A Robotic Chemist Could Whip up the Perfect Batch of Oxygen on Mars

Astronauts on Mars will need oxygen. There's oxygen in the atmosphere, but only small amounts. But there's lots of subterranean water on Mars, and that means there's lots of oxygen, too. (Credit: NASA)

Humans on Mars will need oxygen, and Mars’ atmosphere is pretty anemic when it comes to the life-sustaining element. NASA’s Perseverance rover successfully extracted oxygen from CO2 in Mars’ atmosphere, but there are other ways to acquire it. There seem to be vast amounts of water buried under the Martian surface, and oxygen in the water is just waiting to be set free from its bonds with hydrogen.

On Earth, that’s no problem. Just run an electrical current through water, and you get oxygen. But Mars won’t give up its oxygen so easily.

Continue reading “A Robotic Chemist Could Whip up the Perfect Batch of Oxygen on Mars”

Martian Green Nightglow Seen for the First Time

Artist's impression of the ExoMars Trace Gas orbiter spotting daylight green oxygen at Mars. Credit: ESA

On Earth, there is a phenomenon known as nightglow, where the atmosphere experiences faint light emissions that prevent the night sky from becoming completely dark. This is caused by various processes in the upper atmosphere, like the recombination of atoms, cosmic rays striking the atmosphere, or oxygen and nitrogen interacting with hydroxyl a few hundred kilometers from the surface. Thanks to data obtained by the ESA’s ExoMars Trace Gas Orbiter (TGO), the same phenomenon has been observed in the Martian atmosphere for the first time.

While scientists have long suspected that Mars also experiences this atmospheric phenomenon, this is the first time that effectively proves it. The revelation was made by an international team of scientists based on their analysis of data from the TGO’s Nadir and Occultation for MArs Discovery (NOMAD) spectrometer. When astronauts and rovers explore Mars’ polar regions in the near future, they will see a green glow whenever they look up at the sky and could even use the glow to navigate and find their way in the dark of night.

Continue reading “Martian Green Nightglow Seen for the First Time”

China Wants to Retrieve a Sample of Mars by 2028

This image was taken by a small camera that was jettisoned from China's Tianwen-1 spacecraft to photograph the spacecraft in orbit above the Martian north pole. Credit: CNSA/PEC

China continues to take great strides as part of its goal to become a superpower in space and a direct competitor with NASA. In addition to its proposed expansion of the Tiangong space station and the creation of the International Lunar Research Station (ILRS), China is also planning on sending crewed missions to Mars in the coming decade. In preparation for the arrival of taikonauts on the Red Planet, China is gearing up to return samples of Martian soil and rock to Earth roughly two years ahead of the proposed NASA-ESA Mars Sample Return (MSR).

This mission will be the third in the China National Space Administration’s (CNSA) Tianwen program (Tianwen-3) and will consist of a pair of launches in 2028 that will return samples to Earth in July 2031. According to a new study recently published in the journal Chinese Science Bulletin, Chinese scientists announced that they have developed a new numerical model to simulate the atmospheric environment of Mars. Known as the Global Open Planetary atmospheric model for Mars (aka. GoPlanet-Mars, or GoMars), this model offers research support in preparation for the Tianwen-3 mission.

Continue reading “China Wants to Retrieve a Sample of Mars by 2028”

Curiosity has Seen its 4,000th Martian Sunrise

NASA’s Curiosity Mars rover captured this 360-degree panorama using its black-and-white navigation cameras, or Navcams, at a location where it collected a sample from a rock nicknamed “Sequoia.” The panorama was captured on Oct. 21 and 26, 2023. Credit: NASA/JPL-Caltech

Not to make anyone feel old, but it’s been over 11 years since NASA’s Curiosity Rover landed on Mars. The rover has now seen the sun rise on Mars over 4,000 times. During this time, the rover has driven almost 32 kilometers on Mars, making its way up the flanks of Mount Sharp while studying the ancient history of water on Mars.

The past 11 years have been quite the journey, but it hasn’t been all perfect. There have been a few computer glitches over the years, Curiosity’s wheels have gaping holes and gashes from driving over sharp rocks, and recently one of its camera filter wheels became stuck. But since the rover’s nominal mission was designed to last about two Earth years, Curiosity has proven to be a tough and enduring machine.

Continue reading “Curiosity has Seen its 4,000th Martian Sunrise”

Get a Reality Check on Plans to Build Cities in Space

Illustration: Scene showing "For All Mankind" city on Mars from above
A scene from "For All Mankind" shows a fictional Martian city from above. (Credit: Sony Pictures / Apple TV+)

Elon Musk and Jeff Bezos may harbor multibillion-dollar dreams of sending millions of people to live on Mars, on the moon and inside free-flying space habitats — but a newly published book provides a prudent piece of advice: Don’t go too boldly.

It’s advice that Kelly and Zach Weinersmith didn’t expect they’d be giving when they began to work on their book, titled “A City on Mars.” They thought they’d be writing a guide to the golden age of space settlement that Musk and Bezos were promising.

“We ended up doing a ton of research on space settlements from just every angle you can imagine,” Zach Weinersmith says in the latest episode of the Fiction Science podcast. “This was a four-year research project. And about two and a half years in, we went from being fairly optimistic about it as a desirable, near-term likely possibility [to] probably unlikely in the near term, and possibly undesirable in the near term. So it was quite a change. Slightly traumatic, I would say.”

Continue reading “Get a Reality Check on Plans to Build Cities in Space”

A Collapsed Martian Lava Chamber, Seen From Space

This HiRise image of Hephaestus Fossae shows a volcanic area that's collapsed into a pit. We should explore it. Image Credit: NASA/JPL-Caltech/UArizona

Lava tubes and chambers attract a lot of attention as potential sites for bases on the Moon and Mars. They provide protection from radiation, from temperature swings, and even from meteorites. They beg to be explored.

Continue reading “A Collapsed Martian Lava Chamber, Seen From Space”

A New Map Shows Where Mars is Hiding all its Ice

The blue areas on this map of Mars are regions where NASA missions have detected subsurface water ice (from the equator to 60 degrees north latitude). Scientists can use the map – part of the Subsurface Water Ice Mapping project – to decide where the ... Credit: NASA/JPL-Caltech/Planetary Science Institute.

Water will be one of the most important resources for human explorers on Mars. They’ll need it for drinking, propellant, breathing, and more. It makes sense to land near a spot where there’s water ice close to the surface.

NASA has released a new map of Mars’s northern hemisphere showing all the places where subsurface water ice has been detected, some of which are surprisingly close to the equator, as well as surprisingly close to the surface. This map could decide the first human landing site.

Continue reading “A New Map Shows Where Mars is Hiding all its Ice”

Mars Still Has Liquid Rock Near its Core

An artist's depiction of the liquid silicate layer wrapped around the Martian core. Credit: IPGP-CNES.

Why doesn’t Mars have a magnetic field? If it did, the planet would be protected from cosmic radiation and charged particles emitted by our Sun. With a magnetic field, perhaps the Red Planet wouldn’t be the dry, barren world it is today.

It has long been believed that Mars once had a global magnetic field like Earth does, but somehow the iron-core dynamo that generated it must have shut down billions of years ago.

But new seismic data from NASA’s InSight lander might change our understanding of Mar’s interior, as well as alter the view of how Mars evolved and changed over time. InSight’s data revealed the presence of a molten silicate layer overlying Mars’ metallic core. Scientists say this insulating layer is like a blanket that might prevent the core from producing a global magnetic field.

Continue reading “Mars Still Has Liquid Rock Near its Core”

This is What it Would Be Like to Fly Across Mars

A view of Noctis Labyrinthus on Mars, from Mars Odyssey data. ESA's Mars Express has created a flyover video from eight years of its data. Courtesy Mars Odyssey.
A view of Noctis Labyrinthus on Mars, from Mars Odyssey data. ESA's Mars Express has created a flyover video from eight years of its data. Courtesy Mars Odyssey.

Many of us have dreamed about flying over the surface of Mars—someday. The planet offers so many cool places to study, and doing it in person is something for future Marsnauts to consider. The Mars Express spacecraft has been mapping the Red Planet for years. It now gives us an up-close look now, through an animation of thousands of images of Mars from its cameras.

Continue reading “This is What it Would Be Like to Fly Across Mars”

Magnetic Fusion Plasma Engines Could Carry us Across the Solar System and Into Interstellar Space

A new study offers a new means of propulsion that could revolutionize space travel - the Magnetic Fusion Plasma Drive (MFPD). Credit: Created with Imagine

Missions to the Moon, missions to Mars, robotic explorers to the outer Solar System, a mission to the nearest star, and maybe even a spacecraft to catch up to interstellar objects passing through our system. If you think this sounds like a description of the coming age of space exploration, then you’d be correct! At this moment, there are multiple plans and proposals for missions that will send astronauts and/or probes to all of these destinations to conduct some of the most lucrative scientific research ever performed. Naturally, these mission profiles raise all kinds of challenges, not the least of which is propulsion.

Simply put, humanity is reaching the limits of what conventional (chemical) propulsion can do. To send missions to Mars and other deep space destinations, advanced propulsion technologies are required that offer high acceleration (delta-v), specific impulse (Isp), and fuel efficiency. In a recent paper, Leiden Professor Florian Neukart proposes how future missions could rely on a novel propulsion concept known as the Magnetic Fusion Plasma Drive (MFPD). This device combines aspects of different propulsion methods to create a system that offers high energy density and fuel efficiency significantly greater than conventional methods.

Continue reading “Magnetic Fusion Plasma Engines Could Carry us Across the Solar System and Into Interstellar Space”