SpaceX Outbids ULA for Military GPS Contract Igniting Fierce Launch Competition

Successful SpaceX Falcon 9 launch of ABS/Eutelsat-2 launch on June 15, 2016, at 10:29 a.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The fierce competition for lucrative launch contracts from the U.S. Air Force just got more even intense with the announcement that SpaceX outbid arch rival United Launch Alliance (ULA) to launch an advanced military Global Positioning System (GPS III) navigation satellite to orbit in approx. 2 years.

The U.S. Air Force has announced that SpaceX has won the national security contract to launch a single next generation GPS III satellite to Earth orbit in the first half of 2019. The contract award is valued at $96.5 million.

“SpaceX is proud to have been selected to support this important National Security Space Mission,” Gwynne Shotwell, President & COO, told Universe Today in a statement in response to the GPS III award.

The GPS constellation of navigation satellites is vital to both military and civilian users on a 24/7 basis.

“Space Exploration Technologies Corp., Hawthorne, California, has been awarded a $96,500,490 firm-fixed-price contract for launch services to deliver a GPS III satellite to its intended orbit,” the Air Force announced in a statement.

There could be as many as 15 Air Force launch contracts awarded this year in competitive bidding between ULA and SpaceX.

The upshot is that ULA’s decade long near monopoly on national security launches has now been broken several times in the past year with SpaceX outbidding ULA based on the price of their newer Falcon family of rockets compared to ULA’s long established Atlas and Delta rocket families.

Last year SpaceX won the competition to launch the first GPS-III satellite on a Falcon 9 rocket in 2018 with a bid of $82.7 million after ULA decided not to enter a bid.

“We appreciate the confidence that the U.S. Air Force has placed in our company and we look forward to working together towards the successful launch of another GPS-III mission,” Shotwell elaborated to Universe Today.

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 to discuss a wide range of space launch plans. Credit: Julian Leek

ULA did not bid on the first GPS III contract citing the lack of availability of “any Atlas engines available to bid” and other contract factors as the reason for not submitting a bid for the 2018 launch based on the request for proposals (RFP) for the global positioning satellite.

The Atlas V is powered by Russian made RD-180 engines, who’s import for military uses had been temporarily restricted by Congress following the Russian invasion of the Crimea.

The launch price was a deciding factor in the winning bid.

“Each contractor had to prove through their proposal that they could meet the technical, the schedule and the risk criteria,” said Claire Leon, director of the launch enterprise directorate at the Air Force’s Space and Missile Systems Center, during a media briefing.

“SpaceX was able to do that. I wouldn’t say that they were necessarily better. They adequately met our criteria.”

SpaceX has been snatching away numerous launch contracts from ULA other launch providers across the globe with their substantially lower rocket prices. SpaceX has been hiring while other firms including ULA have suffered layoffs.

So in response to competitive pressures from SpaceX, ULA took concrete steps to dramatically cut launch costs and end dependency on the RD-180s when CEO Tory Bruno announced in April 2015 that the company would develop the new all-American made Vulcan rocket.

Vulcan is slated for an inaugural liftoff in 2019.

The Air Force expects SpaceX to achieve a rapid turnaround from winning the bid to actually launching the GPS satellite by April 2019.

“Contractor will provide launch vehicle production, mission integration, launch operations, spaceflight worthiness and mission unique activities for a GPS III mission. Work will be performed at Hawthorne, California; Cape Canaveral Air Force Station, Florida; and McGregor, Texas, and is expected to be complete by April 30, 2019,” said the Air Force.

Only SpaceX and ULA bid on the GPS III satellite launch contract.

“This award is the result of a competitive acquisition with two offers received. Fiscal 2016 space procurement funds in the amount of $96,500,490 are being obligated at the time of award.”

The Air Force opened up military launch contracts to competitive bidding in 2015 after certifying SpaceX as a qualified bidder to launch the nation’s most critical and highly valuable national security satellites on their Falcon 9 booster.

Until 2015, ULA had a near sole source contract with the USAF as the only company certified to bid on and launch those most critical national security satellites. New space upstart SpaceX, founded by billionaire CEO Elon Musk, then forced the bidding issue by filing a lawsuit suing the Air Force.

In response to the lost GPS-III bid, ULA touted their demonstrated record of 100 percent success launching more than 115 satellites.

“United Launch Alliance continues to believe a best value launch service competition with evaluation of mission success and assurance, and past performance including demonstrated schedule reliability, is appropriate and needed for the Phase 1A missions given the technical complexities of rocket launch services and their critical significance to the war fighter and U.S. national security,” ULA spokeswoman Jessica Rye told Universe Today.

“Over the past decade, ULA has provided unmatched reliability with 100 percent mission success and ensured more than 115 satellites were delivered safely to their orbits each and every time. We look forward to continuing to provide the best value launch services to enable our customers’ critical missions.”

ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com

The most recent ULA launch for the Air Force took place days ago involving the stunning Delta blastoff of the WGS-9 high speed communications satellite on March 18, 2017.

SpaceX has suffered a pair of calamitous Falcon 9 rocket failures in June 2015 and Sept. 2016, destroying both the rocket and payloads for NASA and the AMOS-6 communications satellite respectively.

So the U.S. Air Force should definitely be balancing risk vs. reward with regard to lower pricing and factoring in rocket robustness and reliability, regarding launches of national security satellites which could cost into the multi-billions of dollars, take years to manufacture and are not swiftly replaceable in case of catastrophic launch failures.

ULA’s workhorse Atlas V rocket successfully delivered the final GPS satellite in the IIF series to orbit for the US Air Force on Feb 5, 2016.

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

At that time the Global Positioning System (GPS) IIF-12 navigation satellite completed the constellation of GPS IIF satellites that are critical to both military and civilian users on a 24/7 basis.

The Atlas V rocket delivered the GPS IIF-12 satellite to a semi-synchronous circular orbit at an altitude of approximately 11,000 nautical miles above Earth.

“GPS III is the next generation of GPS satellites that will introduce new capabilities to meet the higher demands of both military and civilian users,” according to the USAF.

“GPS III is expected to provide improved anti-jamming capabilities as well as improved accuracy for precision navigation and timing. It will incorporate the common L1C signal which is compatible with the European Space Agency’s Galileo global navigation satellite system and compliment current services with the addition of new civil and military signals.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Delta IV Delivers Daunting Display Powering International Military WGS-9 SatCom to Orbit

ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com
ULA Delta IV rocket streaks to orbit carrying the Wideband Global SATCOM (WGS-9) tactical communications satellite for the U.S. Air Force and international partners from Cape Canaveral Air Force Station, Fl, at 8:18 p.m. EDT on Mar. 18, 2017, in this long exposure photo taken on base. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – On the 70th anniversary year commemorating the United States Air Force, a ULA Delta IV rocket put on a daunting display of nighttime rocket fire power shortly after sunset Saturday, March 19 – powering a high speed military communications satellite to orbit that will significantly enhance the targeting firepower of forces in the field; and was funded in collaboration with America’s strategic allies.

The next generation Wideband Global SATCOM-9 (WGS-9) military comsat mission for the U.S. Force lifted off atop a United Launch Alliance (ULA) Delta IV from Space Launch Complex-37 (SLC-37) on Saturday, March 18 at 8:18 p.m. EDT at Cape Canaveral Air Force Station, Florida.

The launch and separation of the payload form the Delta upper stage was “fully successful,” said Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, to our media gaggle soon after launch at the press view site on base.

“The WGS-9 mission is key event celebrating the 70th anniversary of the U.S. Air Force as a separate service. The USAF was created two years after World War II ended.”

“The theme of this year is ‘breaking Barriers.’”

A United Launch Alliance (ULA) Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force launches at 8:18 p.m. EDT on Mar. 18, 2017from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

WGS-9 was delivered to a supersynchronous transfer orbit atop the ULA Delta IV Medium+ rocket.

The WGS-9 satellite was paid for by a six nation consortium that includes Canada, Denmark, Luxembourg, the Netherlands amd the United States. It joins 8 earlier WGS satellite already in orbit.

“WGS-9 was made possible by funding from our international partners,” Thompson emphasized.

Major General David D. Thompson, Vice Commander Air Force Space Command, Peterson Air Force Base, CO, and Brig. Gen. Wayne R. Monteith, Commander of the 45th Space Wing Commander and Eastern Range Director at Patrick Air Force Base, Fla, celebrate successful Wideband Global SATCOM (WGS-9) launch for the U.S. Air Force on ULA Delta IV from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017, with the media gaggle on base. Credit: Julian Leek

It is the ninth satellite in the WGS constellation that serves as the backbone of the U.S. military’s global satellite communications.

“WGS provides flexible, high-capacity communications for the Nation’s warfighters through procurement and operation of the satellite constellation and the associated control systems,” according to the U.S. Air Force.

“WGS provides worldwide flexible, high data rate and long haul communications for marines, soldiers, sailors, airmen, the White House Communication Agency, the US State Department, international partners, and other special users.”

Launch of USAF WGS-8 milsatcom on ULA Delta IV rocket from pad 37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Dawn Leek Taylor

WGS-9 also counts as the second of at least a trio of launches from the Cape this March – with the possibility for a grand slam fourth at month’s end – if all goes well with another SpaceX Falcon 9 launch from pad 39A.

Blastoff of ULA Delta IV rocket carrying the Wideband Global SATCOM (WGS-9) comsat to orbit for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The 217 foot tall Delta IV Medium+ rocket launched in the 5,4 configuration with a 5 meter diameter payload fairing that stands 47 feet tall, and 4 solid rocket boosters to augment the first stage thrust of the single common core booster.

The payload fairing was emblazoned with decals commemorating the 70th anniversary of the USAF, as well as Air Force, mission and ULA logos.

Orbital ATK manufactures the four solid rocket motors. The Delta IV common booster core was powered by an RS-68A liquid hydrogen/liquid oxygen engine producing 705,250 pounds of thrust at sea level.

A single RL10B-2 liquid hydrogen/liquid oxygen engine powered the second stage, known as the Delta Cryogenic Second Stage (DCSS).

The booster and upper stage engines are both built by Aerojet Rocketdyne. ULA constructed the Delta IV Medium+ (5,4) launch vehicle in Decatur, Alabama.

The DCSS will also serve as the upper stage for the maiden launch of NASA heavy lift SLS booster on the SLS-1 launch slated for late 2018. That DCSS/SLS-1 upper stage just arrived at the Cape last week – as I witnessed and reported here.

Saturday’s launch marks ULA’s 3rd launch in 2017 and the 118th successful launch since the company was formed in December 2006 as a joint venture between Boeing and Lockheed Martin.

The is the seventh flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.

ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about USAF/ULA WGS satellite, SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 21-25: “USAF/ULA WGS satellite launch, SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Close-up view of nose cone encapsulating the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force slated to launch from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

Sunset Delta Set to Dazzle Cape with Mighty Air Force SatCom Launch March 18 – Watch Live

ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com
ULA Delta IV rocket poised for sunset blastoff with the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – As sunset dawns on the venerable Delta rocket program, the sole Delta slated to launch from the Cape this year is set to dazzle at sunset tonight, Saturday, March 18.

And the launch site is drenched with brilliant blue skies this afternoon as I watched the Delta rocket exposed to the heavens as the mobile service tower rolled away from on site at pad 37.

Florida’s Space Coast will light up with a spectacular sunset burst of fire and fury as a United Launch Alliance (ULA) Delta rocket roars to space with a super advanced tactical satcom for the U.S. Air Force that will provide a huge increase in communications bandwidth for American forces around the globe.

Blastoff of the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force is slated for 7:44 p.m. EDT on Saturday, Mar. 18, 2017 from Space Launch Complex-37 at Cape Canaveral Air Force Station, Florida.

Close-up view of nose cone encapsulating the Wideband Global SATCOM (WGS-9) mission for the U.S. Air Force slated to launch from Cape Canaveral Air Force Station, Fl, on Mar. 18, 2017. Credit: Ken Kremer/kenkremer.com

WGS-9 will be delivered to a supersynchronous transfer orbit atop a ULA Delta IV Medium+ rocket.

Thus ‘March Launch Madness’ continues unabated tonight – with a dizzying pace of launches.

Because it’s been barely two and a half days since a SpaceX Falcon 9 successfully dazzled sky watchers and launch enthusiasts on Thursday, March 16, just after midnight by delivering the EchoStar XXIII commercial television satellite to geosynchronous orbit – as I witnessed and reported on here.

So it’s past time to ‘get your ass to the Cape’ – because the weather is glorious in central Florida. And … a Atlas rocket is slated to launch in only five or six days – late next week! in six next Friday.

Saturday’s sunset launch window runs for one hour and 15 minutes from 7:44-8:59 p.m. EDT.

You can watch the Delta launch live on a ULA webcast. The live launch broadcast will begin approximately 20 minutes prior to liftoff at 7:24 p.m. EST here:

http://www.ulalaunch.com/webcast.aspx

The weather forecast for Saturday, Mar. 18, calls for a 90 percent chance of acceptable ‘GO’ weather conditions at launch time.

The primary concern is for cumulus clouds.

In case of a scrub for any reason the chances for a favorable launch dip just slightly to 80% GO on Sunday, March 19.

WGS-9 and her two sisters are the most powerful US Air Force military communications satellite ever built.

WGS-8 was launched on a Delta in December 2016.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

It is the ninth satellite in the WGS constellation that serves as the backbone of the U.S. military’s global satellite communications.

“WGS provides flexible, high-capacity communications for the Nation’s warfighters through procurement and operation of the satellite constellation and the associated control systems,” according to the U.S. Air Force.

“WGS provides worldwide flexible, high data rate and long haul communications for marines, soldiers, sailors, airmen, the White House Communication Agency, the US State Department, international partners, and other special users.”

United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission for the U.S. Air Force launches at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The 217 foot tall Delta IV Medium+ rocket will launch in the 5,4 configuration with a 5 meter diameter payload fairing and 4 solid rocket boosters to augment the first stage.

The is the seventh flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.

WGS-9 also counts as the first of at least a trio of launches from the Cape this March- with the possibility for a grand slam fourth at month’s end – if all goes well with another SpaceX Falcon 9 launch from pad 39A.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about USAF/ULA WGS satellite, SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 21-25: “USAF/ULA WGS satellite launch, SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Flawless SpaceX Falcon 9 Takes Rousing Night Flight Delivery of EchoStar TV Sat to Orbit

SpaceX Falcon 9 rocket streaks to orbit in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket streaks to orbit in this long exposure photo taken in front of NASA’s countdown clock under moonlit skies at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Under stellar moonlit Florida skies, a private SpaceX Falcon 9 took flight overnight and flawlessly delivered the commercial EchoStar 23 television satellite to geosynchronous orbit after high winds delayed the rockets roar to orbit by two days from Tuesday. Breaking News: Check back for updates

The post midnight spectacle thrilled spectators who braved the wee hours this morning and were richly rewarded with a rousing rush as the 229 foot tall Falcon 9 rocket thundered to life at 2:00 a.m. EDT Thursday, March 16 from historic Launch Complex 39A on NASA’s Kennedy Space Center and sped to orbit.

Rising on the power of 1.7 million pounds of liftoff thrust generated by nine Marlin 1D first stage engines, the two stage Falcon 9 rocket successfully delivered the commercial EchoStar 23 telecommunications satellite to a Geostationary Transfer Orbit (GTO) for EchoStar Corporation.

The satellite was deployed approximately 34 minutes after launch.

Thus began March Launch Madness !!

If all goes well, March features a triple header of launches with launch competitor and arch rival United Launch Alliance (ULA) planning a duo of nighttime blastoffs from their Delta and Atlas rocket families. The exact dates are in flux due to the earlier postponement of the SpaceX Falcon 9. They have been rescheduled for March 18 and 24 respectively.

The SpaceX Falcon 9 launches the EchoStar 23 telecomsat from historic Launch Complex 39A with countdown clock in foreground at NASA’s Kennedy Space Center as display shows liftoff progress to geosynchronous orbit after post midnight blastoff on March 16 at 2:oo a.m. EDT. Credit: Ken Kremer/Kenkremer.com

EchoStar 23 will be stationed over Brazil for direct to home television broadcasts and high speed voice, video and data communications to millions of customers for EchoStar.

It was designed and built by Space Systems Loral (SSL).

“EchoStar XXIII is a highly flexible, Ku-band broadcast satellite services (BSS) satellite with four main reflectors and multiple sub-reflectors supporting multiple mission profiles,” according to a description from EchoStar Corporation.

EchoStar XXIII will initially be deployed in geosynchronous orbit at 45° West. The Satellite End of Life (EOL) Power is 20 kilowatts (kW).

Blastoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Photo from camera inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

The entire launch sequence was broadcast live on a SpaceX hosted webcast that began about 20 minutes before the revised liftoff time of 2:00 a.m. from the prelaunch countdown, blastoff and continued through the dramatic separation of the EchoStar 23 private payload from the second stage.

The EchoStar 23 launch counts as only the second Falcon 9 ever to blast off from pad 39A.

Liftoff of SpaceX Falcon 9 with EchoStar 23 TV satellite from pad 39A at the Kennedy Space Center in Florida on March 16 at 2:00 a.m. EDT. Credit: Julian Leek

SpaceX’s billionaire CEO Elon Musk leased historic pad 39A from NASA back in April 2014 for launches of the firms Falcon 9 and Falcon Heavy carrying both robotic vehicles as well as humans on missions to low Earth orbit, the Moon and ultimately the Red Planet.

Composite panoramic view of seaside Launch Complex 39A with SpaceX hangar and Falcon 9 rocket raised vertical to deliver the EchoStar 23 telecom satellite to geostationary orbit overnight March 16, 2017. Pad 39B at center. Credit: Ken Kremer/Kenkremer.com

The inaugural Falcon 9 blastoff successfully took place last month on Feb. 19, as I reported here.

However unlike most recent SpaceX missions, the legless Falcon 9 first stage will not be recovered via a pinpoint propulsive landing either on land or on a barge at sea.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 16 Mar 2017 at 1:35 a.m. Credit: Ken Kremer/Kenkremer.com

Because of the satellite delivery to GTO, there are insufficient fuel reserves to carry out the booster landing.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” officials said.

Therefore the first stage is not outfitted with either landing legs or grid fins to maneuver it back to a touchdown.

SpaceX announced that this was the last launch of an expendable Falcon 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

High Winds Scrub Legless SpaceX Falcon 9 Liftoff Reset to March 16 – Live Webcast

The countdown clock at NASA’s Kennedy Space Center shows the progress of the SpaceX Falcon launch attempt with the EchoStar 23 telecomsat from historic Launch Complex 39A after midnight March 14. Liftoff has been rescheduled for March 16 at 1:35 a.m. EDT. Credit: Ken Kremer/Kenkremer.com
The countdown clock at NASA’s Kennedy Space Center shows the progress of the SpaceX Falcon launch attempt with the EchoStar 23 telecomsat from historic Launch Complex 39A after midnight March 14. Liftoff has been rescheduled for March 16 at 1:35 a.m. EDT. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – High winds halted SpaceX’s early morning attempt to launch a legless Falcon 9 rocket and the EchoStar XXIII commercial communications satellite soon after midnight Tuesday, Mar. 14, from the Florida Space Coast amidst on and off rain showers and heavy cloud cover crisscrossing central Florida all afternoon Monday, Mar. 13 and into the overnight hours.

SpaceX then decided to reschedule the EchoStar 23 telecommunications satellite launch for post-midnight Thursday, March 16, at 1:35 a.m. EDT.

Tuesday’s launch scrub was called some 40 minutes prior to the scheduled opening of the two and a half hour long launch window at 1:34 a.m. EDT.

“Standing down due to high winds; working toward next available launch opportunity,” SpaceX tweeted just as engineers had started fueling the two stage rocket poised for blastoff from historic launch pad 39A from NASA’s Kennedy Space Center.

After further evaluating when to schedule a second attempt, SpaceX then stuck to their original plan of a 48 hour turnaround.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

If all goes well, March features a triple header of launches with launch competitor and arch rival United Launch Alliance (ULA) planning a duo of nighttime blastoffs from their Delta and Atlas rocket families. The exact dates are in flux due to the postponement of the SpaceX Falcon 9. They had been slated for March 17 and 21 respectively.

Since continuing high winds have plagued the space coast region all day today and the weather is forecast to improve significant tomorrow, a two day delay to Thursday seemed rather prudent – solely from a weather standpoint.

“After standing down due to high winds, SpaceX is now targeting Thursday, March 16th for the EchoStar XXIII launch.” SpaceX officials announced via their website and social media.

“The launch window opens at 1:35 am ET and weather conditions are expected to be 90% favorable.”

The two and a half hour launch window closes at 4:05 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:35 a.m. liftoff time.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:14 a.m. EDT.

Watch at: SpaceX.com/webcast

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 16 Mar 2017 at 1:35 a.m. Credit: Ken Kremer/Kenkremer.com

The two stage Falcon rocket will deliver the commercial EchoStar 23 telecommunications satellite to a Geostationary Transfer Orbit (GTO) for EchoStar Corporation.

The satellite will be deployed approximately 34 minutes after launch.

The EchoStar 23 launch counts as only the second Falcon 9 ever to blastoff from pad 39A – which SpaceX’s billionaire CEO Elon Musk leased from NASA back in April 2014.

The inaugural Falcon 9 blastoff successfully took place last month on Feb. 19, as I reported here.

The nighttime lunge to space should offer spectacular viewing. But unlike most recent SpaceX missions, the first stage will not be recovered via a pinpoint propulsive landing either on land or on a barge at sea.

Because of the satellite delivery to GTO, there are insufficient fuel reserves to carry out the booster landing.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” officials said.

Therefore the first stage is not outfitted with either landing legs or grid fins to maneuver it back to a touchdown.

However, SpaceX has announced that this Falcon 9 will be the last expendable first stage.

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Musk hopes to dramatically cut the cost of access to space by recovering and recycling the boosters for reuse with a new paying customer.

Indeed the SES-10 payload is already slated to fly on the first ‘flight proven’ rocket sometime in the next few weeks.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Canada To Get Its Own Spaceport

8 Ukrainian-built Cyclone 4 rockets will be launched each year from Maritime Launch Services' planned spaceport in Nova Scotia, Canada. Image: Maritime Launch Services

Canada is getting its own rocket-launching facility. Maritime Launch Services (MLS) has confirmed its plans to build and operate a commercial launch facility in Nova Scotia, on Canada’s east coast. The new spaceport should begin construction in 1 year, and should be in operation by 2022.

The facility will be built near Canso, in the province of Nova Scotia. Maritime Launch Services hopes to launch 8 rockets per year to place satellites in orbit. The Ukrainian Cyclone 4M medium-class rockets that will lift-off from Canso will have a payload of up to 3,350 kg.

The red marker in the map above shows the location of the Maritime Launch Services spaceport. Image: Google

Spaceports have certain requirements that make some locations more desirable. They need to be near transportation infrastructure so that rockets, payloads, and other materials can be transported to the site. They need to be away from major population centres in case of accidents. And they need to provide trajectories that give them access to desirable orbits.

The Nova Scotia site isn’t the only location considered by MLS. They evaluated 14 sites in North America before settling on the Canso, NS site, including ones in Mexico and the US. But it appears that interest and support from local governments helped MLS settle on Canso.

The Ukrainian Cyclone M4 rockets have an excellent track record for safety. The company who builds it, Yuzhnoye, has been in operation for 62 years and has launched 875 vehicles and built and launched over 400 spacecraft. Cyclone rockets have launched successfully 221 times.

The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office
The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office

MLS is a group of American aerospace experts including people who have worked with NASA. They are working with the makers of the Cyclone 4 rocket, who have wanted to open up operations in North America for some time.

The Cyclone rocket family first started operating in 1969. The Cyclone 4 is the newest and most powerful rocket in the Cyclone family. It’s a 3-stage rocket that runs on UDMH fuel and uses nitrogen tetroxide for an oxidizer.

There have been other proposals for a Canadian spaceport. The Canadian Space Agency was interested in Cape Breton, also in Nova Scotia, as a launch site for small satellites in 2010. A Canadian-American consortium called PlanetSpace also looked at a Nova Scotia site for a launch facility, but they failed to get the necessary funding from NASA in 2008. Fort Churchill, in the Province of Manitoba, was the site of over 3,500 sub-orbital flights before being shut down in 1985.

The Canso launch facility is an entirely private business proposal. Neither the Canadian government nor the Canadian Space Agency are partners. It’s not clear if having a launch facility on Canadian soil will impact the CSA’s activities in any way.

But at least Canadians won’t have to leave home to watch rocket launches.

March Launch Madness: Triple Headed Space Spectacular Starts Overnight with SpaceX March 14 – Watch Live

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – It’s March Madness for Space fans worldwide! A triple header of space spectaculars starts overnight with a SpaceX Falcon 9 launching in the wee hours of Tuesday, March 14 from the Florida Space Coast.

Indeed a trio of launches is planned in the next week as launch competitor and arch rival United Launch Alliance (ULA) plans a duo of nighttime blastoffs from their Delta and Atlas rocket families – following closely on the heels of the SpaceX Falcon 9 launching a commercial telecommunications satellite.

Of course it’s all dependent on everything happening like clockwork!

And there is no guarantee of that given the unpredictable nature of the fast changing weather on the Florida Space Coast and unknown encounters with technical gremlins which have already plagued all 3 rockets this month.

Each liftoff has already been postponed by several days this month. And the rocket launch order has swapped positions.

At any rate, SpaceX is now the first on tap after midnight tonight on Tuesday, March 14.

The Delta IV and Atlas V will follow on March 17 and March 21 respectively – if all goes well.

So to paraphrase moon walker Buzz Aldrin;

‘Get Your Ass to the Florida Space Coast – Fast !’

The potential for a grand slam also exists at the very end of the month. But let’s get through at least the first launch of Falcon first.

SpaceX Falcon 9 rocket stands at launch pad 39a poised to liftoff with EchoStar 23 TV sat on the Kennedy Space Center ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Julian Leek

Liftoff of the two stage SpaceX Falcon 9 carrying the EchoStar 23 telecommunications satellite is now slated for a post midnight spectacle next Tuesday, Mar. 14 from launch pad 39A on the Kennedy Space Center at the opening of the launch window at 1:34 a.m. EDT.

The two and a half hour launch window closes at 4:04 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:34 a.m. liftoff time.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:14 a.m. EDT.

Watch at: SpaceX.com/webcast

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Following a successful static fire test last week on Mar. 9 of the first stage boosters engines, the SpaceX Falcon 9 was integrated with the EchoStar 23 direct to home TV satellite and rolled back out to pad 39A

The Falcon 9 rocket was raised erect into launch position by the time I visited the pad this afternoon, Monday March 13, to set up my cameras.

The weather outlook is not great at this moment, with rain and thick clouds smothering the coastline and central Florida.

The planned Mar. 14 launch comes barely three weeks after the Falcon’s successful debut on Feb. 19 on the NASA contracted Dragon CRS-10 mission that delivered over 2.5 tons of cargo to the six person crew living and working aboard the International Space Station (ISS).

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Launch Complex 39A was repurposed by SpaceX from launching Shuttles to Falcons. It had lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

SpaceX bilionaire CEO Elon Musk announced last week that he wants to launch a manned Moonshot from pad 39A by the end of next year using his triple barreled Falcon Heavy heavy lift rocket – derived from the Falcon 9.

The second launch of the trio on tap is a United Launch Alliance Delta 4 rocket carrying the WGS-9 high speed military communications satellite for the U.S. Air Force.

Liftoff of the ULA Delta is slated for March 17 from Space Launch Complex-37 at 7: 44 p.m. EDT.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The S.S. John Glenn is scheduled to as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 EchoStar 23 mission patch. Credit: SpaceX

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com

NASA Fires a Rocket into the Northern Lights, for Science!

A NASA Black Brant IX sounding rocket soars skyward into an aurora over Alaska during the launch on 5:13 a.m. EST, Feb. 22, 2017. Credit: NASA/Terry Zaperach

Not only is it aurora season in Alaska, its sounding rocket season! NASA started launching a series of five sounding rockets from the Poker Flat Research Range in Alaska to study the aurora. The first of these rockets for this year, a Black Brant IX, was launched in the early morning hours of February 22, 2017.

The instrument on board was an Ionospheric Structuring: In Situ and Groundbased Low Altitude StudieS (ISINGLASS) instrumented payload, which studies the structure of an aurora.

The Black Brant IX sounding rocket carried instruments to an altitude of 225 miles as part of the Ionospheric Structuring: In Situ and Groundbased Low Altitude StudieS or ISINGLASS mission. Credit: NASA/Terry Zaperach.

This is not the first sounding rocket flight from Poker Flats to launch into an aurora. Starting in 2009, this research has been taking place to help refine current models of aurora structure, and provide insight on the high-frequency waves and turbulence generated by aurorae. This helps us to better understand the space weather caused by the charged particles that come from the Sun and how it impacts Earth’s lower atmosphere and ionosphere.

“The visible light produced in the atmosphere as aurora is the last step of a chain of processes connecting the solar wind to the atmosphere,” said Kristina Lynch, ISINGLASS principal investigator from Dartmouth College. “We are seeking to understand what structure in these visible signatures can tell us about the electrodynamics of processes higher up.”

While humans don’t feel any of these effects directly, the electronic systems in our satellites do, and as our reliance on satellite technologies grow, researchers want to have all the data they can to help avert problems than can be caused by space weather.

The rocket sent a stream of real-time data back before landing about 200 miles downrange shortly after the launch.

The launch window for the remaining rockets runs through March 3. ISINGLASS will fly into what is known as a dynamic Alfenic curtain, which is a form of electromagnetic energy thought to be a key driver of “discrete” aurora – the typical, well-defined band of shimmering lights about six miles thick and stretching east to west from horizon to horizon.

NASA says that the five launches in the 2017 sounding rocket campaign will add to our body of information about this space through which our spacecraft and astronauts travel near Earth. By studying the interaction of the sun and its solar wind with Earth’s upper atmosphere, scientists are also able to apply the knowledge to other planetary bodies — helping us understand these interactions throughout the universe as well.

Here’s an infographic from NASA about the 2017 sounding rocket launches from Poker Flats:

Read more: NASA

NASA’s Historic Pad 39A Back in Business with Maiden SpaceX Falcon 9 Blastoff to ISS and Booster Landing

Historic maiden blastoff of a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on Dragon CRS-10 resupply mission to the International Space Station (ISS) at 9:38 a.m. EDT on Feb 19, 2017. Photo taken from the VAB roof. Credit: Ken Kremer/kenkremer.com
Historic maiden blastoff of a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on Dragon CRS-10 resupply mission to the International Space Station (ISS) at 9:38 a.m. EDT on Feb 19, 2017. Photo taken from the VAB roof. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After a six year lull NASA’s historic pad 39A roared back to business this morning with the dramatic maiden blastoff of a SpaceX Falcon 9 rocket, on a critical cargo delivery mission for NASA to the space station – while simultaneously landing the first stage back on the ground at the Cape on a secondary mission aimed at one day propelling humans to Mars.

The era of undesired idleness for America’s most famous launch pad was broken at last by the rumbling thunder of a SpaceX Falcon 9 that ignited at 9:38 a.m. EST Sunday morning, Feb 19, at Launch Complex 39A at NASA’s Kennedy Space Center.

The storied liftoff took place under heavily overcast skies with rain showers nearby under seemingly improbable weather conditions.

After liftoff, the rocket disappeared within seconds and never really reappeared in the local area until the final moments of the descent of the first stage – which nailed a nearly perfect dead center touchdown at Landing Zone 1 at the Cape some 9 minutes after launch.

Final descent of the SpaceX Falcon 9 1st stage landing as seen from the VAB roof under heavily overcast skies after Feb. 19, 2017 launch from pad 39 at the Kennedy Space Center. The booster successfully soft landed upright at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 9 minutes after launch to the International Space Station (ISS). Credit: Ken Kremer/kenkremer.com

Nevertheless the Falcon 9 launch was a smashing success and probably the loudest I have ever witnessed since the shuttle era ended. Watching from atop the roof of the iconic VAB, I can report the building did experience some rather exciting rattling!

And it was SpaceX’s first daylight booster landing back at the Cape. The two earleir touchdowns were at night – most recently for the CRS-9 mission last summer in July 2016.

The goal of the mission was aimed at launching the SpaceX Dragon cargo freighter to deliver over 5500 pounds of science and supplies to the orbiting science outpost on the CRS-10 mission.

The Dragon spacecraft was successfully delivered in Earth orbit and is on course for the International Space Station (ISS) on the CRS-10 mission.

As a secondary side goal, SpaceX successfully carried out a propulsive soft landing of the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1 (LZ-1), located about 9 miles south of KSC launch complex 39A.

The touchdown, like the launch was completely obscured until the final moments of the descent, when it suddenly and magnificently reappeared as a strange pale colored cylinder emitting a long yellow flame after dropping below the low hanging clouds.

The booster successfully accomplished a propulsive upright soft landing at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 9 minutes after launch.

This was the 8th first stage booster that SpaceX has successfully recovered either by land or on a tiny droneship at sea over the past year.

The goal is to refurbish and recycle the 156 foot tall first stage boosters for relaunch with a new payload.

SpaceX CEO billionaire Elon Musk hopes that by reusing the spent booster, he can drastically cut the cost of access to space and that will one day lead to human colonies and a “City on Mars.”

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The dream of Bob Cabana, former astronaut and now Center Director at the Kennedy Space Center NASA’s, to turn KSC into a multiuser spaceport open to utilization by government, industry and entrepreneurs like SpaceX’s billionaire CEO Elon Musk is finally coming to fruition in a blaze of glory.

“I’m so proud of this team for all the dedication and hard work,” said Cabana.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Today’s launch counts as the first commercial launch from Kennedy’s historic pad.

The storied pad initially sent NASA astronauts to the Moon soon after the dawn of the Space Age during the Apollo/Saturn era and was then significantly overhauled to serve as the on ramp for NASA space shuttles for another three decades.

SpaceX has now transformed pad 39A for launches of the Falcon 9. A bright future lies ahead with launches of the heavy lift Falcon Heavy later this year and a renewal of manned launches of astronauts some time in 2018.

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure lightning from the altitude of the ISS. NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

As of today we are at last launching rockets again from the Kennedy Space Center – thanks to SpaceX and the Falcon 9. What a tremendous return to space !

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as seen from inside the pad perimeter. Technicians work to prepare the rocket for launch. Liftoff of the CRS-10 mission is slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Feb 18 – 19: “SpaceX CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 Goes Vertical with Station Science at KSC Pad 39A – Watch Live Feb. 19

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 18 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Just hours before blastoff, the first ever SpaceX Falcon 9 set to soar to the space station from historic pad 39A at NASA’s Kennedy Space Center (KSC), the rocket went vertical below delightfully dark skies on the Florida Space Coast.

UPDATE- The launch was scrubbed until Feb. 19 after a hold was called to deal with a thrust vector control issue. Story updated

Packed with over a thousand pounds of research experiments and science instruments probing the human body and our home planet from the heavens above, the Falcon 9 rocket is poised for liftoff at 9:38 a.m., Sunday morning, Feb. 19, from Launch Complex 39A (LC-39A) at KSC.

Everything is on track for Sunday’s launch of the 229 foot tall (70 meter) SpaceX Falcon 9 on the NASA contracted SpaceX CRS-10 resupply mission for NASA to the million pound orbiting lab complex.

And the weather looks promising at this time.

At a meeting with reporters at pad 39A on Friday, Feb. 17, SpaceX President Gwynne Shotwell confirmed the success of the static fire test of the two stage rocket and all nine first stage Merlin 1D engines conducted on Sunday afternoon, Feb. 12 – minus the SpaceX Dragon cargo freighter payload.

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 17 Feb 2017 as seen from inside the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

The successful test firing of the engines cleared the path to orbit for liftoff of Dragon on a critical cargo flight for NASA to deliver over two and a half tons of supplies and science on the CRS-10 resupply mission to the six person crew living and working aboard the International Space Station (ISS).

Shotwell then said technicians integrated with the unmanned Dragon CRS-10 cargo freighter with the Falcon 9 rocket.

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 ahead of launch of the CRS-10 mission on 19 Feb 2017. Credit: Julian Leek

The 22 story tall rocket rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A on Thursday morning using a dedicated transporter-erector, so ground crews could begin final preparations for the Saturday morning blastoff. Now reset to Sunday.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39-A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 18 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Thousands and thousands of spectators from across the globe, local residents, media and scientists and engineers and their families have flocked to the Florida Space Coast, filling area hotels to witness the historic maiden blastoff of a Falcon 9 from seaside pad 39A at KSC at 9:38 a.m. EST Sunday, Feb. 19.

SpaceX will also attempt to achieve a secondary mission goal of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

If you can’t personally be here to witness the launch in Florida, you can also watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-10 launch coverage will be broadcast on NASA TV beginning at 8:30 a.m. EDT Saturday, Feb. 18, with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 9:41 a.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can also watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues results in a minimum 1 day postponement.

The long awaited FAA launch license was finally granted at the last minute on Friday afternoon – less than 24 hours before launch.

The weather outlook currently is improving from earlier in the week and looks good for Saturday morning with a 70% chance of favorable condition at launch time. The concerns are for thick clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on Feb. 18, the backup launch opportunity is 9:38 a.m. Sunday, Feb. 19. with NASA TV coverage starting at about 8:10 a.m. EDT.

CRS-10 marks only the third time SpaceX has attempted a land landing of the 15 story tall first stage booster.

Shotwell confirmed they are attempting the secondary mission of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located about 9 miles south of launch pad 39a.

And it won’t take long to learn the results – the ground landing at LZ -1 will take place about 9 minutes after liftoff.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

This marks the first time any fully integrated rocket has stood on pad 39A for a scheduled launch since the retirement of NASA’s Space Shuttles in July 2011 on the STS-135 mission to the space station.

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions as far back as the 1960s.

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere.

The LIS lightning mapper will measure lightning from the altitude of the ISS. NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Feb 17- 19: “SpaceX CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 16 Feb 2017 as seen from Launch Complex 39-B. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb. Credit: Ken Kremer/Kenkremer.com
First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 19 Feb. 2017. Credit: Ken Kremer/Kenkremer.com