Perseverance Finds its Dream Rock

This Martian rock, named Bunsen Peak, contains minerals that formed in the presence of water. On Earth, these water-deposited carbonate minerals are good at preserving ancient organic material. Image Credit: NASA/JPL-Caltech

If there’s a Holy Grail on Mars, it’s probably a specific type of rock: A rock so important that it holds convincing clues to Mars’ ancient habitability.

Perseverance might have just found it.

Continue reading “Perseverance Finds its Dream Rock”

Mapping Lava Tubes on the Moon and Mars from Space

Sometimes, all you need for a new discovery is some creative math. That was the case for a new paper by Edward Williams and Laurent Montési of the University of Maryland’s Department of Geology. They released a brief paper at the Lunar and Planetary Science Conference last month that describes a mathematical way to estimate the size of a lava tube using only remote sensing techniques.

Continue reading “Mapping Lava Tubes on the Moon and Mars from Space”

Curiosity has Reached an Ancient Debris Channel That Could Have Been Formed by Water

The steep path NASA’s Curiosity Mars rover took to reach Gediz Vallis channel is indicated in yellow in this visualization made with orbital data. At lower right is the point where the rover veered off to get an up-close look at a ridge formed long ago by debris flows from higher up on Mount Sharp. NASA/JPL-Caltech/UC Berkeley

Like a pilgrim seeking wisdom, NASA’s MSL Curiosity has been working its way up Mt. Sharp, the dominant central feature in Gale Crater. Now, almost 12 years into its mission, the capable rover has reached an interesting feature that could tell them more about Mars and its watery history. It’s called the Gediz Vallis channel.

Continue reading “Curiosity has Reached an Ancient Debris Channel That Could Have Been Formed by Water”

Search for Life on Mars Could Level-Up with MARSE Mission Concept

A breakdown of the Mars Astrobiology, Resource, and Science Explorers (MARSE) mission profile and its Simplified High Impact Energy Landing Device (SHIELD) system, which could revolutionize how we search for life on Mars by using four rovers at four different landing sites. (Credit: Longo (2024))

A recent study presented at the 55th Lunar and Planetary Science Conference (LPSC) discusses the Mars Astrobiology, Resource, and Science Explorers (MARSE) mission concept and its Simplified High Impact Energy Landing Device (SHIELD), which offers a broader and cheaper method regarding the search for—past or present—life on the Red Planet, specifically by using four rovers at four different landing sites across Mars’ surface instead of just one-for-one. This concept comes as NASA’s Curiosity and Perseverance rovers continue to tirelessly explore the surface of Mars at Gale Crater and Jezero Crater, respectively.

Continue reading “Search for Life on Mars Could Level-Up with MARSE Mission Concept”

The ESA’s Mars Rover Gets a New Map

European scientists have created an extremely detailed geological map of Oxia Planum, the landing site for the ESA's Rosalind Franklin rover. Not only will it help guide the rover's driving, it will help the rover sample the most promising sites. Image Credit: Fawdon et al. 2024.

Rosalind Franklin, the ESA’s Mars rover, is scheduled to launch no sooner than 2028. Its destination is Oxia Planum, a wide clay-bearing plain to the east of Chryse Planitia. Oxia Planum contains terrains that date back to Mars’ Noachian Period, when there may have been abundant surface water, a key factor in the rover’s mission.

Continue reading “The ESA’s Mars Rover Gets a New Map”

Mars’ Gale Crater was Filled with Water for Much Longer Than Anyone Thought

Layers at the base of Mt. Sharp. These visible layers in Gale Crater show the chapters of the geological history of Mars in this image from NASA's Curiosity rover. New evidence from this area shows that water persisted on Mars for longer than thought. Credit: NASA/JPL-Caltech/MSSS.

Even with all we’ve learned about Mars in recent years, it doesn’t stack up against all we still don’t know and all we hope to find out. We know that Mars was once warm and wet, a conclusion that was less certain a couple of decades ago. Now, scientists are working on uncovering the details of Mars’s ancient water.

New research shows that the Gale Crater, the landing spot for NASA’s MSL Curiosity, held water for a longer time than scientists thought.

Continue reading “Mars’ Gale Crater was Filled with Water for Much Longer Than Anyone Thought”

An Asteroid Found Sharing the Orbit of Mars

The trojan asteroids of Mars. Credit: Armagh Observatory

Astronomers discovered another asteroid sharing Mars’ orbit. These types of asteroids are called trojans, and they orbit in two clumps, one ahead of and one behind the planet. But the origins of the Mars trojans are unclear.

Can this new discovery help explain where they came from?

Continue reading “An Asteroid Found Sharing the Orbit of Mars”

The Mars Science Helicopter Could be an Airborne Geologist on Mars

A model of NASA’s Mars Science Helicopter concept. Credit: NASA.

After over 70 successful flights, a broken rotor ended the remarkable and groundbreaking Ingenuity helicopter mission on Mars. Now, NASA is considering how a larger, more capable helicopter could be an airborne geologist on the Red Planet. For the past several years scientists and engineers have been working on the concept, proposing a six-rotor hexacopter that would be about the size of the Perseverance rover.

Called the Mars Science Helicopter (MSH), it would not only serve as an aerial scout for a future rover, but more importantly, it could also carry up to 5 kg (11 lbs) of science instruments aloft in the thin Martian atmosphere and land in terrain that a rover can’t reach.

A new paper presented at the March 2024 Lunar and Planetary Science Conference outlines the geology work that such a helicopter could accomplish.

Continue reading “The Mars Science Helicopter Could be an Airborne Geologist on Mars”

One Impact on Mars Produced More than Two Billion Secondary Craters

There are plenty of craters on Mars, especially when compared to Earth. That is primarily thanks to the lack of weathering forces and strong plate tectonics that disrupt the formations of such impacts on our home planet. However, not all impact craters on Mars are directly caused by asteroid impacts. Many of them are caused by the ejecta from an asteroid impact falling back to the planet. One recent study showed how impactful this can be – it concludes that a single large impact crater on Mars created over two billion other smaller craters up to almost 2000 km away.

Continue reading “One Impact on Mars Produced More than Two Billion Secondary Craters”

Gravity From Mars has an Effect on Earth’s Oceans

Earth and Mars

We are all too familiar of the Moon’s effect on our planet. It’s relentless tug causes our tides but even Mars, which is always at least 55 million kilometres away, can have a subtle effect too. A study has revealed a 2.4 million year cycle in the geological records that show the gentle warming and cooling of our oceans. The records match the interactions between the orbits of Earth and Mars over the longest timescales. These are known as the ‘astronomical grand cycles’ but to date, not much evidence has been found. 

Continue reading “Gravity From Mars has an Effect on Earth’s Oceans”