Mars bound MAVEN Orbiter “GO” for Astrobiology Expedition Launch on Nov. 18

NASA’s Mars bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com

NASA’s Mars bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – NASA’s Mars bound MAVEN spacecraft was rolled out to the seaside launch pad on Saturday Nov. 16 on Florida’s space coast on an expedition to study the Red Planet’s atmosphere and its potential for astrobiology.

All systems are “GO” for MAVEN and the powerful Atlas booster that will set the probe streaking on a ten month interplanetary journey to the Red Planet.

MAVEN is targeted to launch Monday, Nov. 18 at 1:28 p.m. EST atop a United Launch Alliance Atlas V 401 rocket from Cape Canaveral Air Force Station in Florida.

NASA’s Mars bound MAVEN spacecraft and Atlas V booster poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft and Atlas V booster poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com

The battery is being charged. After a day of rest for the launch pad crew, the countdown is set to resume at about 6:28 a.m. on Monday.

The Atlas launch window extends for 2 hours until about 3:30 p.m.

The weather outlook is somewhat iffy with a 60% chance of favorable conditions at launch time. The main threats are rain, winds and clouds.

Crowds of spectators are descending on Florida to view the historic launch and the local hotels are filling up. And I’ve spoken to many enthusiastic folks and kids hoping to witness a space spectacular.

Mars beckons humans for centuries as a place of myths and mysteries.

NASA Administrator Charles Bolden (right) shaking hands and congratulating MAVEN Mars probe chief scientist Bruce Jakosky (center) during media Q & A session with NASA Science Chief John Grunsfeld in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden (right) shaking hands and congratulating MAVEN Mars probe chief scientist Bruce Jakosky (center) during media Q & A session with NASA Science Chief John Grunsfeld in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Ken Kremer/kenkremer.com
MAVEN will answer key questions about the evolution of Mars, its geology and the potential for the evolution of life

“MAVEN is an astrobiology mission,” said Bruce Jakosky, MAVEN’s Principal Investigator from the University of Colorado at Boulder, at NASA’s Kennedy Space Center.

Mars was once wet billions of years ago, but no longer. Now it’s a cold arid world, not exactly hospitable to life.

“We want to determine what were the drivers of that change?” said Jakosky. “What is the history of Martian habitability, climate change and the potential for life?”

NASA’s MAVEN Mars orbiter – which stands for Mars Atmosphere and Volatile Evolution – is the first real attempt to investigating these fundamental questions that hold the key to solving the Martian mysteries perplexing the science community.

The 5,400 pound MAVEN probe carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

You can watch the launch live on NASA TV.

Photojournalists and space reporters (including Ken Kremer of Universe Today) covering the MAVEN Mars orbiter launch pose for group photo op in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Nicolle Solomon
Thrilled band of photojournalists and space reporters (including Ken Kremer of Universe Today) covering the MAVEN Mars orbiter launch pose for group photo op in front of the Atlas V rocket poised to blastoff from Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Credit: Nicolle Solomon

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer
…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Star Trek’s Geordi LeForge Explains NASA’s new MAVEN Mars Orbiter

Star Trek actor LeVar Burton Shares MAVEN’s Story in a New NASA public service announcement (PSA). Credit: NASA

Star Trek actor LeVar Burton Shares MAVEN’s Story in a New NASA public service announcement (PSA). Credit: NASA
Watch the PSA below[/caption]

KENNEDY SPACE CENTER, FL – Star Trek actor and space enthusiast LeVar Burton stars in a new action packed NASA public service announcement (PSA) about the agency’s next Mars-bound spacecraft, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft slated for blast off in barely two days time on Nov. 18 from the Florida Space Coast.

Burton played the beloved character of chief engineer ‘Geordi LeForge’ aboard the legendary Starship Enterprise on “Star Trek: The Next Generation” – known by audiences worldwide.

And Burton gives an appropriately other worldly narration in the NASA PSA containing exciting new animations explaining the goals and science behind the MAVEN Mars orbiter and how it will accomplish its tasks.

I was privileged to meet chief engineer ‘Geordi LeForge’ at a prior NASA launch event.

He is genuinely and truly dedicated to advancing science and education through his many STEM initiatives and participation in educational programming like the NASA PSA.

MAVEN will study the Red Planet’s atmosphere like never before and in unprecedented detail and is the first mission dedicated to studying Mars upper atmosphere.

MAVEN’s is aimed at unlocking one of the greatest Martian mysteries; Where did all the water go ? And when did the Red Planet’s water and atmosphere disappear ?

MAVEN’s suite of nine science instruments will help scientists understand the history, mechanism and causes of the Red Planet’s dramatic climate change over billions of years.

Burton’s PSA will be used at MAVEN scheduled events around the country and will also be shared on the web and social media, according to NASA. The goal is to educate the public about MAVEN and NASA’s efforts to better understand the Red Planet and the history of climate change there.

Be sure to check out the new video – below:



Video caption: NASA is returning to Mars! This NASA Public Service Announcement regarding the MAVEN mission is presented by LeVar Burton in which he shares the story about NASA’s Mars Atmosphere and Volatile Evolution mission—or MAVEN—and how it will explore Mars’ climate history and gather clues about the question scientists have been asking for decades. MAVEN will look at specific processes at Mars that led to the loss of much of its atmosphere…and MAVEN data could tell scientists a lot about the history of climate change on the Red Planet.

“NASA is thrilled to have LeVar Burton explain this mission to the greater public,” said Bert Ulrich, NASA’s multimedia liaison for film and TV collaborations in a NASA statement. “Thanks to Burton’s engaging talents and passion for space exploration, audiences of all ages will be able to share in the excitement of NASA’s next mission to Mars.”

MAVEN is targeted to launch Monday, Nov. 18 at 1:28 p.m. EST atop a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

You can watch the launch live on NASA TV

Stay tuned here for continuing MAVEN and MOM news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-20: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

A Guided Aerial Tour of Curiosity’s Journey So Far on Mars

This scene shows the "Murray Ridge" portion of the western rim of Endeavour Crater on Mars. The ridge is the NASA's Mars Exploration Rover Opportunity's work area for the rover's sixth Martian winter. Image Credit: NASA/JPL-Caltech/Cornell/ASU

Just where has the Curiosity rover traveled so far and where is it going? This new video, narrated by John Grotzinger, the principal investigator for the Mars Science Laboratory mission, provides an aerial tour of the rover’s past, present and future traverses on the Red Planet.

Curosity landed in a flat, “hummocky” area in Gale Crater and is heading towards the Aeolis Mons, also known as Mount Sharp, a mountain 5 kilometers (3 miles) high. Right now the rover is among a cluster of small, steep-sided knobs, or buttes that are quite large — up to about the size of a football field and the height of a goal post. They sit in a gap in a band of dark sand dunes that lie at the foot of the mountain. Deep sand could present a hazard for driving, so this break in the dunes is the access path to the mountain.
These buttes have been named the Murray Buttes in honor of influential planetary scientist Bruce Murray (1931-2013).

“Bruce Murray contributed both scientific insight and leadership that laid the groundwork for interplanetary missions such as robotic missions to Mars, including the Mars rovers, part of America’s inspirational accomplishments,” said NASA Mars Exploration Program Manager Fuk Li from JPL. “It is fitting that the rover teams have chosen his name for significant landmarks on their expeditions.”

Meanwhile at Endeavour Crater, where the Opportunity is still exploring, nearly a decade on, and is now preparing for winter. A feature there has also been named for Bruce Murray, Murray Ridge, part of an uplifted crater rim.

“Murray Ridge is the highest hill we’ve ever tried to climb with Opportunity,” said the mission’s principal investigator, Steve Squyres of Cornell University, Ithaca, N.Y. The ridge has outcrops with clay minerals detected from orbit. It also provides a favorable slope for Martian winter sunshine to hit the rover’s solar panels, an advantage for keeping Opportunity mobile through the winter.

“Bruce Murray is best known for having been the director of JPL, and JPL is where our rovers were built,” Squyres said. “He led JPL during a time when the planetary exploration budget was under pressure and the future for planetary missions was not clear. His leadership brought us through that period with a strong exploration program. He was also a towering figure in Mars research. His papers are still cited abundantly today.”

Back to the video, interestingly, the “fly-through” data comes from a variety of missions representing some of the history of Mars exploration. Doug Ellison, who works with JPL’s Eyes on the Solar System – which uses spacecraft data to create realistic simulated views of spacecraft, planets and other features within our solar system – said on Twitter that the video uses data from Viking to narrow down the color, Mars Express High Resolution Stereo Camera (MEX-HRSC_ and the Mars Reconnassaince Oribiter’s HiRISE camera for topography, and the MRO Context camera (MRO-CTX) and HiRISE for imagery.

Source: JPL

India’s Mars Orbiter Mission Rising to Red Planet – Glorious Launch Gallery

Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

With India’s Mars Orbiter Mission (MOM) safely and flawlessly injected into her initial elliptical Earth parking orbit following Tuesday’s (Nov. 5) spectacular launch, the flight has quickly transitioned to the next stage – the crucial series of thruster firings to raise MOM’s orbit around Earth dubbed “Midnight Maneuvers” and achieve escape velocity.

Barely a day after blastoff, ISRO engineers successfully completed the first of six orbit raising “Midnight Maneuver” burns at 01:17 hrs IST today (Nov. 6) with MOM’s liquid fueled thruster – see graphic below.

The goal is to gradually maneuver MOM – India’s 1st mission to the Red Planet – into a hyperbolic trajectory so that the spacecraft will escape from the Earth’s Sphere of Influence (SOI) and eventually arrive at the Mars Sphere of Influence after a 10 month interplanetary cruise.

Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013.  Credit: ISRO
Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013. Credit: ISRO

To do this involves a lot of complicated orbital mechanics calculations, as noted by ISRO’s chief during the launch webcast.

“The journey has only begun. The challenging phase is coming,” said Dr. K. Radhakrishnan, Chairman ISRO.

India’s PSLV rocket is not powerful enough to send MOM on a direct flight to Mars.

The launch “placed MOM very precisely into an initial elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

So ISRO’s engineers devised a clever procedure to get the spacecraft to Mars on the least amount of fuel via six “Midnight Maneuver” engine burns over the next several weeks – and at an extremely low cost.

First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO
First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO

The 440 Newton engine fires when MOM is at its closest point in orbit above Earth. This increases the ships velocity and gradually widens the ellipse and raises the apogee of the six resulting elliptical orbits around Earth that eventually injects MOM onto the Trans-Mars trajectory.

The 1st firing lasted 416 seconds and raised the spacecraft’s apogee to 28,825 km and perigee to 252 km.

The remaining burns are planned for November 7, 8, 9, 11, and 16.

MOM is expected to achieve escape velocity on Dec. 1 and depart Earth’s sphere of influence tangentially to Earth’s orbit to begin the 300 day long voyage to the Red Planet.

She will follow a path that’s roughly half an ellipse around the sun.

MOM arrives in the vicinity of Mars on September 24, 2014 for the absolutely essential Mars orbital insertion firing by the 440 Newton liquid fueled main engine which slows the probe and places it into a 366 km x 80,000 km elliptical orbit.

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press center.

Here’s a glorious gallery of launch images of the PSLV-25 rocket & Mars Orbiter Mission (MOM) on Nov. 5, 2013.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff. Credit: ISRO.
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background.  Credit: IRSO
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO’s) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Surreal view of 'T zero' Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Surreal view of ‘T zero’
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO's Mars Orbiter Mission Spacecraft. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO’s Mars Orbiter Mission Spacecraft. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !  There she goes taking our dreams into deeper space !  Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !
There she goes taking our dreams into deeper space ! Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

India’s First Mars Mission Launches Flawlessly on Historic Journey to the Red Planet

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

WOW MOM !
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

India flawlessly launched its first ever mission to Mars today (Nov. 5) to begin a history making ten month long interplanetary voyage to the Red Planet that’s aimed at studying the Martian atmosphere and searching for methane after achieving orbit.

The Mars Orbiter Mission (MOM) thundered to space atop the nations four stage Polar Satellite Launch Vehicle (PSLV) precisely on time at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST) from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota, off India’s east coast.

“Our journey to Mars begins now!” announced an elated ISRO Chairman K. Radhakrishnan at the ISRO spaceport during a live broadcast of MOM’s launch from the mission control center. “We achieved orbit and we can all be proud.”

Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

This was the 25th launch of India’s highly reliable 44 meter (144 foot) tall PSLV booster.

The 700,000 pound thrust PSLV rocket launched in its most powerful, extended XL version with six strap on solid rocket motors.

Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO

“I’m extremely happy to announce that the PSLV-C25 vehicle has placed the Mars orbiter spacecraft very precisely into an elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” Radhakrishnan said, after “much meticulous planning and hard work by everyone.”

ISRO announced that MOM separated from the PSLV 4th stage as planned some 44 minutes after liftoff and that the solar panels successfully deployed.

Confirmation of the 4th stage ignition and spacecraft separation was transmitted by ship-borne terminals aboard a pair of specially dispatched tracking ships – SCI Nalanda and SCI Yamuna – stationed by ISRO in the South Pacific Ocean.

India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

MOM was designed and developed by the Indian Space Research Organization (ISRO) in near record time after receiving approval from the Indian Prime Minister Manmohan Singh in August 2012.

“No mission is beyond our capability”, said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

A series of six burns over the next month will raise the apogee and put MOM on a trajectory for Mars around December 1.

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion firing by the main engine on September 24, 2014 will place MOM into an 366 km x 80,000 km elliptical orbit.

If all continues to goes well with MOM, India will join an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

The 1,350 kilogram (2,980 pound) MOM orbiter is also known as ‘Mangalyaan’ – which in Hindi means ‘Mars craft.’

Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO
Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO

Although the main objective is a demonstration of technological capabilities, the probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMars Trace Gas Orbiter.

MOM and MAVEN will arrive nearly simultaneously in Mars orbit next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Although they were developed independently and have different suites of scientific instruments, the MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for about six to ten months and hopefully much longer.

Stay tuned here for continuing MAVEN and MOM news and my MAVEN launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) await Nov. 5 blastoff. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

MOM’s Last Night on Earth; Midnight Marvel for India’s Mars Mission – Live Webcast

It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff. Credit: ISRO. Watch ISRO’s Live Webcast

It’ s a Mind-Blowing Midnight Marvel !
India’s fueled PSLV rocket and Mars Orbiter Mission (MOM) await Nov. 5 blastoff at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST). Credit: ISRO.
Watch ISRO’s Live Webcast[/caption]

MOM is spending her last night on Earth – and she’s a Mind-Blowing Midnight Marvel !

The pride of all India, and everyone’s favorite MOM is healthy and set to embark on the nation’s first ever interplanetary voyage of exploration. She aims to conduct a detailed study of the Martian atmosphere and sniff for methane – a potential indicator for life.

The Mars Orbiter Mission (MOM) was designed and developed by the Indian Space Research Organization (ISRO) which is broadcasting a live webcast of the launch starting at 14:00 hrs IST, 3:30 a.m. EST at – http://isro.org/

“All vehicle systems have been switched ON,” as of now, says ISRO.

Now less than 8 hours from blastoff, the PSLV-C25 booster rocket is fully fueled and poised to streak from ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.

If all goes well with MOM, India joins an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

Reaching Mars successfully is an enormous technological challenge. More than half of all Earth’s attempts have failed. But those who fail to ‘dare mighty things’ are doomed to timidity and ignominy.

Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background.  Credit: IRSO
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO’s) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO

ISRO reports that the weather outlook is favorable for an on time launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST).

“Weather Forecast for launch day based on today’s image from Kalpana Meteorological Satellite: Early morning, cloudy and low probability of Rain, No severe weather expected. During launch window – partly cloudy weather and no rain is expected.”

“Looks like we are heading towards a bright and sunny day for the launch,” says ISRO.

Today's weather image from India’s Kalpana Meteorological Satellite. Credit: ISRO
Today’s weather image from India’s Kalpana Meteorological Satellite. Credit: ISRO

Just hours ago the final loading of propellants into the rocket’s liquid fueled second stage (PS2) with highly toxic nitrogen tetroxide and hydrazine was satisfactorily completed.

The launch gantry has been retracted to a distance of 50 meters and the 44 meter (144 foot) tall four stage PSLV booster stands at the ready under the gaze of the starry night.

Two tracking ships – SCI Nalanda and SCI Yamuna – have been deployed to the Indian Ocean.

They are now in position to relay critical in flight telemetry during the ignition of the PSLV-C25 fourth stage and the spacecraft’s separation from the rocket at T plus 44 minutes.

“For about ten minutes between the separation of third stage of PSLV and ignition of fourth stage the vehicle will not be visible from any ground stations as will be evident in the Live telecast,” says ISRO.

Tracking MOM !  Credit: ISRO
Tracking MOM ! Credit: ISRO

And the launch team is leaving no stone unturned to ensure success!

“As the country gets embraced in deep sleep – don’t forget a few hundred tireless minds at ISRO – rock-steady on their consoles and keeping their strict vigil on the several health parameters of the rocket and the MoM spacecraft,” said ISRO in a statement.

And here’s a poetic tribute to MOM from ISRO

1391674_1392844634286810_1481308204_n

MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. On the other side of Earth, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

The 1,350 kilogram (2,980 pound) MOM orbiter is also known as‘Mangalyaan’ – which in Hindi means ‘Mars craft.’

‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

The PSLV will inject MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually place MOM on a trajectory to Mars around December 1.

Tracking the MOM Mission! A complex network of ground stations, as indicated in the image, has been laid out for keeping an eye on the various phases of PSLV-C25/ ISRO's Mars Orbiter Mission, including the launch, Earth bound maneuvers, Heliocentric phase as well as the Martian phase.  Additionally, two ship borne terminals have also been deployed in the southern Pacific Ocean to cover critical events during the launch phase. After satellite separation from the launch vehicle, the Spacecraft  operations are controlled from the Spacecraft Control Centre of ISRO Telemetry, Tracking And Command Network (ISTRAC) in Bangalore.
Tracking the MOM Mission!
A complex network of ground stations, as indicated in the image, has been laid out for keeping an eye on the various phases of PSLV-C25/ ISRO’s Mars Orbiter Mission, including the launch, Earth bound maneuvers, Heliocentric phase as well as the Martian phase. Additionally, two ship borne terminals have also been deployed in the southern Pacific Ocean to cover critical events during the launch phase. After satellite separation from the launch vehicle, the Spacecraft operations are controlled from the Spacecraft Control Centre of ISRO Telemetry, Tracking And Command Network (ISTRAC) in Bangalore.

Following a 300 day interplanetary cruise phase, the do or die orbital insertion engine will fire on September 24, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.

MOM and MAVEN both arrive in Mars orbit within days of one another next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.


MAVEN’s goal
is to study Mars atmosphere in unprecedented detail. The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere, MAVEN’s top scientist told Universe Today.

“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.

Godspeed MOM !

Ken Kremer

Countdown Commences for India’s Mars Orbiter Mission (MOM)

Unveiling a breathtaking view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO

The countdown has commenced and the excitement is building for India’s Mars Orbiter Mission (MOM) – which will conduct a detailed study of the Martian atmosphere and is the nation’s first ever mission to the Red Planet.

The 56 hour 30 min countdown started at 6:06 a.m. IST today (Nov. 3), according to an official statement from the Indian Space Research Organization (ISRO) leading to liftoff on Tuesday, Nov 5, from a seaside launch pad in Sriharikota, India.

MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. Half a globe away, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from the Florida Space Coast.

A bird's eye view of the Spaceport of India ! Panaromic view of First Launch Pad with 44 meter tall PSLV-C25 rocket during launch rehearsal - Ready to commence the space voyage of ISRO's Mars Orbiter Mission spacecraft. The Mobile service tower and the Second Launch pad are also seen.Credit: ISRO
A bird’s eye view of the Spaceport of India
Panaromic view of First Launch Pad with 44 meter tall PSLV-C25 rocket during launch rehearsal – Ready to commence the space voyage of ISRO’s Mars Orbiter Mission spacecraft. The Mobile service tower and the Second Launch Pad are also seen.Credit: ISRO

ISRO will broadcast the momentous MOM launch live at – starting at 14:00 hrs IST.

“The Launch Authorisation Board has approved & cleared the PSLV-C25/Mars Orbiter Mission launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST)” from the state-of-the-art Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.

MOM is on schedule to lift off atop the powerful, extended XL version of India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV-C25).

Fueling of the PSLV-C25/Mars Orbiter Mission rocket stages is now in progress following a completely successful dress rehearsal and launch countdown exercise completed on Oct. 31.

“The filling of propellants into the Roll Control Thrusters as well as the Fourth stage of the PSLV C25 rocket [with mixed nitrogen oxides and monomethylhydrazine] is completed,” ISRO declared a short while ago.

903629_10151441040913224_1192855533_o

During the dress rehearsal the vehicle systems were powered, the health was normal and the spacecraft & launch vehicle integrated level checks were completed.

Two tracking ships have been deployed to the Indian Ocean to relay critical in flight telemetry.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars around December 1.

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM).  Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Sriharikota, India. Credit: ISRO

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion engine will fire on September 21, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.

MOM arrives about the same time as NASA’s MAVEN orbiter. They will significantly bolster Earth’s armada of five operational orbiters and surface rovers currently investigating the Red Planet.

MAVEN and MOM will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today.

“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO
India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO

The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO.

‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

Stacking of the  PSLV-C25/Mars Orbiter Mission rocket stages at the Satish Dhawan Space Centre, SHAR, India. Credit: IRSO
Stacking of the PSLV-C25/Mars Orbiter Mission rocket stages at the Satish Dhawan Space Centre, SHAR, India. Credit: IRSO

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMarsTrace Gas Orbiter.

Although there are no NASA instruments on board MOM, NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” MAVEN’s PI Jakosky told me.

“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.

India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA)- if all goes well.

Past attempts to reach the Red Planet from both China and Japan have unfortunately failed.

Some observers speculate that India’s MOM mission will ignite a new Asian Space Race.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and hopefully much longer.

Long live MOM !

Ken Kremer

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

MAVEN and MOM Missions from NASA and India Plan Martian Science Collaboration in Orbit

MAVEN is NASA’s next Mars orbiter and is due to blastoff on Nov. 18 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars. Credit: Ken Kremer/kenkremer.com

After years of hard work by dedicated science and engineering teams, a new pair of Mars orbiter science missions from Earth are in the final stages of prelaunch processing and are nearly set to blast off for the Red Planet in November.

If all goes well, NASA’s MAVEN orbiter and India’s MOM (Mars Orbiter Mission) will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today at a NASA briefing today (Oct. 28).

“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

MAVEN and MOM will join Earth’s armada of five operational orbiters and surface rovers currently exploring the Red Planet.

India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO
India’s Mars Orbiter Mission (MOM) Spacecraft attached to the 4th stage of PSLV-C25 and ready for heat shield closure. It is slated to launch on Nov. 5, 2013. Credit: ISRO

MOM is India’s first mission to Mars. Its also first in line to this year’s Martian on ramp and is slated to lift off in barely one week on Nov. 5 atop the most powerful version of the Polar Satellite Launch Vehicle (PSLV) rocket from a seaside launch pad in Srihanikota, India.

The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO, the Indian Space Research Organization.

NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft launches in three weeks on Nov. 18 atop a United Launch Alliance Atlas V 401 rocket from a seaside pad on Cape Canaveral Air Force Station, Florida.

Both MAVEN and MOM will study the Red Planets atmosphere. Although they are independent and carrying different science payloads the two missions do have some common goals.

“There are some overlapping objectives between MAVEN and MOM,” Jakosky said.

“We have had some discussions with the MOM science team.”

Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Both orbiters are due to arrive at Mars in September 2014 after 10 month interplanetary cruises and will enter different elliptical orbits after main engine braking burns.

MAVEN is the first spacecraft from Earth devoted to investigating and understanding the upper atmosphere of Mars.

The purpose is to study specific processes and determine how and why Mars lost virtually all of its atmosphere billions of years ago and what effect that had on the history of climate change and habitability.

“The major questions about the history of Mars center on the history of its climate and atmosphere and how that’s influenced the surface, geology and the possibility for life,” said Jakosky.

“MAVEN will focus on understanding the history of the atmosphere, how the climate has changed through time, and how that influenced the evolution of the surface and the potential for habitability by microbes on Mars.”

“We don’t know the driver of the change.”

“Where did the water go and where did the carbon dioxide go from the early atmosphere? What were the mechanisms?”

“That’s what driving our exploration of Mars with MAVEN,” said Jakosky.

One of the significant differences between MOM and MAVEN regards methane detection – which is a potential marker for Martian life. Some 90% of Earth’s atmospheric methane derives from living organisms.

MOM has a methane sensor but not MAVEN.

“We just had to leave that one off to stay focused and to stay within the available resources ,” Jakosky told me.

MAVEN carries nine sensors in three instrument suites.

The Particles and Fields Package, provided by the University of California at Berkeley with support from CU/LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments to characterize the solar wind and the ionosphere of Mars. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, built by Goddard, will measure the composition of Mars’ upper atmosphere.

MOM’s science complement comprises the tri color Mars Color Camera to image the planet and its two moons, Phobos and Deimos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM).  Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). Launch is set for Nov. 5 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky told me.

“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

Over the course of its one-Earth-year primary mission, MAVEN will observe all of Mars’ latitudes at altitudes ranging from 93 miles to more than 3,800 miles.

MAVEN will execute five deep dip maneuvers during the first year, descending to an altitude of 78 miles. This marks the lower boundary of the planet’s upper atmosphere.

MAVEN has sufficient fuel reserves on board to continue observations for more than a decade.

The spacecraft will function as an indispensible orbital relay by transmitting surface science data through the “Electra” from NASA’s ongoing Curiosity and Opportunity rovers as well as the planned 2020 rover.

Stay tuned here for continuing MAVEN and MOM news and my launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

…………….

Learn more about MAVEN, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 15-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

NASA’s Resilient Opportunity Rover Starts Martian Mountaineering

Opportunity starts Martian Mountaineering. NASA’s Opportunity rover captured this southward uphill panoramic mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of "Solander Point" on the western rim of Endeavour Crater - her 1st mountain climbing adventure. The northward-facing slope will tilt the rover's solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter. Assembled from Sol 3463 navcam raw images by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer

Opportunity starts Martian Mountaineering
NASA’s Opportunity rover captured this southward uphill panoramic mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of “Solander Point” on the western rim of Endeavour Crater – her 1st mountain climbing adventure. The northward-facing slope will tilt the rover’s solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter. Assembled from Sol 3463 navcam raw images by Marco Di Lorenzo and Ken Kremer.
Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer
Story and imagery updated[/caption]

NASA’s super resilient Opportunity robot has begun a new phase in her life on the Red Planet – Martian Mountaineer!

“This is our first real Martian mountaineering with Opportunity,” said the principal investigator for the rover, Steve Squyres of Cornell University, Ithaca, N.Y.

And it happened right in the middle of the utterly chaotic US government shutdown ! – that seriously harmed some US science endeavors. And at a spot destined to become a science bonanza in the months and years ahead – so long as she stays alive to explore ever more new frontiers.

On Oct. 8, mission controllers on Earth directed the nearly decade old robot to start the ascent of Solander Point – the northern tip of the tallest hill she has encountered after nearly 10 Earth years on Mars.

Opportunity starts scaling Solander Point - her1st mountain climbing goal. See the tilted terrain and rover tracks in this mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater.  Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment.  This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com). See the complete panoramic view below
Opportunity starts scaling Solander Point – her1st mountain climbing goal. See the tilted terrain and rover tracks in this mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com). See the complete panoramic view below

The northward-facing slopes at Solander also afford another major advantage. They will tilt the rover’s solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy boost enabling continued mobile operations through the upcoming frigidly harsh winter- her 6th since landing in 2004.

Opportunity will first explore outcrops on the northwestern slopes of Solander Point in search of the chemical ingredients required to sustain life before gradually climbing further uphill to investigate intriguing deposits distributed amongst its stratographic layers.

The rover will initially focus on outcrops located in the lower 20 feet (6 meters) above the surrounding plains on slopes as steep as 15 to 20 degrees.

Opportunity starts scaling Solander Point - her 1st mountain climbing goal. See the tilted terrain and rover tracks in this panoramic view from Solander Point peering across the vast expanse of huge Endeavour Crater.  Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment.  This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com).
Opportunity starts scaling Solander Point – her 1st mountain climbing goal. See the tilted terrain and rover tracks in this panoramic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com).

At some later time, Opportunity may ascend Solander farther upward, which peaks about 130 feet (40 meters) above the crater plains.

“We expect we will reach some of the oldest rocks we have seen with this rover — a glimpse back into the ancient past of Mars,” says Squyres.

NASA’s powerful Mars Reconnaissance Orbiter (MRO) circling overhead recently succeeded in identifying clay-bearing rocks during new high resolution survey scans of Solander Point!

As I reported previously, the specially collected high resolution observations by the orbiters Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) were collected in August and being analyzed by the science team. They will be used to direct Opportunity to the most productive targets of interest

“CRISM data were collected,” Ray Arvidson told Universe Today. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.

“They show really interesting spectral features in the [Solander Point] rim materials.”

NASA’s Opportunity rover captured this southward uphill view on Oct. 21, 2013 after beginning to ascend the northwestern slope of "Solander Point" on the western rim of Endeavour Crater. The northward-facing slope will tilt the rover's solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter.  Credit: NASA/JPL
NASA’s Opportunity rover captured this southward uphill view on Oct. 21, 2013 after beginning to ascend the northwestern slope of “Solander Point” on the western rim of Endeavour Crater. The northward-facing slope will tilt the rover’s solar panels toward the sun in the southern-hemisphere winter sky, providing an important energy advantage for continuing mobile operations through the upcoming winter. Credit: NASA/JPL

The new CRISM survey from Mars orbit yielded mineral maps which vastly improves the spectral resolution – from 18 meters per pixel down to 5 meters per pixel.

This past spring and summer, Opportunity drove several months from the Cape York rim segment to Solander Point.

“At Cape York, we found fantastic things,” Squyres said. “Gypsum veins, clay-rich terrain, the spherules we call newberries. We know there are even larger exposures of clay-rich materials where we’re headed. They might look like what we found at Cape York or they might be completely different.”

The summit of Solander Point.  Opportunity rover captured mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of "Solander Point" on the western rim of Endeavour Crater - her 1st mountain climbing adventure.  Assembled from Sol 3463 pancam high resolution raw images by Marco Di Lorenzo and Ken Kremer.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer
The summit of Solander Point
Opportunity rover captured mosaic on Oct. 21, 2013 (Sol 3463) after beginning to ascend the northwestern slope of “Solander Point” on the western rim of Endeavour Crater – her 1st mountain climbing adventure. Assembled from Sol 3463 pancam high resolution raw images by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer

Clay minerals, or phyllosilicates, form in neutral water that is more conducive to life.

At the base of Solander, the six wheeled rover discovered a transition zone between a sulfate-rich geological formation and an older formation. Sulfate-rich rocks form in a wet environment that was very acidic and less favorable to life.

Solander Point is located at the western rim of the vast expanse of Endeavour crater – some 22 kilometers (14 miles) in diameter.

Today marks Opportunity’s 3466th Sol or Martian Day roving Mars – for what was expected to be only a 90 Sol mission.

So far she has snapped over 185,200 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 23.89 miles (38.45 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

Meanwhile, NASA is in the final stages of processing of MAVEN, the agencies next orbiter.

It is still scheduled to blast off from Cape Canaveral on Nov.18 – see my photos from inside the clean room at the Kennedy Space Center.

MAVEN’s launch was briefly threatened by the government shutdown.

On the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp and recently discovered a patch of pebbles formed by flowing liquid water.

Ken Kremer

Traverse Map for NASA’s Opportunity rover from 2004 to 2013.  This map shows the entire path the rover has driven during nearly 10 years and over 3460 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location ascending her 1st Martian Mountain - Solander Point - at the western rim of Endeavour Crater.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone and seeks clay minerals now at Solander. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013
This map shows the entire path the rover has driven during nearly 10 years and over 3460 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location ascending her 1st Martian Mountain – Solander Point – at the western rim of Endeavour Crater. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone and seeks clay minerals now at Solander. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

India’s First Mars Mission Set to Blast off Seeking Methane Signature

Graphic outlines India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM). It could liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

India is gearing up for its first ever space undertaking to the Red Planet – dubbed the Mars Orbiter Mission, or MOM – which is the brainchild of the Indian Space Research Organization, or ISRO.

Among other objectives, MOM will conduct a highly valuable search for potential signatures of Martian methane – which could stem from either living or non living sources. The historic Mars bound probe also serves as a forerunner to bolder robotic exploration goals.

If all goes well India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA).

The 1,350 kilogram (2,980 pound) orbiter, also known as ‘Mangalyaan’, is slated to blast off as early as Oct. 28 atop India’s highly reliable Polar Satellite Launch Vehicle (PSLV) from a seaside launch pad in Srihanikota, India.

India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO
India’s first ever probe to explore the Red Planet known as the Mars Orbiter Mission (MOM), is due to liftoff as early as Oct. 28 from the Satish Dhawan Space Centre SHAR, Srihairkota, India. Credit: ISRO

MOM is outfitted with an array of five science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.

ISRO officials are also paying close attention to the local weather to ascertain if remnants from Tropical Cyclone Phaillin or another developing weather system in the South Pacific could impact liftoff plans.

The launch target date will be set following a readiness review on Friday, said ISRO Chairman K. Radhakrishnan according to Indian press reports.

India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) spacecraft being prepared for a prelaunch test at Satish Dhawan Space Centre SHAR, Srihairkota. Credit: ISRO

‘Mangalyaan’ is undergoing final prelaunch test and integration at ISRO’s Satish Dhawan Space Centre SHAR, Srihairkota on the east coast of Andhra Pradesh state following shipment from ISRO’s Bangalore assembly facility on Oct. 3.

ISRO has already assembled the more powerful XL extended version of the four stage PSLV launcher at Srihairkota.

MOM’s launch window extends about three weeks until Nov. 19 – which roughly coincides with the opening of the launch window for NASA’s next mission to Mars, the MAVEN orbiter.

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1.  Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN  was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space.  Credit: Ken Kremer/kenkremer.com
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1. Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space. Credit: Ken Kremer/kenkremer.com

MAVEN’s on time blastoff from Florida on Nov. 18, had been threatened by the chaos caused by the partial US government shutdown that finally ended this morning (Oct. 17), until the mission was granted an ‘emergency exemption’ due to the critical role it will play in relaying data from NASA’s ongoing pair of surface rovers – Curiosity and Opportunity.

NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).

As India’s initial mission to Mars, ISRO says that the mission’s objectives are both technological and scientific to demonstrate the nation’s capability to design an interplanetary mission and carry out fundamental Red Planet research with a suite of indigenously built instruments.

MOM’s science complement comprises includes the tri color Mars Color Camera to image the planet and its two moon, Phobos and Diemos; the Lyman Alpha Photometer to measure the abundance of hydrogen and deuterium and understand the planets water loss process; a Thermal Imaging Spectrometer to map surface composition and mineralogy, the MENCA mass spectrometer to analyze atmospheric composition, and the Methane Sensor for Mars to measure traces of potential atmospheric methane down to the ppm level.

It will be of extremely great interest to compare any methane detection measurements from MOM to those ongoing from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s planned 2016 ExoMars Trace Gas Orbiter.

MOM’s design builds on spacecraft heritage from India’s Chandrayaan 1 lunar mission that investigated the Moon from 2008 to 2009.

The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,000 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars by late November, assuming an Oct. 28 liftoff.

Following a 300 day interplanetary cruise phase, the do or die orbital insertion engine will fire on September 14, 2014 and place MOM into an 377 km x 80,000 km elliptical orbit.

NASA’s MAVEN is also due to arrive in Mars orbit during September 2014.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and perhaps ten months or longer.

Ken Kremer