Ever Wondered What Final Approach To Mars Might Feel Like?

Layered deposits in Uzboi Vallis on Mars, as seen by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona.

We’ve posted several ‘flyover’ videos of Mars that use data from spacecraft. But this video might be the most spectacular and realistic. Created by filmmaker Jan Fröjdman from Finland, “A Fictive Flight Above Real Mars” uses actual data from the venerable HiRISE camera on board the Mars Reconnaissance Orbiter, and takes you on a 3-D tour over steep cliffs, high buttes, amazing craters, polygons and other remarkable land forms. But Fröjdman also adds a few features reminiscent of the landing videos taken by the Apollo astronauts. Complete with crosshatches and thruster firings, this video puts you on final approach to land on (and then take off from) Mars’ surface.

(Hit ‘fullscreen’ for the best viewing)

To create the video, Fröjdman used 3-D anaglyph images from HiRISE (High Resolution Science Imaging Experiment), which contain information about the topography of Mars surface and then processed the images into panning video clips.

Fröjdman told Universe Today he worked on this video for about three months.

“The most time consuming was to manually pick the more than 33,000 reference points in the anaglyph images,” he said via email. “Now when I count how many steps there were in total in the process, I come to seven and I needed at least 6 different kinds of software.”

A new impact crater that was formed between July 2010 and May 2012, as seen by the HiRISE camera on the Mars Reconnaissance Orbiter. This image is part of “A Fictive Flight Above Real Mars” by Jan Fröjdman. Credit: NASA/JPL/University of Arizona.

Fröjdman, a landscape photographer and audiovisual expert, said he wanted to create a video that gives you the feeling “that you are flying above Mars looking down watching interesting locations on the planet,” he wrote on Vimeo. “And there are really great places on Mars! I would love to see images taken by a landscape photographer on Mars, especially from the polar regions. But I’m afraid I won’t see that kind of images during my lifetime.”

Between HiRISE and the Curiosity rover images, we have the next best thing to a human on Mars. But maybe one day…

Fröjdman has previously posted other space-related videos, including video and images of the Transit of Venus in 2012 he took from an airplane, and a lunar eclipse in 2011.

A FICTIVE FLIGHT ABOVE REAL MARS from Jan Fröjdman on Vimeo.

Trump’s NASA Authorization Act In All Its Glory

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

It’s no secret that NASA has had its share of worries with the Trump administration. In addition to being forced to wait several months to get a sense of the administration’s priorities, the space agency has also had to contend with proposed cuts to its Earth Observation and climate monitoring programs. But one thing which does not appear to be threatened is NASA’s “Journey to Mars“.

In accordance with the National Aeronautics and Space Administration Transition Authorization Act of 2017, the Trump administration has finally committed to funding NASA’s plans for deep space human exploration in the coming decades, and to the tune of $19.5 billion. Central to these plans is the proposed crewed mission to Mars, which is scheduled to take place by 2033.

The Act was introduced to Congress back in February and presented to President Trump for approval on Tuesday, March. 9th. Consistent with the Space Administration Authorization Act of 2010 and the NASA Transition Authorization Act of 2016, this bill approved of $19.5 billion in funding for NASA for fiscal year 2017, much of which was earmarked for the continuation of NASA’s “Journey to Mars”.

NASA has unveiled a new exercise device that will be used by Orion crews to stay healthy on their mission to Mars. Credit: NASA

In addition to maintaining the US government’s commitment “to extend humanity’s reach into deep space, including cis-lunar space, the Moon, the surface and moons of Mars, and beyond”, the Act also expressed the need for a continued commitment to the International Space Station and the utilization of Low Earth Orbit, and other related space ventures.

However, it is Section. 431, Subtitle C – Journey to Mars, that contains all the articles that are of particular interest to space enthusiasts – as these deal with the planned missions to Mars. Article 432, titled “Human Exploration Roadmap”, specifically states that:

“The Administrator shall develop a human exploration roadmap, including a critical decision plan, to expand human presence beyond low-Earth orbit to the surface of Mars and beyond, considering potential interim destinations such as cis-lunar space and the moons of Mars.

This roadmap, according to the Act, will include all the science and exploration goals that were outlined in the 2014 report, “Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration”, which was prepared by the National Academies of Sciences, Engineering, and Medicine’s Committee on Human Spaceflight.

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. Credit: NASA/MSFC

In addition, they cite the many plans prepared by NASA and other advocates for Mars exploration over the years. These include “The Global Exploration Roadmap” (2013), “NASA’s Journey to Mars – Pioneering Next Steps in Space Exploration” (2015), the JPL’s “Minimal Architecture for Human Journeys to Mars” (2015), and Explore Mars’ “The Humans to Mars Report 2016“.

The Space Launch System (SLS), the Orion Space Capsule, a deep space habitat, and other capabilities are cited as crucial technologies. Other technologies that are identified are “space suits, solar electric propulsion, deep space habitats, environmental control life support systems, Mars lander and ascent vehicle, entry, descent, landing, ascent, Mars surface systems, and in-situ resource utilization.”

And last, but not least, is the need to pursue robotic and crewed missions that are intended to test these technologies – aka. Exploration Mission-1 (EM-1) and Exploration Mission-2 (EM-2). The former mission (which is scheduled for launch on September 30th, 2018) will be the first launch of the SLS with the Orion Capsule on-board, and will involve an uncrewed Orion being sent on a translunar mission.

Exploration Mission-2 (which is expected to launch in August of 2021) will be consists of a crew of four astronauts conducting another flight around the Moon and returning to Earth. Other crewed explorations are expected to follow during the 2020s, which may or may not include the crewed exploration of an asteroid towed into lunar orbit (as part of the Asteroid Redirect Mission, or ARM).

Here too, the Act was consistent with the NASA Transition Authorization Act of 2016. Based on growing budget assessments and the judgement that the benefits of “the Asteroid Robotic Redirect Mission have not been demonstrated to Congress to be commensurate with the cost”, the Act recommends that NASA select a more “cost-effective” option for testing the Orion capsule.

Aside from testing the components and developing the expertise necessary for a crewed mission to Mars, these mission will also establish an all-important “launch cadence”. In other words, NASA hopes to begin conducting regular launches using the SLS between 2021 and 2023, which will be key to restarting crewed exploration of the Solar System.

Of course, the Act also emphasizes the need for continued research into the potential health risks, which are currently being performed aboard the ISS. These include the dangers of exposure to radiation, the long-term effects of time spent in microgravity environments (i.e. muscle degeneration, loss of bone density, organ degeneration, and loss of eyesight), and efforts to mitigate them.

Of course, critics of the Act cite the adjustments made to spending on Earth sciences and heliophysics. In addition, this funding is only for the coming year, and future commitments will need to be made to ensure that the “Journey to Mars” can happen in the time frame provided. But the Act passed with almost unanimous support, and seems to have confirmed what many observers claimed about the space priorities of a Trump administration.

Proponents of space exploration and a mission to Mars can therefore rest easy, as it seems that both are safe for another year. As for Earth science and research, which are intrinsic to helping us predict the effects of climate change, that’s another battle!

Further Reading: congress.gov

The Future of Space Colonization – Terraforming or Space Habitats?

Artist's concept of a terraformed Mars (left) and an O'Neill Cylinder. Credit: Ittiz/Wikimedia Commons (left)/Rick Guidice/NASA Ames Research Center (right)

The idea of terraforming Mars – aka “Earth’s Twin” – is a fascinating idea. Between melting the polar ice caps, slowly creating an atmosphere, and then engineering the environment to have foliage, rivers, and standing bodies of water, there’s enough there to inspire just about anyone! But just how long would such an endeavor take, what would it cost us, and is it really an effective use of our time and energy?

Such were the questions dealt with by two papers presented at NASA’s “Planetary Science Vision 2050 Workshop” last week (Mon. Feb. 27th – Wed. Mar. 1st). The first, titled “The Terraforming Timeline“, presents an abstract plan for turning the Red Planet into something green and habitable. The second, titled “Mars Terraforming – the Wrong Way“, rejects the idea of terraforming altogether and presents an alternative.

The former paper was produced by Aaron Berliner from the University of California, Berkeley, and Chris McKay from the Space Sciences Division at NASA Ames Research Center. In their paper, the two researchers present a timeline for the terraforming of Mars that includes a Warming Phase and an Oxygenation Phase, as well as all the necessary steps that would precede and follow.

Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

As they state in their paper’s Introduction:

“Terraforming Mars can be divided into two phases. The first phase is warming the planet from the present average surface temperature of -60° C to a value close to Earth’s average temperature to +15° C, and recreating a thick CO² atmosphere. This warming phase is relatively easy and quick, and could take ~100 years. The second phase is producing levels of O² in the atmosphere that would allow humans and other large mammals to breath normally. This oxygenation phase is relatively difficult and would take 100,000 years or more, unless one postulates a technological breakthrough.”

Before these can begin, Berliner and McKay acknowledge that certain “pre-terraforming” steps need to be taken. These include investigating Mars’ environment to determine the levels of water on the surface, the level of carbon dioxide in the atmosphere and in ice form in the polar regions, and the amount of nitrates in Martian soil. As they explain, all of these are key to the practicality of making a biosphere on Mars.

So far, the available evidence points towards all three elements existing in abundance on Mars. While most of Mars water is currently in the form of ice in the polar regions and polar caps, there is enough there to support a water cycle – complete with clouds, rain, rivers and lakes. Meanwhile, some estimates claim that there is enough CO² in ice form in the polar regions to create an atmosphere equal to the sea level pressure on Earth.

Nitrogen is also a fundamental requirement for life and necessary constituent of a breathable atmosphere, and recent data by the Curiosity Rover indicate that nitrates account for ~0.03% by mass of the soil on Mars, which is encouraging for terraforming. On top of that, scientists will need to tackle certain ethical questions related to how terraforming could impact Mars.

Artist’s concept of a possible Mars terraforming plant. Credit: National Geographic Channel

For instance, if there is currently any life on Mars (or life that could be revived), this would present an undeniable ethical dilemma for human colonists – especially if this life is related to life on Earth. As they explain:

“If Martian life is related to Earth life – possibly due to meteorite exchange – then the situation is familiar, and issues of what other types of Earth life to introduce and when must be addressed. However, if Martian life in unrelated to Earth life and clearly represents a second genesis of life, then significant technical and ethical issues are raised.”

To break Phase One – “The Warming Phase” – down succinctly, the authors address an issue familiar to us today. Essentially, we are altering our own climate here on Earth by introducing CO² and “super greenhouse gases” to the atmosphere, which is increasing Earth’s average temperature at a rate of many degrees centigrade per century. And whereas this has been unintentional on Earth, on Mars it could be re-purposed to deliberately warm the environment.

“The timescale for warming Mars after a focused effort of super greenhouse gas production is short, only 100 years or so,” they claim. “If all the solar incident on Mars were to be captured with 100% efficiency, then Mars would warm to Earth-like temperatures in about 10 years. However, the efficiency of the greenhouse effect is plausibly about 10%, thus the time it would take to warm Mars would be ~100 years.”

Mars’ south polar ice cap, as seen in April of 2000 by the Mars Odyssey mission. Credit: NASA/JPL/MSSS

Once this thick atmosphere has been created, the next step involves converting it into something breathable for humans – where O² levels would be the equivalent of about 13% of sea level air pressure here on Earth and CO² levels would be less than 1%. This phase, known as the “Oxygenation Phase”, would take considerably longer. Once again, they turn towards a terrestrial example to show how such a process could work.

Here on Earth, they claim, the high levels of oxygen gas (O²) and low levels of CO² are due to photosynthesis. These reactions rely on the sun’s energy to convert water and carbon dioxide into biomass – which is represented by the equation H²O + CO² = CH²O + O². As they illustrate, this process would take between 100,000 and 170,000 years:

“If all the sunlight incident on Mars was harnessed with 100% efficiency to perform this chemical transformation it would take only 17 years to produce high levels of O². However, the likely efficiency of any process that can transform H²O and CO² into biomass and O² is much less than 100%. The only example we have of a process that can globally alter the CO² and O² of an entire plant is global biology. On Earth the efficiency of the global biosphere in using sunlight to produced biomass and O2 is 0.01%. Thus the timescale for producing an O² rich atmosphere on Mars is 10,000 x 17 years, or ~ 170,000 years.”

However, they make allowances for synthetic biology and other biotechnologies, which they claim could increase the efficiency and reduce the timescale to a solid 100,000 years. In addition, if human beings could utilize natural photosynthesis (which has a comparatively high efficiency of 5%) over the entire planet – i.e. planting foliage all over Mars – then the timescale could be reduced to even a few centuries.

Finally, they outline the steps that need to be taken to get the ball rolling. These steps include adapting current and future robotic missions to assess Martian resources, mathematical and computer models that could examine the processes involved, an initiative to create synthetic organisms for Mars, a means to test terraforming techniques in a limited environment, and a planetary agreement that would establish restrictions and protections.

Quoting Kim Stanley Robinson, author of the Red Mars Trilogy, (the seminal work of science fiction about terraforming Mars) they issue a call to action. Addressing how long the process of terraforming Mars will take, they assert that we “might as well start now”.

To this, Valeriy Yakovlev – an astrophysicist and hydrogeologist from Laboratory of Water Quality in Kharkov, Ukraine – offers a dissenting view. In his paper, “Mars Terraforming – the Wrong Way“, he makes the case for the creation of space biospheres in Low Earth Orbit that would rely on artificial gravity (like an O’Neill Cylinder) to allow humans to grow accustomed to life in space.

Looking to one of the biggest challenges of space colonization, Yakovlev points to how life on bodies like the Moon or Mars could be dangerous for human settlers. In addition to being vulnerable to solar and cosmic radiation, colonists would have to deal with substantially lower gravity. In the case of the Moon, this would be roughly 0.165 times that which humans experience here on Earth (aka. 1 g), whereas on Mars it would be roughly 0.376 times.

Interior view of an O’Neill Cylinder. There are alternating strips of livable surface and “windows” to let light in. Credit: Rick Guidice/NASA Ames Research Center

The long-term effects of this are not known, but it is clear it would include muscle degeneration and bone loss. Looking farther, it is entirely unclear what the effects would be for those children who were born in either environment. Addressing the ways in which these could be mitigated (which include medicine and centrifuges), Yakovlev points out how they would most likely be ineffective:

“The hope for the medicine development will not cancel the physical degradation of the muscles, bones and the whole organism. The rehabilitation in centrifuges is less expedient solution compared with the ship-biosphere where it is possible to provide a substantially constant imitation of the normal gravity and the protection complex from any harmful influences of the space environment. If the path of space exploration is to create a colony on Mars and furthermore the subsequent attempts to terraform the planet, it will lead to the unjustified loss of time and money and increase the known risks of human civilization.”

In addition, he points to the challenges of creating the ideal environment for individuals living in space. Beyond simply creating better vehicles and developing the means to procure the necessary resources, there is also the need to create the ideal space environment for families. Essentially, this requires the development of housing that is optimal in terms of size, stability, and comfort.

In light of this, Yakolev presents what he considers to be the most likely prospects for humanity’s exit to space between now and 2030. This will include the creation of the first space biospheres with artificial gravity, which will lead to key developments in terms of materials technology, life support-systems, and the robotic systems and infrastructure needed to install and service habitats in Low Earth Orbit (LEO).

Artist’s depiction of a pair of O’Neill cylinders. Credit: Rick Guidice/NASA Ames Research Center

These habitats could be serviced thanks to the creation of robotic spacecraft that could harvest resources from nearby bodies – such as the Moon and Near-Earth Objects (NEOs). This concept would not only remove the need for  planetary protections – i.e. worries about contaminating Mars’ biosphere (assuming the presence of bacterial life), it would also allow human beings to become accustomed to space more gradually.

As Yakovlev told Universe Today via email, the advantages to space habitats can be broken down into four points:

“1. This is a universal way of mastering the infinite spaces of the Cosmos, both in the Solar System and outside it. We do not need surfaces for installing houses, but resources that robots will deliver from planets and satellites. 2. The possibility of creating a habitat as close as possible to the earth’s cradle allows one to escape from the inevitable physical degradation under a different gravity. It is easier to create a protective magnetic field.

“3. The transfer between worlds and sources of resources will not be a dangerous expedition, but a normal life. Is it good for sailors without their families? 4. The probability of death or degradation of mankind as a result of the global catastrophe is significantly reduced, as the colonization of the planets includes reconnaissance, delivery of goods, shuttle transport of people – and this is much longer than the construction of the biosphere in the Moon’s orbit. Dr. Stephen William Hawking is right, a person does not have much time.”

And with space habitats in place, some very crucial research could begin, including medical and biologic research which would involve the first children born in space. It would also facilitate the development of reliable space shuttles and resource extraction technologies, which will come in handy for the settlement of other bodies – like the Moon, Mars, and even exoplanets.

Ultimately, Yakolev thinks that space biospheres could also be accomplished within a reasonable timeframe – i.e. between 2030 and 2050 – which is simply not possible with terraforming. Citing the growing presence and power of the commercial space sector, Yakolev also believed a lot of the infrastructure that is necessary is already in place (or under development).

“After we overcome the inertia of thinking +20 years, the experimental biosphere (like the settlement in Antarctica with watches), in 50 years the first generation of children born in the Cosmos will grow and the Earth will decrease, because it will enter the legends as a whole… As a result, terraforming will be canceled. And the subsequent conference will open the way for real exploration of the Cosmos. I’m proud to be on the same planet as Elon Reeve Musk. His missiles will be useful to lift designs for the first biosphere from the lunar factories. This is a close and direct way to conquer the Cosmos.”

With NASA scientists and entrepreneurs like Elon Musk and Bas Landorp looking to colonize Mars in the near future, and other commercial aerospace companies developing LEO, the size and shape of humanity’s future in space is difficult to predict. Perhaps we will jointly decide on a path that takes us to the Moon, Mars, and beyond. Perhaps we will see our best efforts directed into near-Earth space.

Or perhaps we will see ourselves going off in multiple directions at once. Whereas some groups will advocate creating space habitats in LEO (and later, elsewhere in the Solar System) that rely on artificial gravity and robotic spaceships mining asteroids for materials, others will focus on establishing outposts on planetary bodies, with the goal of turning them into “new Earths”.

Between them, we can expect that humans will begin developing a degree of “space expertise” in this century, which will certainly come in handy when we start pushing the boundaries of exploration and colonization even further!

Further Reading: USRA, USRA (2)

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA's Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)
Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the inaugural SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would result in postponing the inaugural liftoff into 2019 – as I reported here.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

In the event that NASA decides to add a two person crew to the EM-1 mission, Bill Hill, NASA’s deputy associate administrator for Exploration Systems Development in Washington, D.C., stated that the agency would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on the EM-2 mission.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

The ICPS sits on top of the SLS core stage.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama

Reading The Signs Of A Martian Mega-Flood

Perspective view looking from an unnamed crater (bottom right) towards the Worcester Crater. The region sits at the mouth of Kasei Valles, where fierce floodwaters emptied into Chryse Planitia. Credit: ESA/DLR/FU Berlin

The Mars Express probe was the European Space Agency’s first attempt to explore Mars. Since its arrival around the Red Planet in 2003, the probe has helped determine the composition of the atmosphere, map the mineral composition of the surface, studied the interaction between the atmosphere and solar wind, and taken many high-resolution images of the surface.

And even after 14 years of continuous operation, it is still revealing interesting things about Mars and its past. The latest find comes from the Kasei Valles region, where the probe captured new images of the giant system of canyons. As one of the largest outflow channel networks on the Red Planet, this region is evidence of a massive flood having taken place billions of years ago.

This region formed between 3.6 and 3.4 billion years ago, when a combination of volcanic and tectonic activity in the Tharsis region triggered groundwater releases from Echus Chasma. This chasm, located in the Lunae Planum plateau, contains clay deposits that indicate the presence of liquid water at one time. This water then flooded through Kasei Valles, emptying into the Chryse Planitia region and leaving behind signs of water erosion.

Colour-coded topographic view of the mouth of Kasei Valles, showing the Worcester Crater. Credit: ESA/DLR/FU Berlin.

The Mars Express probe has captured images of this region before. But these latest images, which were snapped n May 25th, 2016, captured the topography of an area that lies at the mouth of the system. Of particular interest was the 25-km-wide Worcester Crater, the remains of an impact that has managed to remain intact despite the erosive force of the mega-flood.

The appearance of this crater and the features around it – which resemble an island – tell us much about the region and its history. For instance, the island has a stepped topography, which is likely the result of its interaction with the flood waters. After the impact threw up material around the crater, moving water pushed it downstream, creating a rigid wall facing towards Kasei Valles and a sloping wall trailing away from it.

The topography of the island is also suggestive of variations in water levels, or possibly different flood episodes. As the water rose and fell, or multiple streams formed over time, the downstream portion of the “island” was affected. There is also the larger crater that appears to the upper right of the image, which sits in a plateau 1 km (0.6 mi) higher than the plains below.

There is a small depression in its center, which would imply that a weaker layer – possibly made of ice – existed under the plateau during the time of impact. This is consistent with the patterns noted in Worcester’s debris blanket, which also suggest the area was rich in water or water-ice during the flooding. The presence of small branch-like channels (aka. dendritic channels) around the plateau are another indication that water levels here varied over time.

Context image shows a region of Mars where Kasei Valles empties into the vast Chryse Planitia. Credit: NASA/MGS/MOLA Science Team

Many smaller craters are also visible in this photo across the mouth of the Kasei Valles region, which also appear to have “tails” of ejected material. This is also true of the crater that sits adjacent to Worchester, who’s debris blanket appears to be largely intact. This would suggest that these craters were formed after the flooding, and any tails that formed were the result of wind.

From all this, it can be concluded that roughly three and a half billion years ago, the mouth of the Kasei Valles region still had water on its surface – possibly still in liquid form but most likely in the form of ice. Volcanic activity – which Mars was still experiencing at the time – then triggered the release of flood waters, which created debris and erosion features throughout the region.

As a result, this latest image manages to capture a preserved record of the geological activity in this region, one which goes back billions of years. And in addition to proving that Mars still had water on its surface, it also confirms that Mars was still experiencing volcanism. It is because of ongoing discoveries like these that the Mars Express mission has been extended several times, the most recent of which extended the mission to end of 2018.

Further Reading: ESA

Mineral Points To A Water Rich Mars

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

For years now, scientists have understood that Mars was once a warmer, wetter place. Between terrain features that indicate the presence of rivers and lakes to mineral deposits that appeared to have dissolved in water, there is no shortage of evidence attesting to this “watery” past. However, just how warm and wet the climate was billions of years ago (and since) has been a subject of much debate.

According to a new study from an international team of scientists from the University of Nevada, Las Vegas (UNLV), it seems that Mars may have been a lot wetter than previous estimates gave it credit for. With the help of Berkeley Laboratory, they conducted simulations on a mineral that has been found in Martian meteorites. From this, they determined that Mars may have had a lot more water on its surface than previously thought.

When it comes to studying the Solar System, meteorites are sometimes the only physical evidence available to researchers. This includes Mars, where meteorites recovered from Earth’s surface have helped to shed light on the planet’s geological past and what kinds of processes have shaped its crust. For geoscientists, they are the best means of determining what Mars looked like eons ago.

An artist’s impression of what Mars might have looked like with water, when any potential Martian microbes would have evolved. Credit: ESO/M. Kornmesser

Unfortunately for geoscientists, these meteorites have underdone changes as a result of the cataclysmic force that expelled them from Mars. As Dr. Christopher Adcock, an Assistant Research Professor at with the Dept. of Geoscience at UNLV and the lead author of the study, told Universe Today via email:

“Martian meteorites are pieces of Mars, basically they are our only samples of Mars on Earth until there is a sample return mission.  Many of the discoveries we have made about Mars came from studying martian meteorites and wouldn’t be possible without them.  Unfortunately, these meteorites have all experienced shock from being ejected of the Martian surface during impacts.”

Of the over 100 Martian meteorites that have been retrieved here on Earth, and range in age from between 4 billion years to 165 million years. They are also believed to have come from only a few regions on Mars, and were likely ejecta created from impact events. And in the course of examining them, scientists have noticed the presence of a calcium phosphate mineral known as merrillite.

As a member of the whitlockite group that is commonly found in Lunar and Martian meteorities, this mineral is known for being anhydrous (i.e. containing no water). As such, researchers have drawn the conclusion that the presence of this minerals indicates that Mars had an arid environment when these rocks were ejected. This is certainly consistent with what Mars looks like today – cold, icy and dry as a bone.

The Mojave Crater on Mars, where some of the Martians meteorites retrieved on Earth are believed to have originated from. Credit: NASA/JPL-Caltech/University of Arizona

For the sake of their study – titled “Shock-Transformation of Whitlockite to Merrillite and the Implications for Meteoritic Phosphate“, which appeared recently in the journal Nature Communications – the international research team considered another possibility. Using a synthetic version of whitlockite, they began conducting shock compression experiments on it designed to simulate the conditions under which meteorites are ejected from Mars.

This consisted of placing the synthetic whitlockite sample inside a projectile, then using a helium gas gun to accelerate it up to speeds of 700 meters per second (2520 km/h or 1500 mph) into a metal plate – thus subjecting it to intense heat and pressure. The sample was then examined using the Berkeley Lab’s Advanced Light Source (ALS) and the Argonne National Laboratory’s Advanced Photon Source (APS) instruments.

“When we analyzed what came out of the capsule, we found a significant amount of the whitlockite had dehydrated to the mineral merrillite,” said Adcock. “Merrillite is found in many meteorites (including Martian).  The means it is possible the rocks meteorites are made from originally started life with whitlockite in them in an environment with more water than previously thought.  If true, it would indicate more water in the Martian past and the early Solar System.”

Not only does this find raise the “water budget” for Mars in the past, it also raises new questions about Mars’ habitability. In addition to being soluble in water, whitlockite also contains phosphorous – a crucial element for life here on Earth. Combined with recent evidence that shows that liquid water still exists on Mars’ surface – albeit intermittently – this raises new questions about whether or not Mars had life in the past (or even today).

But as Adcock explained, further experiments and evidence will be needed to determine if these results are indicative of a more watery past:

“As far as life goes, our results are very favorable for the possibility – but we need more data. Really we need a sample return mission or we need to go there in person – a human mission.  Science is closing in on the answers to a number of big questions about our solar system, life elsewhere, and Mars.  But it is difficult work when it all has to be done from far away.”

And sample returns are certainly on the horizon. NASA hopes to conduct the first step in this process with their Mars 2020 Rover, which will collect samples and leave them in a cache for future retrieval. The ESA’s ExoMars rover is expected to make the journey to Mars in the same year, and will also obtain samples as part of a sample-return mission to Earth.

These missions are scheduled to launch the summer of 2020, when the planets will be at their closest again. And with crewed missions to the surface planned for the following decade, we might see the first non-meteorite samples of Mars brought back to Earth for analysis.

Further Reading: Nature Communications, Berkeley Lab

Curiosity Watches a Dust Devil Go Past

Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Curiosity rover raises robotic arm high while scouting the Bagnold Dune Field and observing dust devils inside Gale Crater on Mars on Sol 1625, Mar. 2, 2017, in this navcam camera mosaic stitched from raw images and colorized. Note: Wheel tracks at right, distant crater rim in background. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Tis a season of incredible wind driven activity on Mars like few before witnessed by our human emissaries ! Its summer on the Red Planet and the talented scientists directing NASA’s Curiosity rover have targeted the robots cameras so proficiently that they have efficiently spotted a multitude of ‘Dust Devils’ racing across across the dunes fields of Gale Crater– see below.

The ‘Dust Devils’ are actually mini tornadoes like those seen on Earth.

But in this case they are dancing delightfully in the Bagnold Dune fields on Mars, as Curiosity surpassed 1625 Sols, or Martian days of exciting exploration and spectacular science and discovery.

This sequence of images shows a dust-carrying whirlwind, called a dust devil, on lower Mount Sharp inside Gale Crater, as viewed by NASA’s Curiosity Mars Rover during the summer afternoon of Sol 1613 (Feb. 18, 2017). The navcam camera images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. Contrast has been modified to make frame-to-frame changes easier to see. A black frame provides a marker between repeats of the sequence. Credit: NASA/JPL-Caltech/TAMU

Furthermore they whip up the dust more easily in the lower gravity field on Mars compared to Earth. Mars gravity is about one third of Earth’s.

Right now it’s summer inside the rovers southern hemisphere landing site at Gale Crater. And summer is the windiest time of the Martian year.

“Dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere,” as described by researchers.

So now is the best time to observe and photograph the dusty whirlwinds in action as they flitter amazingly across the craters surface carrying dust in their wake.

This sequence of images shows a dust-carrying whirlwind, called a dust devil, scooting across ground inside Gale Crater, as observed on the local summer afternoon of NASA’s Curiosity Mars Rover’s 1,597th Martian day, or sol (Feb. 1, 2017). Set within a broader southward view from the rover’s Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated in this animation. Credits: NASA/JPL-Caltech/TAMU

Therefore researchers are advantageously able to utilize Curiosity in a new research campaign that “focuses on modern wind activity in Gale” on the lower slope of Mount Sharp — a layered mountain inside the crater.

NASA’s Curiosity rover explores sand dunes inside Gale Crater with Mount Sharp in view on Mars on Sol 1611, Feb. 16, 2017, in this navcam camera mosaic stitched from raw images and colorized. Credit: NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Indeed, this past month Curiosity began her second sand dune campaign focusing on investigating active dunes on the mountain’s northwestern flank that are ribbon-shaped linear dunes.

“In these linear dunes, the sand is transported along the ribbon pathway, while the ribbon can oscillate back and forth, side to side,” said Nathan Bridges, a Curiosity science team member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, in a statement.

The left side of this 360-degree panorama from NASA’s Curiosity Mars rover shows the long rows of ripples on a linear shaped dune in the Bagnold Dune Field on the northwestern flank of Mount Sharp. The rover’s Navigation Camera recorded the component images of this mosaic on Feb. 5, 2017. Credits: NASA/JPL-Caltech

These new dunes are different from those investigated during the first dune campaign back in late 2015 and early 2016 that examined crescent-shaped dunes, including Namib Dune in our mosaic below.

The initial dune campaign actually involved the first ever up-close study of active sand dunes anywhere other than Earth, as I reported at the time.

Curiosity explores Red Planet paradise at Namib Dune during Christmas 2015 – backdropped by Mount Sharp. Curiosity took first ever self-portrait with Mastcam color camera after arriving at the lee face of Namib Dune. This photo mosaic shows a portion of the full self portrait and is stitched from Mastcam color camera raw images taken on Sol 1197, Dec. 19, 2015. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

By snapping a series of targeted images pointed in just the right direction using the rovers mast mounted navigation cameras, or navcams, the researchers have composed a series of ‘Dust Devil’ movies – gathered together here for your enjoyment.

“We’re keeping Curiosity busy in an area with lots of sand at a season when there’s plenty of wind blowing it around,” said Curiosity Project Scientist Ashwin Vasavada of NASA’s Jet Propulsion Laboratory, Pasadena, California.

“One aspect we want to learn more about is the wind’s effect on sorting sand grains with different composition. That helps us interpret modern dunes as well as ancient sandstones.”

The movies amply demonstrate that Mars is indeed an active world and winds are by far the dominant force shaping and eroding the Red Planets alien terrain – despite the thin atmosphere less than 1 percent of Earth’s.

Indeed scientists believe that wind erosion over billions of years of time is what caused the formation of Mount Sharp at the center of Gale Crater by removing vast amounts of dust and sedimentary material — about 15,000 cubic miles (64,000 cubic kilometers) — as Mars evolved from a wet world to the dry, desiccated planet we see today.

Gale crater was originally created over 3.6 billion years ago when a gigantic asteroid or comet smashed into Mars. The devastating impact “excavated a basin nearly 100 miles (160 kilometers) wide. Sediments including rocks, sand and silt later filled the basin, some delivered by rivers that flowed in from higher ground surrounding Gale.”

Winds gradually carved away so much sediment and dirt that we are left with the magnificent mountain in view today.

The whirlwinds called “dust devils” have been recorded moving across terrain in the crater, in sequences of afternoon images taken several seconds apart.

The contrast has been enhanced to better show the dust devils in action.

Watch this short NASA video showing Martian Dust Devils seen by Curiosity:

Video Caption: Dust Devils On Mars Seen by NASA’s Curiosity Rover. On recent summer afternoons on Mars, navigation cameras aboard NASA’s Curiosity Mars rover observed several whirlwinds carrying Martian dust across Gale Crater. Dust devils result from sunshine warming the ground, prompting convective rising of air. All the dust devils were seen in a southward direction from the rover. Timing is accelerated and contrast has been modified to make frame-to-frame changes easier to see. Credit: NASA/JPL

The team is also using the probes downward-looking Mars Descent Imager (MARDI) camera for a straight down high resolution up-close view looking beneath the rover. The purpose is to check for daily movement of the dunes she is sitting on to see “how far the wind moves grains of sand in a single day’s time.”

This pair of images shows effects of one Martian day of wind blowing sand underneath NASA’s Curiosity Mars rover on a non-driving day for the rover. Each image was taken just after sundown by the rover’s downward-looking Mars Descent Imager (MARDI). The area of ground shown in the images spans about 3 feet (about 1 meter) left-to-right. The images were taken on Jan. 23, 2017 (Sol 1587) and Jan. 24, 2017 (Sol 1588). The day-apart images by MARDI were taken as a part of investigation of wind’s effects during Martian summer, the windiest time of year in Gale Crater. Credit: NASA/JPL-Caltech/MSSS

These dune investigations have to be done now, because the six wheeled robot will soon ascend Mount Sharp, the humongous layered mountain at the center of Gale Crater.

Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.

“Before Curiosity heads farther up Mount Sharp, the mission will assess movement of sand particles at the linear dunes, examine ripple shapes on the surface of the dunes, and determine the composition mixture of the dune material,” researchers said.

NASA’s Curiosity rover extends robotic arm to investigate sand dunes inside Gale Crater on Mars on Sol 1619, Feb. 24, 2017. Credit: NASA/JPL/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Curiosity is also using the science instruments on the robotic arm turret to gather detailed research measurements with the cameras and spectrometers.

As of today, Sol 1625, March 2, 2017, Curiosity has driven over 9.70 miles (15.61 kilometers) since its August 2012 landing inside Gale Crater, and taken over 391,000 amazing images.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This map shows the two locations of a research campaign by NASA’s Curiosity Mars rover mission to investigate active sand dunes on Mars. In late 2015, Curiosity reached crescent-shaped dunes, called barchans. In February 2017, the rover reached a location where the dunes are linear in shape. Credits: NASA/JPL-Caltech/Univ. of Arizona
This map shows the route driven by NASA’s Mars rover Curiosity through Sol 1612 (February 17, 2017) of the rover’s mission on Mars. The base image from the map is from the High Resolution Imaging Science Experiment Camera (HiRISE) in NASA’s Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/Univ. of Arizona

NASA Proposes a Magnetic Shield to Protect Mars’ Atmosphere

Artist's conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons

This week, NASA’s Planetary Science Division (PSD) hosted a community workshop at their headquarters in Washington, DC. Known as the “Planetary Science Vision 2050 Workshop“, this event ran from February 27th to March 1st, and saw scientists and researchers from all over the world descend on the capitol to attend panel discussions, presentations, and talks about the future of space exploration.

One of the more intriguing presentations took place on Wednesday, March 1st, where the exploration of Mars by human astronauts was discussed. In the course of the talk, which was titled “A Future Mars Environment for Science and Exploration“, Director Jim Green discussed how deploying a magnetic shield could enhance Mars’ atmosphere and facilitate crewed missions there in the future.

The current scientific consensus is that, like Earth, Mars once had a magnetic field that protected its atmosphere. Roughly 4.2 billion years ago, this planet’s magnetic field suddenly disappeared, which caused Mars’ atmosphere to slowly be lost to space. Over the course of the next 500 million years, Mars went from being a warmer, wetter environment to the cold, uninhabitable place we know today.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere. Credits: NASA/GSFC

This theory has been confirmed in recent years by orbiters like the ESA’s Mars Express and NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), which have been studying the Martian atmosphere since 2004 and 2014, respectively. In addition to determining that solar wind was responsible for depleting Mars’ atmosphere, these probes have also been measuring the rate at which it is still being lost today.

Without this atmosphere, Mars will continue to be a cold, dry place where life cannot flourish. In addition to that, future crewed mission – which NASA hopes to mount by the 2030s – will also have to deal with some severe hazards. Foremost among these will be exposure to radiation and the danger of asphyxiation, which will pose an even greater danger to colonists (should any attempts at colonization be made).

In answer to this challenge, Dr. Jim Green – the Director of NASA’s Planetary Science Division – and a panel of researchers presented an ambitious idea. In essence, they suggested that by positioning a magnetic dipole shield at the Mars L1 Lagrange Point, an artificial magnetosphere could be formed that would encompass the entire planet, thus shielding it from solar wind and radiation.

Naturally, Green and his colleagues acknowledged that the idea might sounds a bit “fanciful”. However, they were quick to emphasize how new research into miniature magnetospheres (for the sake of protecting crews and spacecraft) supports this concept:

“This new research is coming about due to the application of full plasma physics codes and laboratory experiments. In the future it is quite possible that an inflatable structure(s) can generate a magnetic dipole field at a level of perhaps 1 or 2 Tesla (or 10,000 to 20,000 Gauss) as an active shield against the solar wind.”

The proposed method for creating an artificial magnetic dipole at Mars’ L1 Lagrange Point. Credit: NASA/J.Green

In addition, the positioning of this magnetic shield would ensure that the two regions where most of Mars’ atmosphere is lost would be shielded. In the course of the presentation, Green and the panel indicated that these the major escape channels are located, “over the northern polar cap involving higher energy ionospheric material, and 2) in the equatorial zone involving a seasonal low energy component with as much as 0.1 kg/s escape of oxygen ions.”

To test this idea, the research team – which included scientists from Ames Research Center, the Goddard Space Flight Center, the University of Colorado, Princeton University, and the Rutherford Appleton Laboratory – conducted a series of simulations using their proposed artificial magnetosphere. These were run at the Coordinated Community Modeling Center (CCMC), which specializes in space weather research, to see what the net effect would be.

What they found was that a dipole field positioned at Mars L1 Lagrange Point would be able to counteract solar wind, such that Mars’ atmosphere would achieve a new balance. At present, atmospheric loss on Mars is balanced to some degree by volcanic outpassing from Mars interior and crust. This contributes to a surface atmosphere that is about 6 mbar in air pressure (less than 1% that at sea level on Earth).

As a result, Mars atmosphere would naturally thicken over time, which lead to many new possibilities for human exploration and colonization. According to Green and his colleagues, these would include an average increase of about 4 °C (~7 °F), which would be enough to melt the carbon dioxide ice in the northern polar ice cap. This would trigger a greenhouse effect, warming the atmosphere further and causing the water ice in the polar caps to melt.

At one time, Mars had a magnetic field similar to Earth, which prevented its atmosphere from being stripped away. Credit: NASA

By their calculations, Green and his colleagues estimated that this could lead to 1/7th of Mars’ oceans – the ones that covered it billions of years ago – to be restored. If this is beginning to sound a bit like a lecture on how to terraform Mars, it is probably because these same ideas have been raised by people who advocating that very thing. But in the meantime, these changes would facilitate human exploration between now and mid-century.

“A greatly enhanced Martian atmosphere, in both pressure and temperature, that would be enough to allow significant surface liquid water would also have a number of benefits for science and human exploration in the 2040s and beyond,” said Green. “Much like Earth, an enhanced atmosphere would: allow larger landed mass of equipment to the surface, shield against most cosmic and solar particle radiation, extend the ability for oxygen extraction, and provide “open air” greenhouses to exist for plant production, just to name a few.”

These conditions, said Green and his colleagues, would also allow for human explorers to study the planet in much greater detail. It would also help them to determine the habitability of the planet, since many of the signs that pointed towards it being habitable in the past (i.e. liquid water) would slowly seep back into the landscape. And if this could be achieved within the space of few decades, it would certainly help pave the way for colonization.

In the meantime, Green and his colleagues plan to review the results of these simulations so they can produce a more accurate assessment of how long these projected changes would take. It also might not hurt to conduct some cost-assessments of this magnetic shield. While it might seem like something out of science fiction, it doesn’t hurt to crunch the numbers!

Stay tuned for more stories from the Planetary Science Vision 2050 Workshop!

Further Reading: USRA

Some Active Process is Cracking Open These Faults on Mars. But What is it?

A 2008 image showing a portion of the North Polar layered deposits with lines of very small pits. Credit: NASA/JPL/University of Arizona

Mars has many characteristics that put one in mind of Earth. Consider its polar ice caps, which are quite similar to the ones in the Arctic and Antarctic circle. But upon closer examination, Mars’ icy polar regions have numerous features that hint at some unusual processes. Consider the northern polar ice cap, which consists predominantly of frozen water ice, but also a seasonal veneer of frozen carbon dioxide (“dry ice”).

Here, ice is arranged in multicolored layers that are due to seasonal change and weather patterns. And as images taken by the Mars Global Surveyor and the Mars Reconnaissance Orbiter (MRO) have shown, the region is also covered in lines of small pits that measure about 1 meter (3.28 feet) in diameter. While these features have been known to scientists for some time, the process behind them remains something of a mystery.

Layered features around found both in the northern and southern polar regions of Mars, and are the result of seasonal melting and the deposition of ice and dust (from Martian dust storms). Both polar caps also show grooves which appear to be influenced by the amount of dust deposited. The more dust there is, the darker the surface of the grooved feature, which affects the level of seasonal melting that takes place.

HiRISE image showing the layered appearance of Mars’ northern polar region. Credit: NASA/JPL/University of Arizona

These layered deposits measure around 3-kilometer thick and about 1000 kilometers across. And in many locations, erosion and melting has created scarps and troughs that expose the layering (shown above). However, as NASA’s Mars Global Surveyor revealed through a series of high-resolution images, the northern polar cap also has plenty of pits, cracks, small bumps and knobs that give it a strange, textured look.

These featured have also been imaged in detail by the High Resolution Imaging Science Experiment (HiRISE) instrument aboard the MRO. In 2008, it snapped the image shown at top, which illustrates how the layered features in the northern polar region also have lines of small pits cutting across them. Such small pits should be quickly filled in by seasonal ice and dust, so their existence has been something of a mystery.

What this process could be has been the preoccupation of researchers like Doctor Chris Okubo and Professor Alfred McEwen. In addition to being a planetary geologist from the Lunar and Planetary Laboratory (LPL) at Arizona State University, Prof. McEwen is the Principal Investigator of the High Resolution Imaging Science Experiment (HiRISE).

Dr. Chris Okubo, meanwhile, is a planetary engineer with the LPL who has spent some time examining Mars’ northern polar region, seeking to determine what geological process could account for them. Over time, he also noted that the pits appeared to be enlarging. As he explained to Universe Today via email:

“I monitored some of these pits during northern summer of Mars year 31 (2011-2012). The pits appeared to enlarge over time, starting from depressions roughly centered on the pits observed in in  2008. My interpretation is that these pits are depressions within the residual cap that formed through collapse above a fault or fracture. The pits are buried by seasonal ice in the winter, which then sublimates in the spring/summer leading to an apparent widening and exposure of the pits until they are reburied by seasonal ice in the subsequent winter.”

HiRISE being prepared before it is shipped for attachment to the spacecraft. Credit: NASA/JPL

Since the MRO reached Mars in 2006, the LPL has been responsible for processing and interpreting images sent back by its HiRISE instrument. As for these pits, the theory that they are the result of faults pulling apart the icy layers is the most currently-favored one. Naturally, it will have to be tested as more data comes, in showing how seasonal changes play out in Mars’ northern polar region.

“I  plan to re-monitor the same pits I looked at in MY31 during this upcoming northern summer to see if this pattern has changed substantially,” said Okubo. “Re-imaging these after several Mars years may also reveal changes to the size/distribution of the pits within the residual cap – if such changes are observed, then that would suggest that the underlying fractures are active.”

One thing is clear though; the layered appearance of Mars polar ice caps and its strange surface features are just another indication of the dynamic processes taking place on Mars. In addition to seasonal change, these interesting features are thought to be related to changes in Mars’ obliquity and axial tilt. Just one more way in which Mars and Earth are similar!

Further Reading: HIRISE

What the Oldest Fossil on Earth Means for Finding Life on Mars

Microscopic iron-carbonate (white) rosette with concentric layers of quartz inclusions (grey) and a core of a single quartz crystal with tiny (nanoscopic) inclusions of red hematite from the Nuvvuagittuq Supracrustal Belt in Québec, Canada. These may have formed through the oxidation of organic matter derived from microbes living around vents. Credit: Matthew Dodd/UCL.

Scientists have found evidence that life existed on Earth much earlier than previously thought and they say this discovery has implications for life springing up on other planets, particularly Mars.

Fossils of microscopic bacteria were discovered in Quebec, Canada in the Nuvvuagittuq Supracrustal Belt, a formation which contains some of the oldest sedimentary rocks in the world. Scientists estimate the fossils are at least 3.7 billion years old, and could be as old as 4.28 billion years. This is hundreds of millions of years older than previously found specimens.

“The most exciting thing about this discovery is that we know life managed to get a grip and start on Earth at such an early time in Earth’s evolution, which gives us exciting questions as to whether we are alone in the solar system or in the universe,” said PhD student Matthew Dodd from University College London (UCL), who is the first author on a new paper about the finding in the journal Nature. “If life happened so quickly on Earth then could we expect it to be a simple process and start on other planets, or was Earth really just a special case?”

Hematite tubes from the hydrothermal vent deposits that represent the oldest microfossils and evidence for life on Earth. The remains are at least 3.7 billion years old. Credit: Matthew Dodd/UCL

The tiny fossils are the remains of microorganisms that are smaller than the width of a human hair. The Nuvvuagittuq rocks are thought to have formed in an iron-rich deep-sea hydrothermal vent system that provided a habitat for Earth’s first life forms. These rocks are mostly composed of silica and hematite.

“Our discovery supports the idea that life emerged from hot, seafloor vents shortly after planet Earth formed,” Dodd said in a press release. “This speedy appearance of life on Earth fits with other evidence of recently discovered 3,700 million year old sedimentary mounds that were shaped by microorganisms.”

Prior to this discovery, the oldest microfossils reported were found in Western Australia and were dated at 3.4 billion years old, leading scientists to speculate that life probably started around 3.7 billion years ago. But the new finding suggests that life existed as early as 4.5 billion years ago, just 100 million years after Earth formed.

“The microfossils we discovered are about 300 million years older than the previously thought oldest microfossils,” said Dr. Dominic Papineau, a professor of geochemistry and astrobiology at UCL, “so they are within a few hundred million years from within the accretion of the solar system and the planet Earth and the Sun and the Moon and so on.”

The Blueberries of Mars are actually concretions of iron rich minerals from water – ground or standing pools – created over thousands of years during periodic epochs of wet climates on Mars. (Photo Credits: NASA/JPL/Cornell)

Papineau said the structures in the rocks that contained the fossils were spheroids, and since they are made of hematite, they are reminiscent of the discovery in 2004 by the Mars Exploration Rover Opportunity of beds of rounded hematite concretions, that MER scientists called “blueberries.” These rounded concretions formed on Earth when significant volumes of groundwater flowed through permeable rock, and chemical reactions triggered minerals to precipitate and start forming a layered, spherical ball.

The concretions may bear on the search for evidence of past life on Mars because bacteria on Earth can make concretions form more quickly, according to previous research.

“The origin of this structure is not fully understood even on Earth where we find them,” Papineau said. “We don’t know really how organic matter can potentially be involved in making these structures.”

Both the MER rovers, Opportunity and Spirit, as well as the Curiosity rover have all found evidence of past water on Mars. In addition, Curiosity has identified traces of elements like carbon, hydrogen, nitrogen, oxygen, and more — the basic building blocks of life. It also found sulfur compounds in different chemical forms, a possible energy source for microbes. If Mars really was warmer and wetter in the past, as the evidence seems to point, Mars would have been the perfect spot for living organisms.

While the finding of ancient fossils on Earth doesn’t necessarily mean there is past or present life on Mars, in conjunction with the Curiosity rover finding of the raw ingredients for life, it is enticing to know that the environment on early Mars was likely very similar to early Earth, where life did spring up.

You can see details and hear the researchers talk about their findings in the video below:

Source: EurekAlert