Perspective View of Olympus Mons

This perspective view, taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express spacecraft, shows the complex caldera of Olympus Mons on Mars, the highest volcano in our Solar System.

Olympus Mons has an average elevation of 22 kilometres and the caldera, or summit crater, has a depth of about 3 kilometres. The data was retrieved during orbit 143 of Mars Express on 24 February 2004. The view is looking north.

The curved striations on the left and foreground, in the southern part of the caldera, are tectonic faults. After lava production has ceased the caldera collapsed over the emptied magma chamber. Through the collapse the surface suffers from extension and so extensional fractures are formed.

The level plain inside the crater on which these fractures can be observed represents the oldest caldera collapse. Later lava production caused new caldera collapses at different locations (the other circular depressions). They have partly destroyed the circular fracture pattern of the oldest one.

This perspective view of the caldera was calculated from the digital elevation model derived from the stereo channels and combined with the nadir and colour channels of the HRSC.

Original Source: ESA News Release

Mars Express Relays Photos from Rovers

ESA?s Mars Express has relayed pictures from one of NASA’s Mars rovers for the first time, as part of a set of interplanetary networking demonstrations. The demonstrations pave the way for future Mars missions to draw on joint interplanetary networking capabilities. ESA and NASA planned these demonstrations as part of continuing efforts to co-operate in space exploration.

On 4 August at 14:24 CEST, as Mars Express flew over one of NASA?s Mars exploration rovers, Opportunity, it successfully received data previously collected and stored by the rover. The data, including 15 science images from the rover’s nine cameras, were then downlinked to ESA?s European Space Operations Centre in Darmstadt (Germany) and immediately relayed to the Mars Exploration Rovers team based at the Jet Propulsion Laboratory in Pasadena, USA.

NASA orbiters Mars Odyssey and Mars Global Surveyor have so far relayed most of the data produced by the rovers since they landed in January. Communication compatibility between Mars Express and the rovers had already been demonstrated in February, although at a low rate that did not convey much data. The 4 August session, at a transmit rate of 42.6 megabits in about six minutes, set a new mark for international networking around another planet.

The success of this demonstration is the result of years of groundwork and was made possible because both Mars Express and the Mars rovers use the same communication protocol. This protocol, called Proximity-1, was developed by the international Consultative Committee for Space Data Systems, an international partnership for standardising techniques for handling space data.

Mars Express was 1400 kilometres above the Martian surface during the 4 August session with Opportunity, with the goal of a reliable transfer of lots of data. Engineers for both agencies plan to repeat this display of international cooperation today, 10 August, with another set of Opportunity images.

?We’re delighted how well this has been working, and thankful to have Mars Express in orbit,? said Richard Horttor of NASA’s Jet Propulsion Laboratory, Pasadena, California, project manager for NASA’s role in Mars Express. JPL engineer Gary Noreen of the Mars Network Office said: ?the capabilities that our international teamwork is advancing this month could be important in future exploration of Mars.?

In addition, Mars Express is verifying two other operating modes with Opportunity and the twin rover, Spirit, from a greater distance. On 3 and 6 August, when Mars Express listened to Spirit, it was about 6000 kilometres above the surface. At this range it successfully tracked a beacon from Spirit, demonstrating a capability that can be used to locate another craft during critical events, such as the descent to a planet?s surface, or for orbital rendez-vous manoeuvres.

?Establishing a reliable communication network around Mars or other planets is crucial for future exploration missions, as it will allow improved coverage and also an increase in the amount of data that can be brought back to Earth,? said Con McCarthy, from ESA?s Mars Express project, ?the tracking mode will enable ESA and NASA to pinpoint a spacecraft?s position more accurately during critical mission phases.?

The final session of the series, scheduled for 13 August with Opportunity, will demonstrate a mode for gaining navigational information from the ?Doppler shift? in the radio signal.

Original Source: ESA News Release

Slides on Olympus Mons

This image from ESA’s Mars Express show the western flank of the shield volcano Olympus Mons in the Tharsis region of the western Martian hemisphere.

The image was taken by the High Resolution Stereo Camera (HRSC) during orbit 143 from an altitude of 266 kilometres. It were taken with a resolution of about 25 metres per pixel and is centred at 222? East and 22? North. North is to the left.

The image shows the western part of the escarpment, rising from the surface level to over 7000 metres. In the foreground, part of the extensive plains west of the escarpment are shown, known as an ‘aureole’ (from the Latin for ‘circle of light’).

To the north and west of the volcano, these ‘aureole’ deposits are regions of gigantic ridges and blocks extending some 1000 kilometres from the summit like petals of a flower. An explanation for the origin of the deposits has challenged planetary scientists for decades.

The most persistent explanation, however, has been landslides. Large masses of shield material can be found in the aureole area. Several indications also suggest a development and resurfacing connected to glacial activity.

Original Source: ESA News Release

New Perspective on Melas Chasma

This image of the southern part of Valles Marineris, called Melas Chasma, was obtained by the High Resolution Stereo Camera (HRSC) on board the ESA Mars Express spacecraft.

This image was taken at a resolution of approximately 30 metres per pixel. The displayed region is located at the southern rim of the Melas Chasma, centred at Mars latitude 11? S and Mars longitude 286? E. The images were taken on orbit 360 of Mars Express.

This perspective view has been turned in such a way that the observer has a view of the southern scarp, almost 5000 metres high. The basin on the floor of the valley is on the opposite side, bordered by a ridge.

On its flanks it is possible to make out some layering. However, the nature of the bright material, possibly some kind of deposit, is still unknown.

This perspective view was created by using the nadir (vertical view) channel and one stereo channel of the HRSC to produce a digital model of the terrain. Please note that image resolution has been reduced for use on the internet.

Original Source: ESA News Release

Public Invited to Help Catalog Mars

NASA scientists have modified a scientific Web site so the general public can inspect big regions and smaller details of Mars’ surface, a planet whose alien terrain is about the same area as Earth’s continents.

After adding ‘computer tools’ to the ‘Marsoweb’ Internet site, NASA scientists plan to ask volunteers from the public to virtually survey the vast red planet to look for important geologic features hidden in thousands of images of the surface. The Web site is located at:

http://marsoweb.nas.nasa.gov/landingsites/index.html

“The initial reason to create Marsoweb was to help scientists select potential Mars landing sites for the current Mars Exploration Rover (MER) mission,” according to Virginia Gulick, a scientist from the SETI Institute, Mountain View, Calif., who works at NASA Ames Research Center, located in California’s Silicon Valley. “The Web site was designed just for Mars scientists so they could view Mars data easily,” she added.

But when the first Mars Exploration Rover landed on Mars in January, the general public discovered Marsoweb. More than a half million ‘unique visitors’ found the page, and the Web experienced about 26.7 million ‘hits’ in January.

“An interactive data map on Marsoweb allows users to view most Mars data including images, thermal inertia, geologic and topographical maps and engineering data that includes rock abundance,” Gulick said. Thermal inertia is a material’s capacity to store heat (usually in daytime) and conduct heat (often at night). “The engineering data give scientists an idea of how smooth or rocky the local surface is,” Gulick explained.

To examine a large number of distinctive or interesting geologic features on the red planet close up would take an army of people because Mars’ land surface is so big. Such a multitude of explorers – modern equivalents of America’s early pioneers – may well survey details of Mars through personal computers.

Researchers hope that volunteers will help with an upcoming Mars imaging experiment. NASA scientists are getting ready for the High Resolution Imaging Science Experiment (HiRISE) that will fly on the Mars Reconnaissance Orbiter (MRO) mission, slated for launch in August 2005. Gulick, co-investigator and education and public outreach lead of the HiRISE team, said that the experiment’s super high-resolution camera will be able to capture images of objects on Mars’ surface measuring about a yard (one meter) wide.

User-friendly ‘Web tools’ soon will be available to the science community and the public to view and analyze HiRISE images beginning in November 2006 and to submit image observation requests, according to HiRISE scientists. If all goes according to plan, a request form will be on the Internet for use by scientists and the public about the time of the Mars Reconnaissance Orbiter launch in 2005. Marsoweb computer scientist Glenn Deardorff, Gulick and other HiRISE team members are now designing Web-friendly software ‘tools’ to allow the public to examine and evaluate HiRISE images.

“We will ask volunteers to help us create ‘geologic feature’ databases of boulders, gullies, craters – any kind of geologic feature that may be of interest,” Gulick explained. “Scientists or students can use these data bases to propose theories about Mars that could be proven by future exploration.”

Preliminary details about Mars Reconnaissance Orbiter HiRISE’s exploration of Mars are on the World Wide Web at:

http://marsoweb.nas.nasa.gov/hirise/

The current Marsoweb site includes animated ‘fly-throughs’ of some Mars locations. The site also permits users to fine-tune Mars images for brightness, contrast and sharpness as well as make other adjustments.

NASA’s Jet Propulsion Laboratory, operated by the California Institute of Technology in Pasadena, Calif., manages the Mars Exploration Rover and Mars Reconnaissance Orbiter missions for the NASA Office of Space Science, Washington, D.C.

Original Source: NASA News Release

Fractured Crater on Mars

This perspective image of a fractured crater near Valles Marineris on Mars was obtained by the High Resolution Stereo Camera (HRSC) on board the ESA Mars Express spacecraft.

The image was taken during orbit 61 in January 2004 with a resolution of 12. 5 metres per pixel. It shows part of a cratered landscape to the north of the Valles Marineris, at 0.6? S latitude and 309? E longitude, with this crater having a fractured base.

This crater has a rim diameter of 27.5 kilometres and is about 800 metres deep. It is not known yet how these fractures are generated. On Earth, polygonal fractures may occur in contracting material, which breaks at weak zones. For example, we may see this appearing in cooled lava, dried clay or frozen ground.

Original Source: ESA News Release

Spirit’s Got a Bad Wheel

As winter approaches on Mars, NASA’s Opportunity rover continues to inch deeper into the stadium-sized crater dubbed “Endurance.” On the other side of the planet, the Spirit rover found an intriguing patch of rock outcrop while preparing to climb up the “Columbia Hills” backward. This unusual approach to driving is part of a creative plan to accommodate Spirit’s aging front wheel.

Spirit, with an odometer reading of over 3.5 kilometers (2.2 miles), has already traveled six times its designed capacity. Its right front wheel has been experiencing increased internal resistance, and recent efforts to mitigate the problem by redistributing the wheel’s lubricant through rest and heating have been only partially successful.

To cope with the condition, rover planners have devised a roundabout strategy. They will drive the rover backward on five wheels, rotating the sixth wheel only sparingly to ensure its availability for demanding terrain. “Driving may take us a little bit longer because it is like dragging an anchor,” said Joe Melko, a rover engineer at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “However, this approach will allow us to continue doing science much longer than we ever thought possible.”

On Thursday, July 15, Spirit successfully drove 8 meters (26 feet) north along the base of the Columbia Hills backward, dragging its faulty wheel. The wheel was activated about 10 percent of the time to surmount obstacles and to pull the rover out of trenches dug by the immobile wheel.

Along the way, Spirit drove over what scientists had been hoping to find in the hills — a slab of rock outcrop that may represent some of the oldest rocks observed in the mission so far. Spirit will continue to drive north, where it likely will encounter more outcrop. Ultimately, the rover will drive east and hike up the hills backward using all six wheels.

“A few months ago, we weren’t sure if we’d make it to the hills, and now here we are preparing to drive up into them,” said Dr. Matt Golombek, a rover science-team member from JPL. “It’s very exciting.”

For the past month, the Spirit rover has been parked near several hematite-containing rocks, including “Pot of Gold,” conducting science studies and undergoing a long-distance “tuneup” for its right front wheel.

Driving with the wheel disabled means that corrections might have to be made to the rover’s steering if it veers off its planned path. This limits Spirit’s accuracy, but rover planners working at JPL’s rover test facility have come up with some creative commands that allow the rover to auto-correct itself to a limited degree.

As Spirit prepares to climb upward, Opportunity is rolling downward. Probing increasingly deep layers of bedrock lining the walls of Endurance Crater at Meridiani Planum, the rover has observed a puzzling increase in the amount of chlorine. Data from Opportunity’s alpha particle X-ray spectrometer show that chlorine is the only element that dramatically rises with deepening layers, leaving scientists to wonder how it got there. “We do not know yet which element is bound to the chlorine,” said Dr. Jutta Zipfel, a rover science-team member from the Max Planck Institute for Chemistry, Mainz, Germany.

Opportunity will roll down even farther into the crater in the next few days to see if this trend continues. It also will investigate a row of sharp, teeth-like features dubbed “Razorback,” which may have formed when fluid flowed through cracks, depositing hard minerals. Scientists hope the new data will help put together the pieces of Meridiani’s mysterious and watery past. “Razorback may tell us more about the history of water at Endurance Crater,” said Dr. Jack Farmer, a rover science-team member from Arizona State University, Tempe.

Rover planners are also preparing for the coming Martian winter, which peaks in mid-September. Dwindling daily sunshine means the rovers will have less solar power and take longer to recharge. Periods of rest and “deep sleep” will allow the rovers to keep working through the winter at lower activity levels. Orienting the rovers’ solar panels toward the north will also elevate power supplies. “The rovers might work a little bit more every day, or a little bit more every other day. We will see how things go and remain flexible,” said Jim Erickson, project manager for the Mars Exploration Rover mission at JPL.

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington.

Images and additional information about the project are available on the Internet at http://marsrovers.jpl.nasa.gov and http://athena.cornell.edu

Original Source: NASA/JPL News Release

Zubrin on Terraforming Mars

As a former Martin-Marietta aerospace engineer, prolific author and founder of the non-profit Mars Society (1998), Robert Zubrin is regarded as the driving force behind the proposed Mars Direct mission to reduce the cost and complexity of interplanetary travel. The flight plan calls for a return journey fueled by rocket propellant harvested in situ, from the martian atmosphere itself.

As described in Zubrin’s book, The Case for Mars: The Plan to Settle the Red Planet, the Mars Direct concept eventually became a cornerstone of a frugal ‘living off the land’ approach to travel in NASA’s Design Reference Mission. The Design Reference Mission (DRM) covers Earth launch to Mars landing, Mars cruise to Mars launch, and Earth return. The mission entails sending cargo ahead, docking the crew at the space station, then meeting up with the stashed supplies once on Mars.

“For our generation and many that will follow, Mars is the New World,” writes Zubrin. The New York Times Book Review (Dennis Overbye) indicated how such an outline initially was greeted as breaking conventional wisdom about martian mission plans: “Part history, part call to arms, part technical manual, part wishful thinking, The Case for Mars … lays out an ingenious plan. ……one of the most provocative and hopeful documents I have read about the space program in 20 years.”

The Mars Society continues to grow across many countries with thousands of members interested in space advocacy, particularly how best to encourage the exploration and settlement of Mars. Notable among the Society’s members are science-fiction author, Greg Benford, and Academy Award winning director, James Cameron.

Astrobiology Magazine had the opportunity to talk with Robert Zubrin about the possibilities for terraforming Mars.

Astrobiology Magazine (AM): First off, should Mars be terraformed?

Robert Zubrin (RZ): Yes.

AM: Does Mars contain all of the elements needed to make the planet habitable, or will we have to import gases, chemicals, etc., from elsewhere? If so, then will Mars always need constant inputs to achieve habitability, or do you think that given enough inputs Mars would reach a tipping point and planetary processes would create a self-sustaining feed-back loop?

RZ: It appears that Mars does have all the elements needed for terraforming. The one outstanding question is nitrogen, whose inventory remains unknown. However theory suggests that Mars should have had an initial supply of nitrogen comparable to the Earth, and it seems likely that much of this is still there.

AM: How long will terraforming take? When you envision a terraformed Mars, what do you see?

RZ: If one considers the problem of terraforming Mars from the point of view of current technology, the scenario looks like this:

1. A century to settle Mars and create a substantial local industrial capability and population.
2. A half century producing fluorocarbon gases (like CF4) to warm the planet by ~10 C.
3. A half century for CO2 to outgas from the soil under the impetus of the fluorocarbon gases, thickening the atmosphere to 0.2 to 0.3 bar, and raising the planetary temperature a further 40 C. This will cause water to melt out of the permafrost, and rivers to flow and rain to fall. Radiation doses on the surface will also be greatly reduced. Under these conditions, with active human help, first photosynthetic microbes and then ever more complex plants could be spread over the planet, as they would be able to grow in the open. Humans on Mars in this stage would no longer need pressure suits, just oxygen masks, and very large domed cities could be built, as the domes would no longer need to contain pressure greater than the outside environment.
4. Over a period of about a thousand years, human-disseminated and harvested plants would be able to put ~150 mbar (millibars) of oxygen in the Martian atmosphere. Once this occurs, humans and other animals will be able to live on Mars in the open, and the world will become fully alive.

That’s the scenario, using current technological approaches. However technology is advancing, and 23rd Century humans will not conduct their projects using 21st Century means. They will use 23rd Century means and accomplish the job much faster than anyone today can suppose.

So if someone in the 24th Century, living on a fully terraformed Mars, should discover this interview, I believe that she will view it in much the same way as we today look at Jules Verne’s lunar mission design. We today look at Verne’s ideas and say “Amazing, a man living a hundred years before Apollo foresaw it — and not only that– launched his crew of three from Florida, and returned them in a capsule landing in the Pacific Ocean where they were picked up by a US warship, all as things actually happened. But launching people with heavy artillery – how 19th Century can you get?” So our 24th Century Martian historian studying this interview will smile and say; “Incredible. Here are people 300 years ago talking about terraforming Mars. But doing it with fluorocarbon gases and green plants –how 20th century can you get?”

AM: Who should the first human colonists to Mars be and how should they be chosen? Since Martian gravity is one-third of Earth’s, wouldn’t bone and muscle loss, along with radiation, make colonization a one-way journey? What are the implications of what, from an Earth-perspective, is exile?

RZ: Life is a one-way trip, and we are all permanently exiled from our past. In that sense Mars colonists, and all colonists, are no different from anyone else. It is just more apparent in their case, as in addition to leaving behind the time of their past, they also leave behind the place. But in so doing, they gain the opportunity to create a world where none existed before, and thus gain a form of immortality that is denied to those who are content to accept the world they are born in.

AM: If there’s life on Mars, how do we balance the Martian right to life with the human impulse to explore and extend our borders?

RZ: The basis of ethics needs to be of benefit to humanity. If there is life on Mars, it is microbial, and its interests can in no way be considered as commensurate with human interests. Those who argue otherwise strike a fashionable pose, but deny their arguments every day through their actions. If bacterial interests trump human interests, then mouthwash should be banned, chlorination of water supplies should be banned, and antibiotics should be banned. If bacterial interests trump human interests, then Albert Schweitzer and Louis Pasteur should be denounced for crimes against bacteria.

Now, in saying that ethics must be based in human benefit, we need not deny that preserving valuable environments in important. It is important to save the amazon rain forest, for example, because a world without an amazon rain forest would be a poorer inheritance for our descendants than one with one, and the degree of the impoverishment exceeds whatever value might be obtained in the short term from slash and burn agriculture. However, in the case of Mars, the calculation votes the other way, as a terraformed Mars, filled with life, cities, universities, used book stores, and yes, rain forests, would be a vastly richer gift to posterity than the current barren Red Planet. Clearly, just as anyone who proposed transforming the current Earth into a place like Mars would be considered mad, so those who, given the choice, would keep Mars dead rather than make it a place as wonderful as the Earth must have their sanity doubted.

There remains only the question of science. Surely we should avail ourselves of the opportunity to study native Martian life before we terraform the place. We surely will. Terraforming Mars will be a long term project, and should native Martian microbes exist, there will be ample opportunity to study it before terraforming takes place. There will also be opportunity to study how it adapts to warmer, wetter conditions and the presence of terrestrial microbes after terraforming takes place. Furthermore, if Mars actually is terraformed, there will be much more people on Mars to study every aspect of Mars, including both its native and immigrant life. So in fact, our knowledge of Martian biota will be increased by terraforming, not decreased.

AM: Humans sent to live on Mars will bring with them ideas on how to govern themselves, rules of conduct for living in society, economic motivations, and personality conflicts. How should the colonization of Mars be managed, and how should Mars be governed? Should the colonization of Mars be a cooperative effort among every nation, or should only those that financial contribute be in charge of the operation?

RZ: The Founding Fathers of the United States called our infant republic a “Noble Experiment,” a place where the grand liberal ideas of the Enlightenment could be given a run, and the idea of a government based on the rights on man could be tested to see if it could succeed in practice. Their Noble Experiment did succeed, and as a result became the model for a new and better form of human social organization worldwide.

Mars can, should, and will be a place for numerous new Noble Experiments. The well of human social thought has not yet run dry, nor do I believe that we have yet discovered the ultimate and most humanistic form of society possible. In the 22nd Century, as in the 18th, there will always be people who think they have discovered a better way, and need a place to go where the rules haven’t been written yet so they can give their ideas a try. For these, the Martian frontier will beckon. Many of their ideas will prove impractical, and their colonies will fail. But some of those who really have a better idea will succeed, and in doing so, light the way forward for all humanity.

So, to answer your question, I say that the colonization of Mars should not be managed at all, but be done through the joyful chaos of human freedom.

AM: Taking a leap into the future, let’s assume the technology, biology, sociology, and politics have all combined to create a unique sub-race of humanity on Mars. Generations of human beings have now been born, grown, bred and died on Mars. Who are these Martians?

RZ: In 1893, the great historian Frederick Jackson Turner wrote:

“To the frontier the American intellect owes its striking characteristics. That coarseness of strength combined with acuteness and inquisitiveness; that practical inventive turn of mind, quick to find expedients; that masterful grasp of material things, lacking in the artistic but powerful to effect great ends; that restless, nervous energy; that dominant individualism, working for good and evil, and withal that buoyancy and exuberance that comes from freedom — these are the traits of the frontier.”

I think that says it all. The pioneers of the Martian frontier will be the Americans of the future.

Original Source: Astrobiology Magazine

Earth Has Blueberries Too

Image credit: University of Utah
Even before marble-shaped pebbles nicknamed ?blueberries? were discovered on Mars by the Opportunity rover, University of Utah geologists studied similar rocks in Utah?s national parks and predicted such stones would be found on the Red Planet.

In a study published in the June 17 issue of the journal Nature, the Utah researchers suggest both the Martian and Utah rocks ? known as hematite concretions ? formed underground when minerals precipitated from flowing groundwater.

?We came up with the ?recipe? for blueberries,? says Marjorie Chan, chair and professor of geology and geophysics at the University of Utah. ?Before Opportunity landed, we thought there might be hematite concretions on Mars. That was based on our study of hematite-rich regions of southern Utah, where hematite balls are found in national parks and have long been a geological oddity that shows up in many rock shops.?

The round rocks are found in southern Utah in Zion and Capitol Reef national parks, Grand Staircase-Escalante National Monument, Snow Canyon State Park and the Moab area.

Their diameters range from one-25th of an inch to 8 inches or more. They are known to New Agers as ?moqui marbles.? Some are the size of small blueberries like those on Mars.

Chan and her colleagues believe the Utah concretions formed perhaps 25 million years ago when minerals precipitated from groundwater flowing through much older Navajo sandstone, the spectacular red rock in southern Utah.

The National Aeronautics and Space Administration?s Opportunity robot rover vehicle landed on Mars? Meridiani Planum on Jan. 25. Five days later, it detected hematite within gray pebbles dotting the landing site, and such pebbles later were spotted embedded in a rock outcrop. Cornell University scientist Steve Squyres, who heads the Opportunity science team, said Feb. 9 the small spheres look ?like blueberries in a muffin? and might be concretions.

In their Nature paper, Chan and colleagues say the Martian ?blueberries? may have formed in a similar manner to those in Utah, namely, when significant volumes of groundwater flowed through permeable rock, and chemical reactions triggered minerals to precipitate and start forming a layered, spherical ball.

?Given the similarities between the marbles in Utah and on Mars, additional scientific scrutiny of the Utah concretions and how they form will probably shed further light on the similar phenomenon on Mars,? University of Washington scientist David Catling wrote in a Nature commentary accompanying the University of Utah study.

The concretions may bear on the search for evidence of past life on Mars because bacteria on Earth can make concretions form more quickly. Chan and colleagues plan to analyze whether there is evidence of past microbial activity in Utah concretions.

Chan conducted the new study with geology graduate student Brenda Beitler and emeritus professor of geology Bill Parry, both at the University of Utah; geologist Jens Ormo of the National Institute of Aerospace Technology in Madrid, Spain; and planetary scientist Goro Komatsu of the International Research School of Planetary Sciences at G. d’Annunzio University in Pescara, Italy.

Martian blueberries and marbles of the spirits
The Utah and Mars hematite concretions have similarities and differences.

In Utah and likely on Mars, ?you have rocks that had iron in them originally,? says Beitler. ?Fluids travel through these rocks and leach out the iron. The water moves through cracks, holes, layers or pores until it reaches some place where the chemistry is different and causes the iron to precipitate out of the water as hematite.?

A major difference is that the Martian ?blueberries? probably are pure hematite ? a form of iron oxide that is gray because it has a larger crystal structure than the reddish form of iron oxide, commonly known as rust. The Utah concretions are mostly sandstone, cemented by hematite that makes up a few percent to perhaps one-third of the rock. The Martian concretions likely precipitated from acidic groundwater. Those in Utah precipitated when hydrocarbon-rich, briny fluids encountered oxygen-rich groundwater.

After the Utah concretions formed in groundwater, the surrounding Navajo sandstone slowly eroded away over millions of years, so the hard, erosion-resistant concretions accumulated on the ground, often in great numbers.

?The loose Utah concretions roll like marbles into depressions, forming ?puddles,? just like their Martian counterparts,? Catling wrote. ?The Hopi Indians have a legend that ?moqui,? or spirits of their ancestors, played games of marbles with the hematite concretions in the American southwest. Although anthropologists discourage use of the word ?moqui? to be respectful to Native Americans, New Age gem collectors sell concretions as ?moqui marbles? and claim that they are endowed with metaphysical powers.?

Hematite, water and life
In 1998, the Mars Global Surveyor orbiting Mars detected what appeared to be a large area of hematite on Meridiani Planum. The broad plain was picked as Opportunity?s landing site because scientists wanted to study the hematite, which almost always forms in water.

Scientists are interested in whether water once existed on Mars (or now exists beneath its surface) because water is necessary for life ? and the possibility of life beyond Earth is one of the great questions long pondered by humanity.

?On Earth, whenever we find water, we find life ? in surface water or underground water, hot water or cold water ? any place there is water on Earth there are microbes, there is life,? says study co-author Bill Parry. ?That?s the bottom line: hematite is linked to life.?

While other evidence from Opportunity suggests there once may have been standing water on Meridiani Planum, the Utah team?s study strongly indicates the Martian ?blueberries? probably formed in groundwater and not in surface water.

?The ?blueberries? easily could have formed in groundwater before there was standing water, if that did exist,? Chan says.

Other scientists previously offered various explanations for Meridiani Planum?s hematite, including that the mineral precipitated in large lakes or in hot springs when Mars? ancient volcanoes were active, or that hematite was left when water leached away other minerals, or that it formed when volcanic ash deposits were altered chemically.

Like Southern Utah, Like Mars
Chan says her team long suspected concretions like those in Utah might be found on Mars. The idea first was suggested by Ormo and Komatsu in a 2003 scientific abstract that got little if any attention. Ormo contacted Chan in spring 2003 and they started collaborating.

The researchers completed a much broader but yet-unpublished study last year indicating that several geological features were seen both in aerial photos of southern Utah?s hematite-rich areas and in images of Mars? hematite regions taken by orbiting spacecraft. These features include large rocky landforms shaped like knobs, pipes and buttes, and places where bleached-looking rock forms white sediment beds or ring-shapes on the surface. Some of the pipes and other features are tens of yards long or wide.

The geologists determined the processes responsible for these large-scale features in Utah involved the flow of briny groundwater saturated with natural gas that bleaches sandstone, and that such groundwater flow, the precipitation of hard hematite-cemented rock and the later erosion of surrounding softer rock also would explain the formation of the erosion-resistant pipes, buttes, knobs and concretions. They concluded a similar process could have formed concretions and larger landforms on Mars.

Chan says studying concretions from Utah and Mars ?will help us learn more about the history of Mars. When we have something to compare it to, it?s a lot easier to figure out.?

Original Source: University of Utah News Release

Spirit Reaches Columbia Hills

Image credit: NASA/JPL
NASA’s Mars rovers are delighting scientists with their extra credit assignments. Both rovers successfully completed their primary three-month missions in April.

The Spirit rover is exploring a range of martian hills that took two months to reach. It is finding curiously eroded rocks that may be new pieces to the puzzle of the region’s past. Spirit’s twin, Opportunity, is also negotiating sloped ground. It is examining exposed rock layers inside a crater informally named “Endurance.”

“Both rovers have begun exploring brand new places,” said Dr. Mark Adler, mission manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Opportunity has entered Endurance Crater. Spirit has arrived at the Columbia Hills. Both rovers are getting their second wind in bonus time, and we are very excited about the scientific potential we see at their new homes. Of course, the terrain at both locations is challenging, one up and one down. We are making certain that we proceed safely to keep these wonderful machines as healthy as we can for as long as we can.”

Spirit began climbing into Columbia Hills late last week, and right away sent pictures of tantalizing rocks. “Some of the rocks appear to be disintegrating. They have an odd kind of rotting appearance, with soft interiors and resistant rinds or hulls,” said Dr. Larry Soderblom, a rover science-team member from the U.S. Geological Survey, Flagstaff, Ariz. “The strangest things we’ve encountered are what we’re calling hooded cobras, which are evidently the resistant remnants of some of those rocky rinds. They stand above the surface like small canopies.”

Another rock, dubbed “Pot of Gold,” appears to have nodules and resistant planes in a softer matrix. Scientists have chosen it as a target for Spirit to examine with the instruments on the rover’s robotic arm. Afterwards, controllers plan to send Spirit to an outcrop farther uphill.

“Although it’s too early to even speculate as to the processes these rocks have recorded, we are tremendously excited over the new prospects,” Soderblom said.

The Columbia Hills rise approximately 90 meters (about 300 feet) above a plain Spirit crossed to reach them. Scientists anticipate a complex blend of rocks in the hills, perhaps holding evidence about a broader range of environmental conditions than has been seen in the volcanic rubble surfacing the plain. The entire area Spirit is exploring is within Gusev Crater. Orbital images suggest water may have once flowed into this Connecticut-sized basin.

“Halfway around Mars, Opportunity has driven about five meters (16 feet) into stadium-sized Endurance Crater. “As we look back up toward the rim, we can see the progress we’ve made,” said Scott McLennan, science-team member from the State University of New York, Stony Brook.

Opportunity’s first target inside the crater is a flat-lying stone about 36 centimeters by 15 centimeters (14 inches by 6 inches) dubbed “Tennessee” for its shape. Opportunity will inspect it for analysis with the spectrometers and microscopic imager on the rover’s robotic arm. It is in a layer geologists believe corresponds to sulfate-rich rocks. The rocks are similar to those, in which Opportunity previously found evidence for a body of water covering the ground long ago.

“The next step will be to move farther down from this layer to our first close-up look at a different sedimentary sequence,” McLennan said. “Color differences suggest at least three lower, older layers are exposed below Opportunity’s location.”

“The interpretation of those lower units is in a state of flux,” he said. “At first, we thought we would encounter poorly consolidated, sandy material. But as we get closer, we’re seeing more-consolidated, harder rock deeper into the crater. If we can get to the lower units, this will be the first detailed stratigraphic section ever done on another planet. We’re doing exactly what a field geologist would be doing.”

Spirit is showing what may be the first sign of age and wear. “The right front wheel is drawing about two to three times as much current as the other wheels, and that may be a symptom of degradation,” Adler said. “There may be steps we can take to improve it. We’ll be studying that possibility during the next few weeks.”

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Images and additional information about the project are available from JPL at http://marsrovers.jpl.nasa.gov and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu.

Original Source: NASA/JPL News Release