This Early Impact Devastated Life then Gave it a Boost

This graphic depicts what happened when the S2 meteorite struck Earth about 3.26 billion years ago. Initially, it was devastating but eventually it lead to mass blooms. Image Credit: Drabon et al. 2024.

Most of us know about the impact that wiped out the dinosaurs about 66 million years ago. It’s a scientific fact that’s entered mainstream knowledge, maybe because so many of us shared a fascination with dinosaurs as children. However, it’s not the only catastrophic impact that shaped life on Earth.

There was an even more ancient one about 3.26 billion years ago, and its repercussions shaped early life in a unique way.

Continue reading “This Early Impact Devastated Life then Gave it a Boost”

Another Building Block of Life Can Handle Venus’ Sulphuric Acid

Radar image of Venus created by the Solar System Visualization project and the Magellan science team at the JPL Multimission Image Processing Laboratory. Credit: NASA/JPL.

Venus is often described as a hellscape. The surface temperature breaches the melting point of lead, and though its atmosphere is dominated by carbon dioxide, it contains enough sulfuric acid to satisfy the comparison with Hades.

But conditions throughout Venus’ ample atmosphere aren’t uniform. There are locations where some of life’s building blocks could resist the planet’s inhospitable nature.

Continue reading “Another Building Block of Life Can Handle Venus’ Sulphuric Acid”

Dark Oxygen Could Change Our Understanding of Habitability

This image shows a bed of manganese nodules offshore of the Cook Islands. Dark oxygen is produced by manganese nodules on the ocean floor. If the same thing happens on the Solar System's ocean moons, it changes our notion of what worlds could be habitable. Image Credit: By USGS, James Hein - https://www.usgs.gov/media/images/cook-islands-manganese-nodules, CC0, https://commons.wikimedia.org/w/index.php?curid=115692552

The discovery of dark oxygen at an abyssal plain on the ocean floor generated a lot of interest. Could this oxygen source support life in the ocean depths? And if it can, what does that mean for places like Enceladus and Europa?

What does it mean for our notion of habitability?

Continue reading “Dark Oxygen Could Change Our Understanding of Habitability”

Asking the Big Question: Where Did Life Originate?

Water's Early Journey in a Solar System
Somehow, life originated on Earth. Even without knowing everything about how that happened, can we learn how likely it is to happen elsewhere? Image Credit: NASA/JPL-Caltech

Where on Earth did life originate, and where else could it occur? A comprehensive answer is most likely a long way off. But it might depend on how many suitable sites for abiogenesis there are on different worlds.

Continue reading “Asking the Big Question: Where Did Life Originate?”

Ancient Rocks in Mars’ Jezero Crater Confirm Habitability

This Mars Reconnaissance Orbiter image shows Jezero Crater, with Perseverance's landing site and the Fan Front feature. Rocks from the Fan Front sampled in 2022 show evidence of water that predates life on Earth. Image Credit: NASA/JPL-Caltech/MSSS/JHU-APL

According to NASA’s Perseverance rover, ancient rocks in Jezero Crater formed in the presence of water. These sedimentary rocks are more than 3.5 billion years old and may predate the appearance of life on Earth. When and if these samples are returned to Earth, scientists hope to determine if they hold evidence of ancient Martian life.

Continue reading “Ancient Rocks in Mars’ Jezero Crater Confirm Habitability”

Scientists Want to Use the Moon to Safeguard Earth’s Biodiversity

The ESA lunar base, showing its location within the Shackleton Crater at the lunar south pole. New research proposes building a repository at one of the lunar poles to safeguard Earth's biodiversity. Credit: SOM/ESA

There’s something wrong with us.

We’ve risen to prominence on a world that’s positively “rippling with life,” as Carl Sagan described it. The more we study our planet, the more we find life eking out an existence in the most unlikely of places.

Yet we seem destined to drive many species to extinction, even though we see those extinctions coming from miles away.

As an indication of how serious the problem is, one group of researchers suggests we use the Moon—yes, the Moon—as a safe repository for Earth’s biodiversity.

Continue reading “Scientists Want to Use the Moon to Safeguard Earth’s Biodiversity”

How Oumuamua Changes Our Perspective on Galactic Panspermia

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

Panspermia is an innately attractive idea that’s gained prominence in recent decades. Yet, among working scientists, it gets little attention. There are good reasons for their relative indifference, but certain events spark renewed interest in panspermia, even among scientists.

The appearance of Oumuamua in our Solar System in 2017 was one of them.

Continue reading “How Oumuamua Changes Our Perspective on Galactic Panspermia”

A Surprising Source of Oxygen in the Deep Sea

Manganese nodules from the seafloor are often rich in metals like manganese, iron, nickel, copper, and cobalt.

I have always found Mariana’s Trench fascinating, it’s like an alien world right on our doorstep. Any visitor to the oceans or seas of our planet will hopefully get to see fish flitting around and whilst they can survive in this alien underwater world they still need oxygen to survive. Breathing in oxygen is a familiar experience to us, we inflate our lungs and suck air into them to keep us topped up with life giving oxygen. Fish are different, they get their oxygen as water flows over their gills. Water is full of oxygen which at the surface comes from the atmosphere or plants. But deep down, thousands of meters beneath the surface, it is not so easy. Now a team of scientists think that potato-sized chunks of metal called nodules act like natural batteries, interacting with the water and putting oxygen into the deep water of the ocean. 

Continue reading “A Surprising Source of Oxygen in the Deep Sea”

We Might Find Life Just Under the Surface on Europa

If life exists in the oceas of Europa (left) and Enceladus (right), it could leave amino-acid fingerprints just beneath the surface. Courtesy NASA.
If life exists in the oceas of Europa (left) and Enceladus (right), it could leave amino-acid fingerprints just beneath the surface. Courtesy NASA.

What does it take to have life at another world? Astrobiologists say you need water, warmth, and something for life to eat. If it’s there, it’ll leave signs of itself in the form of organic molecules called amino acids. Now, NASA scientists think that those “signatures” of life—or potential life—could exist just under the icy surfaces of Europa and Enceladus.

Continue reading “We Might Find Life Just Under the Surface on Europa”