What Mount Sharp Would Look Like on Earth

Gale crater's central peak as it might look under Earthly lighting (NASA/JPL-Caltech/MSSS)

Ahh — there’s nothing like a beautiful sunny day in Gale crater! The rusty sand crunching beneath your wheels, a gentle breeze blowing at a balmy 6º C (43º F), Mount Sharp rising in the distance into a clear blue sky… wait, did I just say blue sky?

I sure did. But no worries — Mars hasn’t sprouted a nitrogen-and-oxygen atmosphere overnight. The image above is a crop from a panoramic mosaic made of images from NASA’s Curiosity rover, showing Gale crater’s central peak Mount Sharp (or Aeolis Mons, if you prefer the official moniker.) Don’t let the blue sky fool you though — the lighting has been adjusted to look like a sunlit scene on Earth, if only to let geologists more easily refer to their own experience when studying the Martian landscape.

Click the image to see the full panorama, and a view of the same scene under more “natural” Martian lighting can be found below:

Aeolis Mons panorama seen in natural lighting (NASA/JPL-Caltech/MSSS)
Aeolis Mons panorama seen in natural lighting (NASA/JPL-Caltech/MSSS)

According to JPL, in both versions the sky has been filled out by extrapolating color and brightness information from the portions of the sky that were captured in images of the terrain.

The elevation of Mt. Sharp compared to three mountains on Earth (NASA/JPL-Caltech/MSSS)
The elevation of Mt. Sharp compared to three mountains on Earth (NASA/JPL-Caltech/MSSS)

The component images were taken by the 100-millimeter-focal-length telephoto lens camera mounted on the right side of Curiosity’s remote sensing mast, during the 45th Martian day of the rover’s mission on Mars (Sept. 20, 2012).

Informally named after planetary scientist Robert Sharp by the MSL science team, the peak rises rises more than 3 miles (5 kilometers) above the floor of Gale crater.

See more news and images from the Curiosity rover here (and to find out what the latest weather conditions in Gale crater are visit MarsWeather.com here.)

Curiosity Discovers Environment Where Life Could have Thrived on Ancient Mars

This set of images shows the results from the rock abrasion tool from Opportunity (left) and the drill from NASA's Curiosity rover (right). Note how the rock grindings from Opportunity are brownish red, indicating the presence of hematite, a strongly oxidized iron-bearing mineral. Such minerals are less supportive of habitability and also may degrade organic compounds. On the right is the hole produced by Curiosity during the first drilling into a rock on Mars to collect a sample from inside the rock. In this case, the rock produced gray tailings -- not red -- suggesting the presence of iron that is less oxidized. Curiosity also found clay minerals that form in more neutral water friendly to the formation of life. Credit: NASA

After analyzing the first powder ever drilled from the interior of a Martian rock, NASA’s Curiosity rover discovered some of the key chemical ingredients necessary for life to have thrived on early Mars billions of years ago.

Curiosity has achieved her goal of discovering a habitable environment on the Red Planet, mission scientists reported today at a briefing held at NASA headquarters in Washington, D.C.

Data collected by Curiosity’s two analytical chemistry labs (SAM and CheMin) confirm that the gray powder collected from inside the sedimentary rock where the rover is exploring – near an ancient Martian stream bed – possesses a significant amount of phyllosilicate clay minerals; indicating an environment where Martian microbes could once have thrived in the distant past.

“We have found a habitable environment which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said John Grotzinger, the chief scientist for the Curiosity Mars Science Laboratory mission at the California Institute of Technology in Pasadena, Calif.

Curiosity cored the rocky sample from a fine-grained, sedimentary outcrop named “John Klein” inside a shallow basin named Yellowknife Bay, and delivered pulverized powered to the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments inside the robot.

The presence of abundant phyllosilicate clay minerals in the John Klein drill powder indicates a fresh water environment. Further evidence derives from the veiny sedimentary bedrock shot through with calcium sulfate mineral veins that form in a neutral to mildly alkaline pH environment.

This side-by-side comparison shows the X-ray diffraction patterns of two different samples collected from the Martian surface by NASA's Curiosity rover. These images were obtained by Curiosity's Chemistry and Mineralogy instrument (CheMin) and show the patterns obtained from a drift of windblown dust and sand called "Rocknest" and from a powdered rock sample drilled from the "John Klein" bedrock wherer Curiosty corted the frist interior rock samples.  The presence of abundant clay minerals in the John Klein drill powder and the lack of abundant salt suggest a fresh water environment. The presence of calcium sulfates suggests a neutral to mildly alkaline pH environment. NASA/JPL-Caltech/Ames
This side-by-side comparison shows the X-ray diffraction patterns of two different samples collected from the Martian surface by NASA’s Curiosity rover. These images were obtained by Curiosity’s Chemistry and Mineralogy instrument (CheMin) and show the patterns obtained from a drift of windblown dust and sand called “Rocknest” (left) and from a powdered rock sample drilled by Curiosity from the “John Klein” bedrock (right). The presence of abundant phyllosilicate clay minerals in the John Klein drill powder suggest a fresh water environment. The presence of calcium sulfates suggests a neutral to mildly alkaline pH environment. NASA/JPL-Caltech/Ames

“Clay minerals make up at least 20 percent of the composition of this sample,” said David Blake, principal investigator for the CheMin instrument at NASA’s Ames Research Center in Moffett Field, Calif.

The rovers 7 foot (2.1 meter) long robotic arm fed aspirin sized samples of the gray, pulverized powder into the miniaturized CheMin SAM analytical instruments on Feb. 22 and 23, or Sols 195 and 196. The samples were analyzed on Sol 200.

Scientists were able to identify carbon, hydrogen, oxygen, nitrogen, sulfur and phosphorus in the sample – all of which are essential constituents for life as we know it based on organic molecules.

“The range of chemical ingredients we have identified in the sample is impressive, and it suggests pairings such as sulfates and sulfides that indicate a possible chemical energy source for micro-organisms,” said Paul Mahaffy, principal investigator of the SAM suite of instruments at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The discovery of phyllosilicates on the floor of Gale crater was unexpected and has delighted the scientists. Based on spectral observations from Mars orbit. Grotzinger told me previously that phyllosilicates had only been detected in the lower reaches of Mount Sharp, the 3 mile (5 km) high mountain that is Curiosity’s ultimate destination.

Grotzinger said today that Curiosity will remain in the Yellowknife Bay area for several additional weeks or months to fully characterize the area. The rover will also conduct at least one more drilling campaign to try and replicate the results, check for organic molecules and search for new discoveries.

Ken Kremer

Solar Storm Blasting to Mars Shuts Down Curiosity – 1st Rocky Sample Results on tap

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)

Due to a fast approaching solar storm, NASA has temporarily shut down surface operations of the Curiosity Mars Science Lab (MSL) rover.

NASA took the precautionary measure because ‘a big coronal mass ejection’ was predicted to hit Mars over the next few days starting March 7, or Martian Sol 207 of the mission, researchers said.

The rover team wants to avoid a repeat of the computer memory glitch that afflicted Curiosity last week, and caused the rover to enter a protective ‘safe mode’.

“The rover was commanded to go to sleep,” says science team member Ken Herkenhoff of the US Geological Survey (USGS).

“Space weather can by nasty!”

This is the 2nd shutdown of the 1 ton robot in a week. Curiosity had just been returned to active status over the weekend.

A full resumption of science operations had been anticipated for next week, but is now on hold pending the outcome of effects from the solar storm explosions.

“We are making good progress in the recovery,” said Mars Science Laboratory Project Manager Richard Cook, of NASA’s Jet Propulsion Laboratory, prior to the new solar flare.

“Storm’s a-comin’! There’s a solar storm heading for Mars. I’m going back to sleep to weather it out,” tweeted Curiosity.

Solar flares cause intense bursts of radiation that can damage spacecraft and also harm space faring astronauts, and require the installation of radiation shielding and hardening on space based assets.

Since Mars lacks a magnetic field, the surface is virtually unprotected from constant bombardment by radiation.

NASA’s other spacecraft exploring Mars were unaffected by the solar eruptions – including the long lived Opportunity rover and the orbiters; Mars Odyssey & Mars Reconnaissance Orbiter.

Curiosity has been in the midst of analyzing the historic 1st samples of gray rocky powder ever cored from the interior of a Martian rock about a month ago.

Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS Read more: http://www.universetoday.com/99911/historic-mars-rock-drilling-sample-set-for-analysis-by-curiosity-robot-in-search-of-organics/#ixzz2Mu1y6Fpr
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSSCuriosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

So far Curiosity has snapped over 48,000 images and traveled nearly 0.5 miles.

Curiosity’s goal is to assess whether the Gale Crater area on Mars ever offered a habitable zone conducive for Martian microbial life, past or present.

Ken Kremer

Video: Why Is Curiosity Looking for Organics?

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

This short 60-second video explains organic molecules and what they can tell us about the history of Mars. It’s also a good segue to provide an update on how the Curiosity rover is doing following the computer problems we reported earlier this week.

Word is that the rover will resume its activities tonight. This is later than originally planned, as shortly after being recovered from safe mode back into active status following a memory issue with one of its on-board computers, engineers put Curiosity into sleep mode because of a rather large solar flare that was heading to Mars.

“Storm’s a-comin’!” the rover’s Twitter account announced. “There’s a solar storm heading for Mars. I’m going back to sleep to weather it out.”

But the CME has now passed and all appears to be well with the rover. Look for raw images to resume soon!

Curiosity Rover Recovering From Computer Glitch

This self-portrait of NASA's Mars rover Curiosity combines 66 exposures taken by the rover's Mars Hand Lens Imager (MAHLI) during the 177th Martian day, or sol, of Curiosity's work on Mars (Feb. 3, 2013). Image credit: NASA/JPL-Caltech/MSSS

The Curiosity rover is now out of “safe mode” following a memory problem with its main computer, and the Mars Science Laboratory team expects the rover to resume full operations next week. Controllers switched the rover to a redundant onboard computer, the rover’s “B-side” computer, on Feb. 28 when the “A-side” computer that the rover had been using demonstrated symptoms of a corrupted memory location. The intentional computer swap put the rover, as anticipated, into minimal-activity safe mode.

“We are making good progress in the recovery,” said MSL Project Manager Richard Cook. “One path of progress is evaluating the A-side with intent to recover it as a backup. Also, we need to go through a series of steps with the B-side, such as informing the computer about the state of the rover — the position of the arm, the position of the mast, that kind of information.”

This is the first glitch of any kind the Curiosity rover has suffered since landing in August, 2012. NASA has indicated this is not a serious problem (as Emily Lakdawalla of the Planetary Society put it “not life-threatening, just really inconvenient.) It will just take time to make sure the computer switch-over is done correctly.

NASA says the cause for the A-side’s memory symptoms observed last week remains to be determined, but the most likely cause was that the computer memory was corrupted by a cosmic ray hit. These are subatomic particles traveling through space at extraordinary speeds. The origin of cosmic rays was recently determined to be distant supernovae.

Meanwhile, the rover has not done any surface operations or uploaded any new images to Earth since Sol 200, so for those of you going through withdrawal from not seeing any new raw images from Curiosity, we’ll keep you posted of when the flow of images resumes.

Curiosity’s Landing Leftovers

Enhanced-color HiRISE image of impact craters from MSL's ballast weights (NASA/JPL-Caltech)

During its “seven minutes of terror” landing on August 6, 2012, NASA’s Mars Science Laboratory dropped quite a few things down onto the Martian surface: pieces from the cruise stage, a heat shield, a parachute, the entry capsule’s backshell, a sky crane, one carefully-placed rover (obviously) and also eight tungsten masses — weights used for ballast and orientation during the descent process.

Two 75 kilogram (165 lb) blocks were released near the top of the atmosphere and six 25 kg (55 lb) weights a bit farther down, just before the deployment of the parachute. The image above, an enhanced-color image from the HiRISE camera aboard the Mars Reconnaissance Orbiter, shows the impact craters from four of these smaller tungsten masses in high resolution. This is part of a surface scan acquired on Jan. 29, 2013.

These four craters are part of a chain of six from all the 55 kg weights. See below for context:

CLICK TO PLAY - Before-and-after images of the 55 kg-mass landing sites (NASA/JPL/MSSS)
CLICK TO PLAY – Before-and-after images of the 55 kg-mass landing sites (NASA/JPL/MSSS)

Captured by MRO’s Context Camera shortly after the rover landed, the animation above shows the impact site of all six 55 kg masses. These impacted the Martian surface about 12 km (7.5 miles) from the Curiosity rover’s landing site.

A mosaic has been assembled showing potential craters from the larger ballast blocks as well as other, smaller pieces of the cruise stage. Check it out below or download the full 50mb image here.

HiRISE images of MSL's impact craters (NASA/JPL/University of Arizona)
HiRISE images of MSL’s impact craters (NASA/JPL/University of Arizona)

As Alfred McEwen wrote in his article on the University of Arizona’s HiRISE site: “most of the stuff we sent to Mars crashed on the surface–everything except the Curiosity rover.”

 

Curiosity Rover Has Computer Problems

Curiosity Rover's Self Portrait at 'John Klein' Drilling Site, which combines dozens of exposures taken by the rover's Mars Hand Lens Imager (MAHLI) during the 177th Martian day, or sol, of Curiosity's work on Mars (Feb. 3, 2013). Credit: NASA/JPL-Caltech/MSSS

A problem with the memory on the Curiosity rover’s main computer has caused engineers to switch the rover over to a redundant onboard computer. This caused the rover to go into “safe mode,” which was anticipated in the computer switch. And so now over the next few days, the team will be shifting the rover from safe mode to operational status. They are also troubleshooting the condition that affected operations yesterday.

The @MarsCuriosity Twitter feed posted: “Don’t flip out: I just flipped over to my B-side computer while the team looks into an A-side memory issue.”

JPL said the condition is related to a glitch in flash memory linked to the other, now-inactive, computer in response to a memory issue on the computer that had been active.

The intentional swap occurred at about 2:30 a.m. PST on Thursday, Feb. 28.

“We switched computers to get to a standard state from which to begin restoring routine operations,” said Richard Cook. .

Like many spacecraft, Curiosity carries a pair of redundant main computers in order to have a backup available if one fails. Each of the computers, A-side and B-side, also has other redundant subsystems linked to just that computer. Curiosity is now operating on its B-side, as it did during part of the flight from Earth to Mars. It operated on its A-side from before the August 2012 landing through Wednesday.

“While we are resuming operations on the B-side, we are also working to determine the best way to restore the A-side as a viable backup,” said JPL engineer Magdy Bareh, leader of the mission’s anomaly resolution team.

The spacecraft remained in communications at all scheduled communication windows on Wednesday, but it did not send recorded data, only current status information. The status information revealed that the computer had not switched to the usual daily “sleep” mode when planned. Diagnostic work in a testing simulation at JPL indicates the situation involved corrupted memory at an A-side memory location used for addressing memory files.

Scientific investigations by the rover were suspended Wednesday and today. Resumption of science investigations is anticipated within several days. This week, laboratory instruments inside the rover have been analyzing portions of the first sample of rock powder ever collected from the interior of a rock on Mars.

Source: JPL

Curiosity Mars Rover Eats 1st Sample of Gray Rocky Powder

NASA's Mars rover Curiosity took this image of Curiosity's sample-processing and delivery tool just after the tool delivered a portion of powdered rock into the rover's Sample Analysis at Mars (SAM) instrument. This Collection and Handling for In-situ Martian Rock Analysis (CHIMRA) tool delivered portions of the first sample ever acquired from the interior of a rock on Mars into both SAM and the rover's Chemistry and Mineralogy (CheMin) instrument. Credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity rover has eaten the 1st ever samples of gray rocky powder cored from the interior of a Martian rock.

The robotic arm delivered aspirin sized samples of the pulverized powder to the rover’s Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments this past weekend on Feb. 22 and 23, or Sols 195 and 196 respectively.

Both of Curiosity’s chemistry labs have already begun analyzing the samples – but don’t expect results anytime soon because of the complexity of the operation involved.

“Analysis has begun and could take weeks,’ NASA JPL spokesman Guy Webster told Universe Today.

The samples were collected from the rover’s 1st drilling site known as ‘John Klein’ – comprised of a red colored slab of flat, fine-grained, sedimentary bedrock shot through with mineral veins of Calcium Sulfate that formed in water.

“Data from the instruments have confirmed the deliveries,” said Curiosity Mission Manager Jennifer Trosper of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into ‘John Klein’ that produced a slurry of gray tailings

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with  her ultimate destination; Mount Sharp.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The gray colored tailings give a completely fresh insight into Mars that offers a stark contrast to the prevailing views of reddish-orange rusty, oxidized dust.

The eventual results from SAM and CheMin may give clues about what exactly does the color change mean. One theory is that it might be related to different oxidations states of iron that could potentially inform us about the habitability of Mars insides the rover’s Gale Crater landing site.

“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years,” said Louise Jandura of JPL and Curiosity’s chief engineer for the sampling system.

Additional portions of the first John Klein sample could be delivered to SAM and CheMin if the results warrant. The state-of-the-art instruments are testing the gray powder to elucidate the chemical composition and search for simple and complex organic molecules based on carbon, which are the building blocks of life as we know it.

Curiosity’s Mastcam camera snapped this photo mosaic of 1st drill holes into Martian rock at John Klein outcrop inside Yellowknife Bay basin where the robot is currently working. Notice the gray powdery tailings from the rocks interior. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity’s Mastcam camera snapped this photo mosaic of 1st drill holes into Martian rock at John Klein outcrop inside Yellowknife Bay basin where the robot is currently working. Notice the gray powdery tailings from the rocks interior. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

The Curiosity science team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life.

Curiosity is nearly 7 months into her 2 year long primary mission. So far she has snapped over 45,000 images.

“The mission is discovery driven,” says John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.

The rover will likely remain in the John Klein area for several more weeks to a month or more to obtain a more complete scientific characterization of the area which has seen repeated episodes of flowing water.

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

Ken Kremer

Historic Mars Rock Drilling Sample Set for Analysis by Curiosity Robot in Search of Organics

First Curiosity Drilling Sample in the Scoop. This image shows the first sample of powdered rock extracted by the rover's drill after transfer from the drill to the rover's scoop. The sample will now be sieved and portions delivered to the Chemistry and Mineralogy instrument and the Sample Analysis at Mars instrument. The scoop is 1.8 inches (4.5 centimeters) wide. The image was taken by Curiosity's Mastcam 34 camera on Feb. 20, or Sol 193.The image has been white-balanced to show what the sample would look like if it were on Earth. Credit: NASA/JPL-Caltech/MSSS

Newly received images from the surface of Mars confirm that NASA’s Curiosity rover successfully extracted the 1st ever samples collected by drilling down inside a rock on another planet and transferred the pulverized alien powder to the robots processing scoop, thrilled mission scientists announced just hours after seeing visual corroboration.

Collecting the 1st particles bored from the interior of a rock on a planet beyond Earth marks a historic feat in humankind’s exploration of the cosmos – and is crucial for achieving Curiosity’s goal to determine whether Mars ever could have supported microbial life, past or present.

The essential next step is to feed carefully sieved portions of the precious gray colored material into the high powered duo of miniaturized analytical chemistry labs (CheMin & SAM) inside the rover, for thorough analysis and scrutiny of their mineral content and to search for signatures of organic molecules – the building blocks of life as we know it.

Curiosity is drilling into ancient bedrock and hunting for clues to the planet’s habitability over the eons and that preserve the historical record – perhaps including organics.

The rover team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life. See our Yellowknife Bay worksite and drill hole photo mosaics below by Ken Kremer & Marco Di Lorenzo, created from rover raw images.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with  her ultimate destination; Mount Sharp.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo

“We collected about a tablespoon of powder, which meets our expectations and is a great result,” said JPL’s Scott McCloskey, drill systems engineer for Curiosity, at a NASA media briefing on Feb. 20. “We are all very happy and relieved that the drilling was a complete success.”

The gray colored tailings from the rocky interior offer a startlingly fresh sight of Mars compared to the red-orangey veneer of rusty, oxidized dust we are so accustomed to seeing globally across what we humans have referred to for centuries as the “Red Planet”.

“For the first time we are examining ancient rocks that have not been exposed to the Martian surface environment, and weathering, and preserve the environment in which they formed,” said Joel Hurowitz, Curiosity sampling system scientist of JPL.

This is a key point because subsequent oxidation reactions can destroy organic molecules and thereby potential signs of habitability and life.

“The tailings are gray. All things being equal it’s better to have a gray color than red because oxidation is something that can destroy organic compounds,” said John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.

On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into a red colored slab of flat, fine-grained, veiny sedimentary bedrock named “John Klein” that formed in water.

“Curiosity’s first drill hole at the John Klein site is a historic moment for the MSL mission, JPL, NASA and the United States. This is the first time any robot, fixed or mobile, has drilled into a rock to collect a sample on Mars,” said Louise Jandura, Curiosity’s chief engineer for the sampling system.

“In fact, this is the first time any rover has drilled into a rock to collect a sample anywhere but on Earth. In the five decade history of the space age this is indeed a rare event.”

“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years.”

“Using our roving geologist Curiosity, the scientists can choose the rock, get inside the rock and deliver the powdered sample to instruments on the rover for analysis.”

“We couldn’t all be happier as Curiosity drilled her first hole on Mars,” said Jandura.

Over the next few days, the powdery gray scoop material will be shaken and moved through Curiosity’s sample processing device known as CHIMRA, or Collection and Handling for In-Situ Martian Rock Analysis and sieved through ultra fine screens that filter out particles larger than 150 microns (0.006 inch) across – about the width of a human strand of hair.

Figure shows the location of CHIMRA on the turret of NASA's Curiosity rover, together with a cutaway view of the device. The CHIMRA, short for Collection and Handling for In-situ Martian Rock Analysis, processes samples from the rover's scoop or drill and delivers them to science instruments. Credit: NASA/JPL-Caltech
Figure shows the location of CHIMRA on the turret of NASA’s Curiosity rover, together with a cutaway view of the device. The CHIMRA, short for Collection and Handling for In-situ Martian Rock Analysis, processes samples from the rover’s scoop or drill and delivers them to science instruments. Credit: NASA/JPL-Caltech

Drilling goes to the heart of the mission. It is absolutely indispensable for collecting and conveying pristine portions of Martian rocks and soil to a trio of inlet ports on top of the rover deck leading into the Chemistry and Mineralogy (CheMin) instrument and Sample Analysis at Mars (SAM) instrument .

The sieving process is designed to prevent clogging downstream into the chemistry labs.

The pair of state-of-the-art instruments will then test the gray rocky powder for a variety of inorganic minerals as well as both simple and complex organic molecules.

Samples will be dropped off first to CheMin and then SAM over the next few days. Results are expected soon.

The data so far indicate the drilled rock is either siltstone or mudstone with a basaltic bulk composition, said Hurowitz. The CheMin and SAM testing will be revealing.

The high powered drill was the last of Curiosity 10 instruments still to be checked out and put into full operation and completes the robots commissioning phase.

“This is a real big turning point for us as we had a passing of the key for the rover [from the engineering team] to the science team,” said Grotzinger.

Curiosity has discovered that Yellowknife Bay is loaded with hydrated mineral veins of calcium sulfate that precipitated from interaction with aqueous environments.

I asked how was the drill target hole selected?

“We wanted to be well centered in a large plate of bedrock where we knew we could place the drill into a stable location on an interesting rock,” Hurowitz told Universe Today.

“The drill did not specifically target the veins or nodular features visible in this rock. But these rocks are so shot through with these features that it’s hard to imagine that we would have been missed them somewhere along the travel of the drill.”

“We will find out what’s in the material once we get the materials analyzed by SAM and CheMin.

“We will consider additional drill targets if we think we missed a component of the rock.”

“We believe the white vein material is calcium sulfate based on data from ChemCam and APXS but we don’t yet know the hydration state.” Hurowitz told me.

Regarding the prospects for conducting additional sample drilling and soil scooping at Yellowknife Bay, Grotzinger told me, “We have to take it one step at a time.”

“We have to see what we find in the first sample. We are discovery driven and that will determine what we do next here,” Grotzinger said. “We have no quotas.”

The long term mission goal remains to drive to the lower reaches of Mount Sharp some 6 miles away and look for habitable environments in the sedimentary layers.

Curiosity executed a flawless and unprecedented nail-biting, pinpoint touchdown on Aug. 5, 2012 to begin her 2 year long primary mission inside Gale Crater. So far she has snapped over 45,000 images, traveled nearly 0.5 miles, conducted 25 analysis with the APXS spectrometer and fired over 12,000 laser shots with the ChemCam instrument.

Ken Kremer

Image collage show Curiosty’s first bore hole drilled on Feb. 8, 2013 (Sol 182). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)
Image collage show Curiosty’s first bore hole drilled on Feb. 8, 2013 (Sol 182). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)
Curiosity's First Sample Drilling hole is shown at the center of this image in a rock called "John Klein" on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS

Eye-Popping Interactive Panorama from the Curiosity Rover

Curiosity Rover's Self Portrait at 'John Klein' Drilling Site, which combines dozens of exposures taken by the rover's Mars Hand Lens Imager (MAHLI) during the 177th Martian day, or sol, of Curiosity's work on Mars (Feb. 3, 2013). Credit: NASA/JPL-Caltech/MSSS

There’s an incredible new interactive panorama from the latest Curiosity rover’s self-portrait and surroundings at the “John Klein” drilling site. It was put together by photographer Andrew Bodrov and combines the recent self-portrait and other images to create a full 360-degree panorama created from hundreds of images. The mosaic stretches about 30,000 pixels width.

Click here to see (and go play with) the panorama.

The pan includes the self-portrait, which consists of 66 different images (seen above) taken by the rover’s Mars Hand Lens Imager (MAHLI) during the 177th Martian sol, of Curiosity’s work on Mars (Feb. 3, 2013 here on Earth), along with 113 images taken on Sol 170 and an additional 17 images taken on Sol 176.

Here’s the full pan in a non-interactive view:

Curiosity panorama. Credit: NASA/JPL/MSSS, image editing by Andrew Bodrov.
Curiosity panorama. Credit: NASA/JPL/MSSS, image editing by Andrew Bodrov.

In the pan, you can see the holes in the rock named John Klein — in memory of a Mars Science Laboratory deputy project manager who died in 2011. The historic first drilling took place on Feb. 8, 2013, and by zooming around and in, you can also see the weird little shiny protuberance we’ve been talking about (look for the pile of rocks to the right of the rover.)

Bodrov is a photographer from Estonia who specializes in interactive panoramic photography. He did a previous Curiosity pan in August 2012 and he’s also taken lots of images at the Baikonur Cosmodrome.