargo resupply capability.

Thales Alenia Space in Italy designed and constructed the 17 foot ( 5 meter) long Cygnus module under contract with Orbital.

“Thales Alenia has actually built 50% of the pressurized modules currently comprising the ISS,” said Luigi Quaglino, Thales Alenia Senior Vice President.

“This is a historic accomplishment for commercial spaceflight with the picture perfect launch of Antares and Cygnus headed for the space station,” said Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, at a post launch briefing for reporters at NASA Wallops.

In fact this was the heaviest cargo load ever delivered to the ISS by a commercial vehicle, said Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.

A revolutionary new day has dawned in space by opening up new pathways enabling space exploration And it’s not a moment too soon given the continuing significant reductions to NASA’s budget.

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer (kenkremer.com)
Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

COTS was aimed at revolutionizing how we reach space by privatizing routine space operations that thereby allows NASA to focus more on exploration beyond low earth orbit, getting people back to the Moon and beyond to deep space destinations including Asteroids and Mars.

Today’s Antares launch is the culmination of the COTS contract that NASA awarded to Orbital back in 2008.

Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls
Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls

“Today marks a milestone in our new era of exploration as we expand the capability for making cargo launches to the International Space Station from American shores,” said NASA Administrator Charles Bolden in a statement.

“Orbital’s extraordinary efforts are helping us fulfill the promise of American innovation to maintain our nation’s leadership in space.”

The Cygnus spacecraft is healthy and successfully unfurled its life giving solar panels starting 1.5 minutes after separation from the second stage that took place about 10 minutes after launch, said Culbertson.

Antares placed Cygnus into its intended orbit of about 180 x 160 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital said.

Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls
Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls

Cygnus is traveling at 17,500 MPH and is on its way to rendezvous with the space station Sunday, Sept. 22. The cargo vessel will deliver about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the Expedition 37 crew.

The flight, known as Orb-D1 is a demonstration mission to prove that Cygnus can conduct a complex series of maneuvers in space safely bringing it to the vicinity of the ISS.

Mission controllers at Orbital will guide Cygnus to the vicinity of the ISS on Sept. 22.

Antares and Cygnus soar to space on a plume of smoke and ash from NASA Wallops on Sept. 18, 2013 at 10:50 a.m. EDT.  Credit: Ken Kremer (kenkremer.com)
Antares and Cygnus soar to space on a plume of smoke and ash from NASA Wallops on Sept. 18, 2013 at 10:50 a.m. EDT. Credit: Ken Kremer (kenkremer.com)

But its only after carrying out a series of 10 complicated maneuvering tests proving that the vehicle can safely and reliably approach the station up close that NASA and the ISS partners will grant permission to dock.

ISS astronauts Karen Nyberg (NASA) and Luca Parmitano (ESA) will then grapple Cygnus with the station’s Canadian built robotic arm and berth the capsule at an earth facing docking port on Sunday, Sept 22. will then grapple Cygnus with the station’s robotic arm and berth the capsule at an earth facing docking port.

NASA and Orbital Sciences officials brief reporters at the Antares post launch press conference on Sept 18; Robert Lightfoot, NASA Associate Administrator, Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, Frank Culbertson, Orbital Sciences Executive VP. Credit: Ken Kremer (kenkremer.com)
NASA and Orbital Sciences officials brief reporters at the Antares post launch press conference on Sept 18; Robert Lightfoot, NASA Associate Admisistrator, Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, Frank Culbertson, Orbital Sciences Executive VP. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs – originally built in the Soviet Union as NK-33 model engines for the Soviet era moon rocket.

The upper stage features an ATK Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO. The 2nd stage will be upgraded starting with the 4th Antares flight.

“Antares next flight is scheduled for December sometime between the 8th and 21st”, said Culbertson.

Ken Kremer
…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. & Thales Alenia Space sits inside high bay clean room facility at NASA Wallops Flight Facility, VA for preflight processing. This Cygnus spacecraft arrived from Italy and may launch to the ISS as early as December 2013 from Wallops launch pad 0A. Credit: Ken Kremer (kenkremer.com)
1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. & Thales Alenia Space sits inside high bay clean room facility at NASA Wallops Flight Facility, VA for preflight processing. This Cygnus spacecraft arrived from Italy and may launch to the ISS as early as December 2013 from Wallops launch pad 0A. Credit: Ken Kremer (kenkremer.com)
Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo  at pre-launch rollout of Antares rocket to pad 0A at NASA Wallops.  Credit: Ken Kremer (kenkremer.com)
Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo at pre-launch rollout of Antares rocket to pad 0A at NASA Wallops. Credit: Ken Kremer (kenkremer.com)

Watch Live: Commercial Antares Rocket Launches to Space Station

he Orbital Sciences Corporation Antares rocket, with its Cygnus cargo spacecraft aboard, is seen during sunrise on the Mid-Atlantic Regional Spaceport (MARS) Pad-0A at the NASA Wallops Flight Facility, Tuesday, Sept. 17, 2013 in Virginia. NASA's commercial space partner, Orbital Sciences Corporation, is targeting a Sept. 18 launch for its demonstration cargo resupply mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

UPDATE: Orbital Sciences successfully launched its Cygnus cargo spacecraft aboard its Antares rocket at 10:58 a.m. EDT Wednesday from the Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. This is the first time a spacecraft launched from Virginia is heading toward the International Space Station. Above is the launch video, and we’ll have a full re-cap article coming soon! The live NASA TV feed is below. (end of update)

Orbital Sciences’ Cygnus spacecraft is set to become the second private spacecraft to launch to the International Space Station. Today’s historic launch from NASA’s Wallops Flight Facility in Virginia has a launch window from 10:50 AM to 11:30 AM EDT, with launch likely to occur at 0:58 a.m. EDT (1458 GMT) from Pad 0A at the Mid-Atlantic Regional Spaceport. You can watch it live here on NASA TV’s Ustream feed.

As of this writing, the Wallops range is currently red due to low cloud conditions and something called “distance focus over pressure,” according to the Orbital Sciences Twitter feed. However, they expect it to clear later in count, and the rocket is being fueled.

Also, if you live along the US east coast near the Virginia area, you may be able to see the launch for yourself! It won’t be as visible as the recent nighttime launch of the LADEE mission, but should still be visible to a wide area, if the skies are clear. Read our complete guide to how to view the launch here.



Live streaming video by Ustream

Here’s a timelapse of the Antares rocket heading out the the launchpad: