Rover’s Grinder Working Again After Glitch

NASA’s Mars Exploration Rover Opportunity has resumed using its rock abrasion tool after a pebble fell out that had jammed the tool’s rotors two weeks ago.

The abrasion tool successfully spun a wire brush late Monday to scrub dust off two patches of a rock inside “Endurance Crater,” and engineering data received Tuesday confirmed that the tool is fully recovered. Rover wranglers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., plan to use the tool’s grinding rotor next to cut a hole exposing the interior of the rock.

“We’re delighted to be using Opportunity’s rock abrasion tool again,” said Dr. Stephen Gorevan of Honeybee Robotics, New York, lead scientist for that tool on both rovers. “We had planned to kick out that pebble by turning the rotors in reverse, but just the jostling of the rover’s movements seems to have shaken it loose even before we tried that. The rock abrasion tool has functioned beyond engineering expectations as a window for Mars Exploration Rover science. The new imaging consultation makes it clear that not only does the tool appear to be undamaged, but also that its teeth have not worn very much at all.”

Opportunity and its twin, Spirit, have each conducted more than four months of bonus exploration and discoveries after successfully completing their three-month primary missions on Mars. Opportunity’s rock abrasion tool has now been used 18 times to grind into rocks and five times to brush rocks. Spirit’s tool has ground nine times and brushed 28 times. The criteria set in advance for successful use of the abrasion tools was for each rover to grind at least one rock.

Mars and Earth are approaching the point in their orbits when Mars, on Sept. 16, will pass nearly behind the Sun, a geometry called “conjunction.” For several days around conjunction, the energetic environment close to the Sun will interfere with radio communications between the two planets. Rover operators have planned a hiatus in sending up daily commands. The rovers will use longer-term instructions to continue doing daily research and to attempt daily communications until the conjunction period is over.

“Based on experience with other spacecraft, we expect that when the Mars-Sun-Earth angle is 2 degrees or less, the ability to successfully communicate degrades rapidly,” said JPL systems engineer Scott Doudrick, who has been organizing conjunction operations for both rovers. “To be cautious, we’re allowing three days on either side of that period.”

The planned gap in sending daily plans runs for about 12 days beginning Sept. 8 for Spirit and Sept. 9 for Opportunity. The rovers will be instructed ahead of time to continue doing atmospheric operations and Moessbauer spectrometer readings daily during that period. No movements of the wheels or the robotic arms are in the conjunction-period plans, but the camera masts may move for making observations. The rovers also will continue communicating daily with NASA’s Mars Odyssey orbiter and will also attempt to communicate directly with Earth.

“The science team gets some time off from the daily planning cycle, but we will have a full spacecraft team every day, so we will be able to respond quickly if the rovers communicate a problem to us and there’s a good reason for emergency commands,” Doudrick said.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Science Mission Directorate, Washington. Additional information about the project is available from JPL at http://marsrovers.jpl.nasa.gov/ and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu.

Original Source: NASA/JPL News Release

Mars Express View of Eos Chasma

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows the southern part of Valles Marineris, called Eos Chasma.

The images was taken during orbit 533 in June 2004, and is centred at Mars longitude 322? East and latitude 11? South. The image resolution is approximately 80 metres per pixel.

Between surrounding plains and the smooth valley floor, a height difference of about 5000 metres has been measured.

The plain to the south, above Eos Chasma, is covered by several impact craters with diameters of around 20 kilometres and drainage channels.

To the east on this plain, isolated regions with cracked surfaces become more prominent. The direction of flow of the drainage channels in this area of the plain is ambiguous, as the channels to the north-east drain towards the south-east, and those in the south-west normally flow to the north-west.

The northern part of Eos Chasma?s valley floor is a rough area with angular hills reaching almost 1000 metres. In contrast, the southern part reveals a smooth topography with distinct flow structures.

In some areas of the southern slope, at least two terrace levels can be observed. Some haze in the valley hints at the presence of aerosols (airborne microscopic dust or liquid droplets).

Original Source: ESA News Release

3D Screensaver of Mars

I know you all like pretty pictures on your desktop, so here’s something that’ll help fill your bottomless need for photos. The European Space Agency releases screensavers from time to time filled with photos taken by their spacecraft. This one’s a little different, though, it’s a screensaver that displays 3D images. In order to properly see the perspective in the photo, you need a pair of those 3D glasses… you know the paper ones with a red and blue lens that you can get at 3D movies or with some books.

Download the screensaver. – 1.4 MB

It’s actually a good idea for you to keep a pair of these glasses on hand by your computer. Mars Express, Spirit and Opportunity can take pictures in stereo, so you can see a 3D view of what the Red Planet really looks like. You should be able to find a pair of glasses at your local bookstore. And here’s a website that’s giving away free 3D glasses.

Have fun,

Fraser Cain
Publisher
Universe Today

Mars Odyssey Goes into Overtime

NASA’s Mars Odyssey orbiter begins working overtime today after completing a prime mission that discovered vast supplies of frozen water, ran a safety check for future astronauts, and mapped surface textures and minerals all over Mars, among other feats.

“Odyssey has accomplished all of its mission-success criteria,” said Dr. Philip Varghese, project manager for Odyssey at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. The spacecraft has been examining Mars in detail since February 2002, more than a full Mars year of about 23 Earth months. NASA has approved an extended mission through September 2006.

“This extension gives us another martian year to build on what we have already learned,” said JPL’s Dr. Jeff Plaut, project scientist for Odyssey. “One goal is to look for climate change. During the prime mission we tracked dramatic seasonal changes, such as the comings and goings of polar ice, clouds and dust storms. Now, we have begun watching for year-to-year differences at the same time of year.”

The extension will also continue Odyssey’s support for other Mars missions. About 85 percent of images and other data from NASA’s twin Mars rovers, Spirit and Opportunity, have reached Earth via communications relay by Odyssey, which receives transmissions from both rovers every day. The orbiter helped analyze potential landing sites for the rovers and is doing the same for NASA’s Phoenix mission, scheduled to land on Mars in 2008. Plans call for Odyssey to aid NASA’s Mars Reconnaissance Orbiter, due to reach Mars in March 2006, by monitoring atmospheric conditions during months when the newly arrived orbiter uses calculated dips into the atmosphere to alter its orbit into the desired shape.

Odyssey was launched April 7, 2001, and used the same dips into the atmosphere, known as aerobraking, to shape its orbit during the initial months after it reached Mars on Oct. 23, 2001. The spacecraft carries three research systems: a camera system made up of infrared and visible-light sensors; a spectrometer suite with a gamma ray spectrometer, a neutron spectrometer and a high-energy neutron detector; and a radiation environment detector.

Less than a month after the science mapping campaign began, the team announced a major discovery. The gamma ray and neutron instruments detected copious hydrogen just under Mars’ surface in the planet’s south polar region. Researchers interpret the hydrogen as frozen water — enough within about a meter (3 feet) of the surface, if the ice were melted, to fill Lake Michigan a couple times.

Here are a few of Odyssey’s other important accomplishments so far:

— As summer came to northern Mars and the north polar covering of frozen carbon dioxide shrank, Odyssey found abundant frozen water in the north, too.

— Infrared mapping showed that a mineral called olivine is widespread. This indicated the environment has been quite dry, because water exposure alters olivine into other minerals.

— Findings indicated the amount of frozen water in some relatively warm regions on Mars is too great to be in equilibrium with the atmosphere, suggesting that Mars may be going through a period of climate change. Features visible near small, young gullies in some Odyssey images may be slowly melting snowpacks left over from a martian ice age.

— The first experiment sent to Mars specifically in preparation for human missions found that radiation levels around Mars, from solar flares and cosmic rays, are two to three times higher than around Earth.

— Odyssey’s camera system obtained the most detailed complete global maps of Mars ever, with daytime and nighttime infrared images at a resolution of 100 meters (328 feet).

“We’ve accomplished everything we set out to do, and more,” said JPL’s Robert Mase, Odyssey mission manager. Although an unusually powerful solar flare in October 2003 knocked out the radiation environment instrument, Odyssey is otherwise in excellent health. The spacecraft has enough fuel onboard to keep operating through this decade and the next at current consumption rates. The mission extension, with a budget of $35 million, essentially doubles the science payoff from Odyssey for less than one-eighth of the mission’s original $297 million cost.

JPL, a division of the California Institute of Technology, Pasadena, manages Mars Odyssey for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built and operates the spacecraft. Investigators at Arizona State University, Tempe; University of Arizona, Tucson; NASA’s Johnson Space Center, Houston; the Russian Aviation and Space Agency, Moscow; and Los Alamos National Laboratory, Los Alamos, N.M., built and operate Odyssey science instruments. For more information about Mars Odyssey on the Internet, visit: http://mars.jpl.nasa.gov/odyssey.

Original Source: NASA/JPL News Release

Beagle 2 Report Released

The UK-built Beagle 2 lander should have been on the surface of Mars, communicating with Earth for months now. But for some reason, shortly after it entered the Martian atmosphere, the small lander went silent, and it hasn’t been heard from since. Several inquiries have already been held, but now the mission operations team has released its own report to try and explain what could have gone wrong. The report provides a thorough list of ways the lander could have failed mechanically, but suggests that it was mostly likely that it failed during the entry, descent, and landing phase; probably because the atmosphere was less dense than the designers were expecting.

Martian Crater With Dunes

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows a Martian crater with a dune field on its floor.

The image was taken during orbit 427 in May 2004, and shows the crater with a dune field located in the north-western part of the Argyre Planitia crater basin.

The image is centred at Mars longitude 303? East and latitude 43? South. The image resolution is approximately 16.2 metres per pixel.

The crater is about 45 kilometres wide and 2 kilometres deep. In the north-eastern part of this crater, the complex dune field is 7 kilometres wide by 12 kilometres long.

In arid zones on Earth, these features are called ?barchanes?, which are dunes having an asymmetrical profile, with a gentle slope on the wind-facing side and a steep slope on the lee-side.

The dune field shown here suggests an easterly wind direction with its steeper western part. The composition of the dune material is not certain, but the dark sands could be of basaltic origin.

Original Source: ESA News Release

More Evidence for Past Water on Mars

Now that NASA’s Mars Exploration Rover Spirit is finally examining bedrock in the “Columbia Hills,” it is finding evidence that water thoroughly altered some rocks in Mars’ Gusev Crater.

Spirit and its twin, Opportunity, completed successful three-month primary missions on Mars in April and are returning bonus results during extended missions. They remain in good health though beginning to show signs of wear.

On Opportunity, a tool for exposing the insides of rocks stopped working Sunday, but engineers are optimistic that the most likely diagnosis is a problem that can be fixed soon. “It looks like there’s a pebble trapped between the cutting heads of the rock abrasion tool,” said Chris Salvo, rover mission manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We think we can treat it by turning the heads in reverse, but we are still evaluating the best approach to remedy the situation. There are several options available to us.”

Opportunity originally landed right beside exposed bedrock and promptly found evidence there for an ancient body of saltwater. On the other hand, it took Spirit half a year of driving across a martian plain to reach bedrock in Gusev Crater. Now, Spirit’s initial inspection of an outcrop called “Clovis” on a hill about 9 meters (30 feet) above the plain suggests that water may once have been active at Gusev.

“We have evidence that interaction with liquid water changed the composition of this rock,” said Dr. Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for the science instruments on both rovers. “This is different from the rocks out on the plain, where we saw coatings and veins apparently due to effects of a small amount of water. Here, we have a more thorough, deeper alteration, suggesting much more water.”

Squyres said, “To really understand the conditions that altered Clovis, we’d like to know what it was like before the alteration. We have the ‘after.’ Now we want the ‘before.’ If we’re lucky, there may be rocks nearby that will give us that.”

Dr. Doug Ming, a rover science team member from NASA’s Johnson Space Center, Houston, said indications of water affecting Clovis come from analyzing the rock’s surface and interior with Spirit’s alpha particle X-ray spectrometer and finding relatively high levels of bromine, sulfur and chlorine inside the rock. He said, “This is also a very soft rock, not like the basaltic rocks seen back on the plains of Gusev Crater. It appears to be highly altered.”

Rover team members described the golf-cart-sized robots’ status and recent findings in a briefing at JPL today.

Opportunity has completed a transect through layers of rock exposed in the southern inner slope of stadium-sized “Endurance Crater.” The rocks examined range from outcrops near the rim down through progressively older and older layers to the lowest accessible outcrop, called “Axel Heiberg” after a Canadian Arctic island. “We found different compositions in different layers,” said Dr. Ralf Gellert, of Max-Planck-Institut fur Chemie, Mainz, Germany. Chlorine concentration increased up to threefold in middle layers. Magnesium and sulfur declined nearly in parallel with each other in older layers, suggesting those two elements may have been dissolved and removed by water.

Small, gray stone spheres nicknamed “blueberries” are plentiful in Endurance just as they were at Opportunity’s smaller landing-site crater, “Eagle.” Pictures from the rover’s microscopic imager show a new variation on the blueberries throughout a reddish-tan slab called “Bylot” in the Axel Heiberg outcrop. “They’re rougher textured, they vary more in size, and they’re the color of the rock, instead of gray,” said Zoe Learner, a science team collaborator from Cornell. “We’ve noticed that in some cases where these are eroding, you can see a regular blueberry or a berry fragment inside.” One possibility is that a water-related process has added a coarser outer layer to the blueberries, she said, adding, “It’s still really a mystery.”

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Science Mission Directorate, Washington. Images and additional information about the project are available from JPL at http://marsrovers.jpl.nasa.gov and from Cornell University at http://athena.cornell.edu .

Original Source: NASA/JPL News Release

Eroded Valleys on Mars

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows the Dao Valles and Niger Valles, a system of outflow channels on Mars.

The image was taken during orbit 528 in June 2004, and shows the Dao Valles and Niger Valles areas at a point where the north-eastern Hellas impact crater basin and the Hesperia Planum volcanic region meet.

The image is centred at Mars longitude 93? East and latitude 32? South. The image resolution is 40 metres per pixel.

The outflow channel system is, in some areas, 40 kilometres wide. The north-eastern ends of the two valleys are almost 200 metres deeper than the south-western regions which are also shown here. The northern Dao Valles, 2400 metres deep, is about 1000 metres deeper than the more southern Niger Valles.

The structure of the valley floor of the Niger Valles is characterised by terraced basins and chaotic fractures. The floor of the Dao Valles is much smoother, but covered with strongly eroded remnants.

These eroded valleys are in a region which is part of the southern flank of the Hadriaca Patera volcano. The surrounding surface is formed by lava streams, probably in a ‘runoff’ process.

Original Source: ESA News Release

One Year to Go for Mars Reconnaissance Orbiter

With one very busy year remaining before launch, the team preparing NASA’s next mission to Mars has begun integrating and testing the spacecraft’s versatile payload. Possible launch dates from Cape Canaveral, Fla., for NASA’s Mars Reconnaissance Orbiter begin Aug. 10, 2005. The spacecraft will reach Mars seven months later to study the surface, subsurface and atmosphere with the most powerful instrument suite ever flown to the red planet.

“Mars Reconnaissance Orbiter is a quantum leap in our spacecraft and instrument capabilities at Mars,” said James Graf, the mission’s project manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Weighing 2,180 kilograms [4,806 pounds] at launch, the spacecraft will be the largest ever to orbit Mars. The data rate from the orbiter at Mars back to Earth will be three times faster than a high-speed residential telephone line. This rate will enable us to return a tremendous amount of data and dramatically increase our understanding of this mysterious planet.”

JPL’s Dr. Richard Zurek, project scientist for Mars Reconnaissance Orbiter, said, “This capability is needed to achieve the higher-resolution imaging, spectral mapping, atmospheric profiling and subsurface probing that will allow us to follow up on the exciting discoveries of the current Mars missions.”

Workers at Lockheed Martin Space Systems, Denver, have been building the orbiter for more than a year and have reached the final assembly stage. Flight software is 96 percent complete. Assembly of the launch vehicle, an Atlas V, has begun at the same facility where the orbiter is being completed and tested. This will be the first interplanetary mission hitched to an Atlas since 1973. The Mars Reconnaissance Orbiter team now numbers about 175 people at Lockheed Martin and 110 at JPL.

Kevin McNeill, Lockheed Martin’s program manager for the orbiter, said, “Our team has completed integration and testing of a majority of the spacecraft’s subsystems. In the next few months, we’ll integrate and test the science instruments on the orbiter, followed by environmental testing through early next year. We look forward to getting to the Cape next spring and integrating with the Atlas V launch vehicle. We’re all very excited about getting to Mars and returning data for the science teams to evaluate.”

The spacecraft’s six science instruments are in the final stages of assembly, testing and calibration at several locations for delivery in coming weeks. The payload also includes a relay telecommunications package called Electra and two technology demonstrations to support planning of future Mars missions. “Electra was integrated with the spacecraft and tested in July,” Graf said. “The next payload elements to be integrated will be the Mars climate sounder and the compact reconnaissance imaging spectrometer for Mars.” The climate sounder, from JPL, will quantify the martian atmosphere’s vertical variations in water vapor, dust and temperature; the imaging spectrometer, from Johns Hopkins Applied Physics Laboratory of Laurel, Md., will scan the surface to look for water-related minerals at unprecedented scales, extending discoveries made by NASA’s Mars Exploration Rovers.

The largest telescopic camera ever sent into orbit around another planet, called the high resolution imaging science experiment, will reveal Mars surface features as small as a kitchen table. Ball Aerospace, Boulder, Colo., is building it for the University of Arizona, Tucson. The orbiter will also carry three other cameras. Two come from Malin Space Sciences, San Diego: the context camera for wide-swath, high-resolution pictures, and the Mars multi-color imager with its fish-eye lens for tracking changes in weather and variations in atmospheric ozone. An optical navigation camera from JPL will use positions of Mars’ two moons to demonstrate precision navigation for future missions.

The Italian Space Agency is providing the orbiter’s shallow radar sounding instrument, designed to probe below the surface to discover evidence of underground layers of ice, rock and, perhaps, melted water.

Another technology demonstration from JPL will allow comparison of a higher-frequency, more-efficient radio band with the band commonly used for interplanetary communications. This may allow future missions to return more data with the same expended power.

NASA?s chief scientist for Mars, Dr. Jim Garvin, added, “We build our science strategy for Mars around the next-generation reconnaissance this spacecraft is to provide, with its revolutionary remote sensing payload, and we are proud of the impressive progress to date by our Mars Reconnaissance Orbiter team. Mars Reconnaissance Orbiter will tell us where we must send our next wave of robotic explorers, including the Mars Science Laboratory, as well as paving the way for human exploration.”

The Mars Reconnaissance Orbiter mission is managed by JPL, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project.

Original Source: NASA/JPL News Release

Perspective View of Olympus Mons

This perspective view, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows the complex caldera of Olympus Mons on Mars, the highest volcano in our Solar System.

Olympus Mons has an average elevation of 22 kilometres and the caldera, or summit crater, has a depth of about 3 kilometres. The data was retrieved during orbit 143 of Mars Express on 24 February 2004. The view is looking north.

The curved striations on the left and foreground, in the southern part of the caldera, are tectonic faults. After lava production has ceased the caldera collapsed over the emptied magma chamber. Through the collapse the surface suffers from extension and so extensional fractures are formed.

The level plain inside the crater on which these fractures can be observed represents the oldest caldera collapse. Later lava production caused new caldera collapses at different locations (the other circular depressions). They have partly destroyed the circular fracture pattern of the oldest one.

This perspective view of the caldera was calculated from the digital elevation model derived from the stereo channels and combined with the nadir and colour channels of the HRSC.

Original Source: ESA News Release