NASA is Sending Humans Back to the Moon, But it Won't Stop There. Next Comes Mars

Credits: NASA

NASA recently announced the astronauts that will make up the Artemis II crew. This mission will see the four-person crew conduct a circumlunar flight, similar to what the uncrewed Artemis I mission performed, and return to Earth. This mission will pave the way for the long-awaited return to the Moon in 2025, where four astronauts will fly to the Moon, and two (“the first woman and first person of color“) will land on the surface using the Starship HLS. These missions are part of NASA’s plan to establish a program of “sustained lunar exploration and development.”

As NASA has emphasized for over a decade, the Artemis Program is part of their “Moon to Mars” mission architecture. On Tuesday, April 18th, NASA released the outcomes from its first Architecture Concept Review (ARC 2022), a robust analysis designed to align with its overall mission strategy and define the supporting architecture. This included an Architecture Document and an executive summary that provide a detailed picture of the mission architecture and design process, plus six supporting white papers that addressed some of the biggest questions regarding exploration and architecture.

Continue reading “NASA is Sending Humans Back to the Moon, But it Won't Stop There. Next Comes Mars”

Navigate a Global Image of Mars (If Your Computer Can Handle It)

The Global CTX Mosaic of Mars allows scientists and the public to explore the planet like never before. It includes different layers of data that can be turned on or off, like these labels for named geographic features on the planet. Credits: NASA/JPL-Caltech/MSSS,

Using data from the Mars Reconnaissance Orbiter (MRO), planetary scientists have created one of the most unique and detailed maps of Mars ever. But fair warning, the biggest version of this is a could overload your computer.  

Global CTX Mosaic of Mars is the highest-resolution global image of the Red Planet ever created and it even allows you see Mars in 3D.

Continue reading “Navigate a Global Image of Mars (If Your Computer Can Handle It)”

Perseverance is Turning Into That Friend That's Always Picking Up Rocks

This image shows the rock core from “Berea” inside inside the drill of NASA’s Perseverance Mars rover. Credit: NASA/JPL-Caltech/ASU/MSSS

On Thursday, March 30th, NASA’s Perseverance rover drilled and stored the first rock core sample of its newest science campaign. This is the sixteenth sample the rover has taken as part of the ambitious Mars Sample Return (MSR) mission, a collaborative effort between NASA and the European Space Agency (ESA) to retrieve Perseverance’s samples and bring them back to Earth. Once they arrive (expected to happen by 2033), scientists will analyze them using state-of-the-art machinery too heavy and cumbersome to send to Mars as part of a robotic mission.

Continue reading “Perseverance is Turning Into That Friend That's Always Picking Up Rocks”

Perseverance Sees Drifting Clouds on Mars

Animation showing a series of pre-sunrise images of drifting clouds in the Martian sky taken by NASA's Perseverance rover on March 18, 2023. (Credit: NASA/JPL-Caltech)

NASA’s Perseverance rover mission provided a bluish pre-sunrise gift above Jezero Crater on March 18, 2022, aka Sol 738, or the 738th Martian day of the mission, with “sol” being the official timekeeping method for Mars missions since one Martian day is approximately 40 minutes longer than one Earth day. And, on this particular sol, the car-sized explorer used one of its navigation cameras (Navcam) to snap images of high-altitude clouds drifting in the Martian sky, which it shared on its officially Twitter page on March 23, 2023.

Continue reading “Perseverance Sees Drifting Clouds on Mars”

Don’t Just Grow Potatoes on Mars, Use them for Concrete

A while back, we reported on a research group that was using an interesting mix of materials to create concrete on Mars. The University of Manchester researchers used blood and urine to create concrete bricks using Martian regolith stronger than concrete used on Earth. However, there was an obvious downside of literally requiring blood to make them, let alone the side effects of having astronauts potentially live in a building built partially out of their own bodily fluids. So the researchers thought up a different material whose usefulness in space will be familiar to anyone who has read Andy Weir’s most famous novel – potatoes.

Continue reading “Don’t Just Grow Potatoes on Mars, Use them for Concrete”

2033 is the Perfect Year to Send Humans to Mars (With a Bonus Venus Flyby)

According to a new report, NASA could launch a orbital-only mission to Mars in 2033. Credits: NASA

In the coming decade, NASA and China plan to send the first crewed missions (astronauts and taikonauts) to Mars. Both agencies hope to begin sending missions by 2033, coinciding with a Mars Opposition, followed by additional missions in 2035, 2037, and after. These missions will culminate with the creation of a Mars surface habitat that will enable future missions and research. Launch opportunities for these missions are limited because the distances between Earth and Mars vary considerably over time, ranging from about 56 million km (~35 million mi) to more than 400 million km (250 million mi).

The times when Earth and Mars are at their closest (known as a Mars Opposition) only occur once every 26 months. Moreover, using conventional propulsion methods, it takes missions six to nine months to travel between Earth and Mars. As a result, round-trip missions to Mars could take up to three years, dramatically increasing radiation exposure for the crew and the time they spend in microgravity. According to a recent study from NASA’s Jet Propulsion Laboratory (JPL), 2033 will be a unique opportunity to send a crewed orbital mission to Mars that lasts just 1.6 years.

Continue reading “2033 is the Perfect Year to Send Humans to Mars (With a Bonus Venus Flyby)”

Don’t Take Batteries to the Moon or Mars, 3D Print Them When you Get There

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

When the Artemis astronauts and future explorers go to the Moon and Mars, they’ll need power. Lots of it. Of course, they’ll use solar panels to generate the juice they need for habitats, experiments, rovers, and so on. But, they’ll need batteries for power storage. Those things weigh a lot and cost a fortune to send up from Earth. So, why not simply 3D print their own when they get there?

Continue reading “Don’t Take Batteries to the Moon or Mars, 3D Print Them When you Get There”

The 9th Annual Achieving Mars Workshop Report has been Released! How to Make Mars Affordable…

Artist's concept image of a boot print on the moon and on Mars. Credit: NASA/JPL-Caltech

This past summer (June 14th to June 16th), representatives from the public space sector, the commercial space industry, and academic institutions convened at George Washington University in Washington D.C. for The Ninth Community Workshop for Achievability and Sustainability of Human Exploration of Mars. The invitation-only event was hosted by Explore Mars, Inc., a non-profit organization dedicated to fostering international collaboration and cooperation between government and industry to achieve the human exploration of Mars by the 2030s.

The purpose of this workshop is to identify activities that will help prepare for missions to Mars by the 2030s. In particular, the workshop sought to address how a sustainable program of human Martian exploration can be achieved. The highlights of this event were recently shared with the release of the Achieve Mars (AM) IX Report, which established priorities and science objectives for future missions to Mars. The authors also made several recommendations for how cutting-edge technologies could play a role, how the health and safety of astronauts can be assured, and how Mars and Earth can be protected from possible contamination.

;.

Fly Around Jezero Crater on Mars in This New Video

Image of the region around Jezero Crater. Credit: NASA/JPL.

There’s a reason Jezero Crater was chosen as the landing site for the Perseverance Rover: it is considered one of the likeliest places to find any evidence if Mars was ever habitable for long periods of time. In this great new flyby video from ESA, you can get a birds-eye look at Perseverance’s home.

Created from data ESA’s Mars Express and NASA’s Mars Reconnaissance Orbiter, the video takes you on an aerial tour of the crater. From this perspective, you can see the water features in this ancient impact crater and understand why this was considered one of the best places to explore Mars.

Continue reading “Fly Around Jezero Crater on Mars in This New Video”

Remnants of a Relict Glacier Found Near the Equator on Mars

This image shows what scientists believe is a relict glacier near Mars’ Equator. Image Credits: NASA MRO HiRISE and CRISM false color composite. Lee et al. 2023

New results presented at the 54th Lunar and Planetary Science Conference could change our approach to Mars exploration. Scientists studying the surface of Mars discovered a relict glacier near the planet’s equator. The relict glacier could signal the presence of buried water ice at the planet’s mid-latitudes.

Continue reading “Remnants of a Relict Glacier Found Near the Equator on Mars”