Nothing Says Springtime on Mars Like Explosions of Sand

During winter in the polar regions, a thin layer of carbon dioxide ice covers the surface and then sublimates – turns directly from ice into vapour – with the first light of spring. In the dune fields, this springtime defrosting occurs from the bottom up, trapping gas between the ice and the sand. As the ice cracks, this gas is released violently and carries sand with it, forming the dark patches and streaks observed in this CaSSIS image. ESA/Roscosmos/CaSSIS, CC BY-SA 3.0 IGO

Springtime on Earth can be a riotous affair, as plants come back to life and creatures large and small get ready to mate. Nothing like that happens on Mars, of course. But even on a cold world like Mars, springtime brings changes, though you have to look a little more closely to see them.

Lucky for us, there are spacecraft orbiting Mars with high-resolution cameras, and we can track the onset of Martian springtime through images.

Continue reading “Nothing Says Springtime on Mars Like Explosions of Sand”

It Hasn’t Rained on Mars for a Long Time, but These Sand Dunes Look Like Raindrops, and They’re Filled with Chemicals Made in Water

Credit: NASA/JPL/University of Arizona

Mars is well-known for being a dry and arid place, where dusty red sand dunes are prevalent and water exists almost entirely in the form of ice and permafrost. An upside to this, however, is the fact that these conditions are the reason why Mars’ many surface features are so well preserved. And as missions like the Mars Reconnaissance Orbiter (MRO) have shown, this allows for some pretty interesting finds.

Consider the picture recently taken by Curiosity’s High Resolution Imaging Science Experiment (HiRISE) instrument while orbiting above the Copernicus Crater on Mars. This image showed raindrop-like features that are actually signs of sand dunes that are rich in olivine. These same types of dunes exist on Earth but are very rare since this mineral weathers quickly and turns to clay in wet environments.

Continue reading “It Hasn’t Rained on Mars for a Long Time, but These Sand Dunes Look Like Raindrops, and They’re Filled with Chemicals Made in Water”

Mars 2020 Rover Gets its Helicopter Sidekick

An engineer works on attaching NASA's Mars Helicopter to the belly of the Mars 2020 rover - which has been flipped over for that purpose - on Aug. 27, 2019, at the Jet Propulsion Laboratory in Pasadena, California. Credit: NASA/JPL-Caltech.

Work on the Mars 2020 Rover is heating up as the July/August 2020 launch date approaches. Mission engineers just attached the Mars Helicopter to the belly of the rover, where it will make the journey to Mars. Both the solar-powered helicopter and the Mars Helicopter Delivery System are now attached to the rover.

NASA’s Mars Helicopter will be the first aircraft to fly on another planet. The small rotor-craft only weighs 1.8 kg (4 lbs.) and is made of lightweight materials like carbon fiber and aluminum. It’s largely a technology demonstration mission, and is important to NASA. The overall mission for the Mars 2020 rover won’t depend on the helicopter, but NASA hopes to learn a lot about how to proceed with aircraft on future missions by putting the Mars helicopter through its paces on Mars.

Continue reading “Mars 2020 Rover Gets its Helicopter Sidekick”

ExoMars Parachute Test Fails, for the Second Time

Trace Gas Orbiter, Schiaparelli and the ExoMars rover at Mars. Credit: ESA/ATG medialab

Next year, the European Space Agency (ESA) will be sending the ExoMars 2020 mission to the Red Planet. This mission consists of an ESA-built rover (Rosalind Franklin) and a Russian-led surface science platform (Kazachok) that will study the Martian environment in order to characterize its surface, atmosphere, and determine whether or not life could have once existed on the planet.

In preparation for this mission, engineers are putting the rover and lander through their paces. This includes the ongoing development of the mission’s parachute system, which is currently in troubleshooting after a failed deployment test earlier this month. These efforts are taking place at the Swedish Space Corporation testing site in Esrange, and involve the largest parachute ever used by a mission to Mars.

Continue reading “ExoMars Parachute Test Fails, for the Second Time”

Blankets of Silica Aerogel Could Make Parts of Mars Habitable

In Earth's atmosphere, CO2 lets sunlight in, but traps it in the atmosphere, warming the planet. The same thing, sort of, happens on Mars, where all the CO2 is frozen. Polar ice caps on Mars are a combination of water ice and frozen CO2. Just like its gaseous form here on Earth, frozen CO2 allows sunlight to penetrate while trapping heat. In the summer, this solid-state greenhouse effect creates pockets of warming under the ice, seen here as black dots in the ice. Image Credit: NASA

The idea of somehow terra-forming Mars to make it more habitable is a visionary, sci-fi dream. But though global terra-forming of Mars is out of reach, the idea persists. But now, a material called silica aerogel might make make the whole idea of terra-forming Mars slightly less impossible.

Continue reading “Blankets of Silica Aerogel Could Make Parts of Mars Habitable”

Pictures from Curiosity Show the Bottom of an Ancient Lake on Mars, the Perfect Place to Search for Evidence of Past Life

A view from the "Kimberley" formation on Mars taken by NASA's Curiosity rover. The strata in the foreground dip towards the base of Mount Sharp, indicating flow of water toward a basin that existed before the larger bulk of the mountain formed. This image was taken by the Mast Camera (Mastcam) on Curiosity on Sol 580 of the mission and has been “white balanced” to adjust for the lighting on Mars make the sky appear light blue. Credits: NASA/JPL-Caltech/MSSS

It’s all about the detail.

In a way, Mars looks like a dusty, dead, dry, boring planet. But science says otherwise. Science says that Mars used to be wet and warm, with an atmosphere. And science says that it was wet and warm for billions of years, easily long enough for life to appear and develop.

But we still don’t know for sure if any life did happen there.

Continue reading “Pictures from Curiosity Show the Bottom of an Ancient Lake on Mars, the Perfect Place to Search for Evidence of Past Life”

NASA is Building Robots That Can Climb Rock and Ice Cliffs

The climbing robot LEMUR rests after scaling a cliff in Death Valley, California. The robot uses special gripping technology that has helped lead to a series of new, off-roading robots that can explore other worlds.Credit: NASA/JPL-Caltech

NASA has pioneered the development of all kinds of robots and robotic systems. Beyond its0 orbiters and satellites, which have been exploring the planets and bodies of the Solar System for decades, there’s also the growing army of landers and rovers that have been exploring planetary surfaces. Aboard the ISS, they even have floating robots (like CIMON) and humanoid robot helpers – a la Robonaut and Robonaut 2.

Looking to the future, NASA hopes to build robots that can do even more. While the current generation of rovers can drive across the plains and craters of Mars, what if they could explore cliffs, polar ice caps and other hard-to-reach places? That is the purpose behind the Limbed Excursion Mechanical Utility Robot (LEMUR) that is currently being developed by engineers at NASA’s Jet Propulsion Laboratory.

Continue reading “NASA is Building Robots That Can Climb Rock and Ice Cliffs”

Is NASA Sacrificing Sending Astronauts to Mars in Order to Get to the Moon Sooner?

Artist's impression of the Lunar Orbital Platform-Gateway. Credit: NASA

On December 11th, 2017, President Trump issued Space Policy Directive-1, a change in national space policy which tasked NASA with the creation of an innovative and sustainable program of exploration that would send astronauts back to the Moon. This was followed on March 26th, 2019, with President Trump directing NASA to land the first astronauts since the Apollo era on the lunar South Pole by 2024.

Named Project Artemis, after twin sister of Apollo and goddess of the Moon in Greek mythology, this project has expedited efforts to get NASA back to the Moon. However, with so much focus dedicated to getting back to the Moon, there are concerns that other projects being neglected – like the development of the Lunar Orbital Platform-Gateway, a central part of creating a sustained human presence on the Moon and going on to Mars.

Continue reading “Is NASA Sacrificing Sending Astronauts to Mars in Order to Get to the Moon Sooner?”

Where Does Mars’ Methane Go? New Study Provides Possible Answer, with Implications in the Search for Life.

This image illustrates possible ways methane might get into Mars’ atmosphere and also be removed from it: microbes (left) under the surface that release the gas into the atmosphere, weathering of rock (right) and stored methane ice called a clathrate. Ultraviolet light can work on surface materials to produce methane as well as break it apart into other molecules (formaldehyde and methanol) to produce carbon dioxide. Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

For centuries, scientists have speculated about the existence of life on Mars. But it was only within the past 15 years that the search for life (past and present) really began to heat up. It was at this time that methane, an organic molecule that is associated with many forms of life here on Earth (i.e. a “biosignature”) was detected in Mars’ atmosphere.

Since that time, attempts to study Mars’ atmospheric methane have produced varying results. In some cases, methane has been found that was several times its normal concentrations; in others, it was absent. Seeking to answer this mystery, an interdisciplinary team from Aarhus University recently conducted a study where they investigated a possible mechanism for the removal of methane from Mars’ atmosphere.

Continue reading “Where Does Mars’ Methane Go? New Study Provides Possible Answer, with Implications in the Search for Life.”