When Elon Musk speaks publicly about SpaceX and their efforts to make space travel less expensive, people listen. He attracts all kinds of scientists and journalists to his presentations. But he also attracts… other types of people. And those people ask some strange questions.
Musk must be getting used to it by now. He’s one of those public figures that, by virtue of his efforts to bring the future closer, attracts a lot of interest. But some of the questions in the Q&A following his presentation on Sept. 27 were truly bizarre.
Anybody could stand in line at one of the microphones in the audience and ask their question. And ask they did.
One man started off by saying he just recently attended Burning Man in the desert. Mars is like one big desert, he said, with no water to wash away all the sewage. What will future Mars colonists do with all their s**t he asked?
I felt bad for the guy. Here was his chance to ask Musk, who is clearly some sort of hero the guy, any question about space travel. And he chose to ask about poop. It was truly cringe-worthy, but Musk handled it well. He must be used to it.
It’s not like it’s not a legitimate concern, way down the line, if we ever do establish a city. But good grief. Musk was there to talk about the Interplanetary Transport System, not the nuts and bolts of city planning. It’s clear that this gentleman travelled all that way just to ask about sewage. Fail. (Jump to 1:06:30 in the video for that bit of magic.)
Another person asked everyone to give Elon a hand because he “Inspires the s**t out of us!” (At 1:10:35 in the video.) Musk looked uncomfortable. I don’t think he likes the hero-worship part of his gig. The guy then tried to give him a comic book about Mars, but complained that security wouldn’t let him. Ummmm, yeah.
One person complained that SpaceX won’t hire internationally, and how can they claim to be going interplanetary when they won’t even hire from other countries? Musk patiently explained that when it comes to rocketry, the government tightly restricts who is allowed to come from other countries to work on projects. Rocketry is governed by the same rules as weaponry, as it turns out. Thanks for explaining, Elon.
There were others. One lady wanted to come upstairs and give him a kiss, on behalf of all the ladies. Another asked if they were going to mathematically determine the most expendable human on Earth, and send them to Mars? That gem is 1:16:45 in the video. BTW, that guy thought it would be Michael Cera. Huh?
The same guy wanted to pitch a comedy video to him after the presentation. He was, unfortunately, turned down.
Another guy, who called himself a “local idiot” asked if Elon himself was planning on going to Mars. The guy said he would’ve hated to put in all this work and then not go. Musk’s answer was, in short, that he would like to go, but only if a good succession plan was in place in case he perished. That way the company’s work could continue.
There were some good questions too, of course. Questions about launch site for the craft, where it will be manufactured, and other pertinent questions around who should be the first people to go. Others asked about the journey itself, and how travellers would be kept safe from radiation and other hazards. So the Q&A wasn’t a waste of time by any means.
The whole presentation is worth watching, if you haven’t already. For those of you who just want to watch the wackiest parts of the Q&A, you’re in luck. There’s a highlight video.
KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Sending humans on a ‘Journey to Mars’ and developing strategies and hardware to accomplish the daunting task of getting ‘Humans to Mars’ is NASA’s agency wide goal and the goal of many space enthusiasts – including Apollo 11 moonwalker Buzz Aldrin.
NASA is going full speed ahead developing the SLS Heavy lift rocket and Orion crew module with a maiden uncrewed launch from the Kennedy Space Center set for late 2018 to the Moon. Crewed Mars missions would follow by the 2030s.
In the marketplace of ideas, there are other competing and corollary proposals as well from government, companies and private citizens on pathways to the Red Planet. For example SpaceX CEO Elon Musk wants to establish a colony on Mars using an Interplanetary Transport System of SpaceX developed rockets and spaceships.
Moonwalker Aldrin strongly advocated for more commercial activity in space and that “exposure to microgravity” for “many commercial products” is good, he told Universe Today.
More commercial activities in space would aid space commerce and getting humans to Mars.
“We need to do that,” Aldrin told me.
Buzz Aldrin is the second man to set foot on the Moon. He stepped onto the lunar soil a few minutes after Apollo 11 Commander Neil Armstrong, on July 20, 1969 in the Sea of Tranquility.
Aldrin also strongly supports some type of American space station capability “beyond the ISS” to foster the Mars capability.
And we need to be thinking about that follow on “US capability” right now!
“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning,” Aldrin elaborated.
Currently the ISS partnership of the US, Russia, ESA, Japan and Canada has approved extending the operations of the International Space Station (ISS) until 2024. What comes after that is truly not known.
NASA is not planning for a follow-on space station in low Earth orbit at this time. The agency seems to prefer development of a commercial space station, perhaps with core modules from Bigelow Aerospace and/or other companies.
So that commercial space station will have to be designed, developed and launched by private companies. NASA and others would then lease space for research and other commercial activities and assorted endeavors on the commercial space station.
For example, Bigelow wants to dock their privately developed B330 habitable module at the ISS by 2020, following launch on a ULA Atlas V. And then spin it off as an independent space station when the ISS program ends – see my story.
Only China has firm plans for a national space station in the 2020’s. And the Chinese government has invited other nations to submit proposals. Russia’s ever changing space exploration plans may include a space station – but that remains to be actually funded and seen.
Regarding Mars, Aldrin has lectured widely and written books about his concept for “cycling pathways to occupy Mars,” he explained.
Watch this video of Apollo 11 moonwalker Buzz Aldrin speaking to Universe Today:
Video Caption: Buzz Aldrin at ‘Destination Mars’ Grand Opening at KSCVC. Apollo 11 moonwalker Buzz Aldrin talks to Universe Today/Ken Kremer during Q&A at ‘Destination Mars’ Holographic Exhibit Grand Opening ceremony at Kennedy Space Center Visitor Complex (KSCVC) in Florida on 9/18/16. Credit: Ken Kremer/kenkremer.com
Here is a transcript:
Universe Today/Ken Kremer: Can you talk about the role of commercial space [in getting humans to Mars]. Elon Musk wants to try and send people to Mars, maybe even before NASA. What do you think?
Buzz Aldrin: “Well, being a transportation guy in space for humans – well commercial, what that brings to mind is tourism plus space travel.
And there are many many more things commercial that are done with products that can be fine tuned by exposure to microgravity. And we need to do that.”
“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning.”
“And that’s why what has sort of fallen into place is the name for my plan for the future – which is ‘cycling pathways to occupy Mars.’”
“A cycler in low Earth orbit, one in lunar orbit, and one to take people to Mars.”
“And they are utilized in evolutionary fashion.”
Meanwhile, be sure to visit the absolutely spectacular “Destination Mars” holographic exhibit before it closes on New Year’s Day 2017 – because it is only showing at KSCVC.
You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:
Today, Elon Musk elaborated on his plans to make humanity a planet-faring species. We’ve known for a long time that Mars is SpaceX’s destination, but the fine details haven’t been revealed. In today’s talk at the International Astronautical Congress (IAC), Musk revealed a game-changer for travel to Mars, and beyond.
If anyone has ever guessed that Musk’s plans involved a refuelling ship, I’ve never heard them say it out loud. But that’s exactly what Musk revealed. SpaceX plans to launch a Mars-bound craft into orbit, then launch a refuelling craft to refill the interplanetary ship’s fuel tanks. Only then would the Interplanetary Transport System (ITS) depart for Mars.
SpaceX’s proposed system is all about lowering the cost of travel to Mars. Only when the cost is lowered, does a sustained presence there become realistic. And Musk’s ITS system will definitely lower the cost.
Traditional space travel would cost $10 billion to get one person to Mars. Musk said that they can get it down to the median cost of a house in the US, about $200,000 US. The idea is that anyone who really wanted to could save up enough money and go to Mars. Musk did acknowledge that it will be tricky to reduce the cost of the Earth to Mars trip by a whopping 5 million percent.
There are four keys to reducing the cost:
full reusability
refilling in orbit
propellant production on Mars
right propellant
The ITS would feature reusable boosters, reusable spaceships, and refuelling in orbit. The interplanetary ship would be launched into orbit around Earth and parked there. Fuel ships would make 3 to 5 trips to fill the tank of the interplanetary ship waiting in orbit. From there, Musk thinks that the trip to Mars could take as little as 80 days. In the more distant future, that could be cut to 30 days.
If this whole system isn’t shocking enough, and thrilling enough, for you, Musk has more than just one of these craft in mind. He imagines a fleet of them, perhaps 1,000, travelling en masse back and forth to Mars.
The driving force behind all this is, of course, making Mars possible. In his presentation, Musk said we have two paths. One is to stay on Earth and face extinction from some doomsday event. The other is to become an interplanetary species, and use Mars to back up Earth’s biosphere. The SpaceX system is designed to make the second path possible.
Musk talked about the need to create a self-sustaining city in its own right. That obviously won’t happen right away, but it’ll never happen unless transport to Mars, and back, becomes feasible. With the proposed SpaceX system, Mars will be an option. Musk thinks that the ITS could also get us to one of the Jovian moons, if we could create fuel production and depots. In fact, he said we can probably go all the way to Pluto and beyond.
There are a lot of challenges for this system. It’s far from a done deal. The system will require newer, more powerful engines. But SpaceX is already working on that. It’s called the Raptor, and testing has already begun.
Musk talked about the impressive exploration done on Mars by NASA and other agencies, but stressed that it’s time to take things further and aim for a sustained presence on Mars. To that end, SpaceX plans on sending a craft to Mars during every Earth-Mars opposition, which happens about every 2 years. Initially, that will be done with an unmanned Dragon capsule.
The mood at Musk’s presentation was one of excitement. The crowd was definitely there to see him. There was one humorous moment when Musk remarked “Timelines. I’m not the best at this sort of thing.” This is a nod to the difficulties with creating a timeline for something like the ITS. But really, what agency can adhere to strict schedules when doing something that’s never been done before? Especially in the realm of interplanetary travel?
The excitement surrounding Musk’s plans for travel to Mars is palpable. That’s understandable, considering the magnitude of what he’s talking about, and considering how long people have dreamed of going to Mars. The fact that someone with a track record like SpaceX’s is starting to lay the groundwork for travel to, and a presence on Mars, is exciting. There’s no way around it.
But there are lots of questions. Musk is the first to admit that he doesn’t have all the answers. He says up front that he sees his role as developing the transport system. Once that is moving ahead, others will address the challenges of establishing a presence on Mars.
One of the primary questions is around energy, and there are two sides to that. Fuel processing will have to be established quickly on Mars if the ships are to return to Earth.
Musk also talked about the three possible fuel types to be derived on Mars.
The ITS ships will be able to carry a large payload, so it’s possible that the parts and pieces for a fuel plant could be pre-built somehow, then sent to Mars. There is an enormous amount of detail missing when it comes right down to it, but human ingenuity being what it is, this may be solvable.
Assuming that a rocket fuel plant could be assembled on Mars, that begs the second energy question. Creating this fuel will in itself require lots of energy. Much more than solar can provide. Musk briefly mentioned the possibility of nuclear energy, but didn’t go into detail. That’s understandable, because he clearly sees his role as developing the transportation system.
Establishing nuclear energy on Mars would also require a lot of infrastructure. On Earth, uranium processing is an enormous task. How will that be done on Mars? Is there enough uranium in Mars’ crust? Conventional atomic reactors use water, lots of it, to produce energy. Where will that water come from on Mars? Will the same amount be needed?
Or will thorium reactors be used? If you’re not up on thorium reactors, they are different than uranium reactors and are worth reading about. They use thorium for fuel, not uranium, and are different in other ways. They’re safer and produce less waste, but is there sufficient thorium available on Mars? Thorium is much more plentiful in Earth’s crust than uranium.
Small Modular Reactors (SMRs) are being developed for use on Earth. They are built in one location, then moved to their operational location. They can be linked together and require less sophisticated operators. Perhaps SMRs using thorium will provide the energy required for the ITS to work.
These questions are all important of course, and they bear thinking about. But one thing that can’t be denied is Musk’s vision. Anyone that wants humanity to survive, or that grew up reading science fiction, will love what Musk is doing. For that matter, anyone with a sense of adventure will love Musk.
Musk’s overall vision of us as a planet-faring species is something that will be a long time coming, I think. Fleets of interplanetary cargo ships plying the solar system, with fuelling depots along the way. An established human presence on Mars, the Moon, and perhaps the moons of the gas giants, and all the way out to Pluto.
It seems like a fanciful dream, but remember what Musk said at the start of his presentation. There are really only two paths. The first is to restrict ourselves to Earth, and die at the hands of some sort of extinction event.
The second path is to head outward and expand throughout the solar system.
It’s not science fiction anymore. It’s simple survival.
Our beyond magnificent Curiosity rover has just finished her latest Red Planet drilling campaign – at the rock target called “Quela” – into the simply unfathomable alien landscapes she is currently exploring at the “Murray Buttes” region of lower Mount Sharp. And it’s all in a Sols (or Martian Day’s) work for our intrepid Curiosity!
“These images are literally out of this world.. I don’t think I have seen anything like them on Earth!” Jim Green, Planetary Sciences Director at NASA Headquarters, Washington, D.C., explained to Universe Today.
The “Murray Buttes” region is just chock full of the most stunning panoramic vistas that NASA’s Curiosity Mars Science Laboratory rover has come upon to date. Observe and enjoy them in our exclusive new photo mosaics above and below.
“We always try to find some sort of Earth analog but these make exploring another world all worth it!” Green gushed in glee.
They fill the latest incredible chapter in her thus far four year long quest to trek many miles (km) from the Bradbury landing site across the floor of Gale Crater to reach the base region of humongous Mount Sharp.
And these adventures are just a prelude to the even more glorious vistas she’ll investigate from now on – as she climbs higher and higher on an expedition to thoroughly examine the mountains sedimentary layers and unravel billions and billions of years of Mars geologic and climatic history.
Drilling holes into Mars during the Red Planet trek and carefully analyzing the pulverized samples with the rovers pair of miniaturized chemistry laboratories (SAM and CheMin) is the route to the answer of how and why Mars changed from a warmer and wetter planet in the ancient past to the cold, dry and desolate world we see today.
The rock target named “Quela” is located at the base of one of the buttes dubbed “Murray Butte number 12,” according to the latest mission update from Prof. John Bridges, a Curiosity rover science team member from the University of Leicester, England.
It took two tries to get the drilling done due to a technical issue, but all went well in the end and it was well worth the effort at a place never before explored by an emissary from Earth.
“The drill (successful at second attempt) is at Quela.”
The full depth drilling was completed on Sol 1464, Sept. 18, 2016 using the percussion drill at the terminus of the outstretched 7-foot-long (2-meter-long) robotic arm – as confirmed by imaging and further illustrated in our navcam camera photo mosaic.
And that immediately provided valuable insight into climate change on Mars.
“You can see how red and oxidised the tailings are, suggesting changing environmental conditions as we progress through the Mt. Sharp foothills,” Bridges explained in the mission update.
Curiosity bore holes measure approximately 0.63 inch (1.6 centimeters) in diameter and 2.6 inches (6.5 centimeters) deep.
To give you the context of the Murray Buttes region and the drilling at Quela, the image processing team of Ken Kremer and Marco Di Lorenzo has begun stitching together wide angle mosaic landscape views and up close views of the drilling using raw images from the variety of cameras at Curiosity’s disposal.
The next steps after boring into Quela were to “sieve the new sample, dump the unsieved fraction, and drop some of the sieved sample into CheMin,” says Ken Herkenhoff, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in a mission update.
“But first, ChemCam will acquire passive spectra of the Quela drill tailings and use its laser to measure the chemistry of the wall of the new drill hole and of bedrock targets “Camaxilo” and “Okakarara.” Right Mastcam images of these targets are also planned.”
“After sunset, MAHLI will use its LEDs to take images of the drill hole from various angles and of the CheMin inlet to confirm that the sample was successfully delivered. Finally, the APXS will be placed over the drill tailings for an overnight integration.”
The rover had approached the butte from the south side several sols earlier to get in place, plan for the drilling, take imagery to document stratigraphy and make compositional observations with the ChemCam laser instrument.
“These are the landforms that dominate the landscape at this point in the traverse – The Murray Buttes,” says Bridges.
What are the Murray Buttes?
“These are formed by a cap of hard aeolian rock that has been partially eroded back, overlying the Murray mudstone.”
The imagery of the Murray Buttes and mesas show them to be eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed.
Scanning around the Murray Buttes mosaics one sees finely layered rocks, sloping hillsides, the distant rim of Gale Crater barely visible through the dusty haze, dramatic hillside outcrops with sandstone layers exhibiting cross-bedding.
The presence of “cross-bedding” indicates that the sandstone was deposited by wind as migrating sand dunes, says the team.
Curiosity spent some six weeks or so traversing and exploring the Murray Buttes.
So after collecting all that great drilling data at Quela, the team is ready for even more spectacular new adventures!
“While the Murray Buttes were spectacular and interesting, it’s good to be back on the road again, as there is much more of Mt. Sharp to explore!” concludes Herkenhoff.
And the team is already commanding Curiosity to drive ahead in hot pursuit of the next drill target!
Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.
Three years ago, the team informally named the Murray Buttes site to honor Caltech planetary scientist Bruce Murray (1931-2013), a former director of NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL manages the Curiosity mission for NASA.
As of today, Sol 1470, September 24, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing inside Gale Crater, and taken over 355,000 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
For Elon Musk, it’s always been about Mars. Musk, and his company SpaceX, haven’t always been explicit about how exactly they’ll get to Mars. But SpaceX’s fourteen years of effort in rocketry have been aimed at getting people into space cheaper, and getting people to Mars.
Musk has revealed hints along the way. One of the boldest was his statement at Code Conference 2016. At that conference he said, “I think, if things go according to plan, we should be able to launch people probably in 2024, with arrival in 2025.”
He went on to explain it this way: “The basic game plan is we’re going to send a mission to Mars with every Mars opportunity from 2018 onwards. They occur approximately every 26 months. We’re establishing cargo flights to Mars that people can count on for cargo.”
Those comments certainly removed any lingering doubt that Mars is the goal.
But a recent Tweet from Musk has us wondering if Mars will just be a stepping stone to more distant destinations in our Solar System. On Sept. 16th, Musk tweeted:
Turns out MCT can go well beyond Mars, so will need a new name…
And the new name is Interplanetary Transport System (ITS).
So, is SpaceX developing plans to go beyond Mars? Is the plan to establish cargo flights to Mars still central to the whole endeavour? Does the name change from Mars Cargo Transporter (MCT) to Interplanetary Transport System (ITS) signal a change in focus? These questions may be answered soon, on September 27th, when Musk will speak at the International Astronautical Congress (IAC), in Guadalajara, Mexico.
Musk hinted back in January that he would be revealing some major details of the MCT at the IAC later this month. In January, he said at the StartmeupHK Festival in Hong Kong that “I’m hoping to describe that architecture later this year at IAC … and I think that will be quite exciting.”
So, lots of hints. And these hints bring questions. Is SpaceX developing a super heavy rocket of some type? A BFR? If the Mars Colonial Transport system can go much further than Mars, maybe to the moons of the gas giants, won’t that require a much larger rocket than the Falcon Heavy?
In the past, SpaceX has conceptualized about larger rockets and the engines that would power them. At the 2010 American Institute of Aeronautics and Astronautics (AIAA) Joint Propulsion Conference, SpaceX presented some of these conceptual designs. They featured a super-heavy lift vehicle larger than the Falcon Heavy, dubbed the Falcon X. Beyond that, and in increasingly powerful designs, were the Falcon X Heavy, and the Falcon XX Heavy.
These were only concepts, but it’s six years later now. Surely, any further thinking around a super-heavy lift vehicle would have started there. And if the MCT can now go well beyond Mars, as Musk said in his Tweet, there must be a more powerful rocket. Mustn’t there?
So with one tweet, Musk has sucked the air out of the room, and got everybody speculating. But Musk isn’t the only one with eyes on building a greater human presence in space. He has a competitor: Jeff Bezos, former Amazon CEO, and his company Blue Origin.
The original space race pitted the USA against the USSR in a battle for scientific supremacy and prestige. The USA won that race, and they’re still reaping the benefits of that technological victory. But a new race might be brewing between Musk and Bezos, between SpaceX and Blue Origin.
The two companies haven’t been directly competing. They’ve both been working on reusable rockets, but Blue Origin has concerned itself with sub-orbital rocketry designed to take people into space for a few minutes. Space tourism, if you will. SpaceX’s focus has always been on orbital capability, and more.
But not to be outdone by SpaceX, Blue Origin has recently announced the New Glenn orbital launch vehicle, to be powered by seven of their new, powerful, BE-4 engines.
There’s definitely some one-upmanship going on between Musk and Bezos. So far, it’s mostly been civil, with each acknowledging each other’s achievements and milestones in rocketry. But they’re also both quick to point out why they’re better than the other.
Bezos, with the announcement of the New Glenn orbital launch vehicle, and the BE-4 engines that will power it, took every opportunity to mention the fact that his company spends zero tax dollars, while SpaceX benefits from financial arrangements with NASA. Musk, on the other hand, likes to point out the fact that Blue Origin has never delivered anything into orbit, while SpaceX has delivered numerous payloads into orbit successfully.
But for now, anyway, the focus is on SpaceX, and what Musk will reveal at the upcoming IAC Congress. If he reveals a solid plan for recurring cargo missions to Mars, the excitement will be palpable. And if he reveals plans to go further than Mars, with much larger rockets, we may never catch our breaths.
KENNEDY SPACE CENTER VISITOR COMPLEX, FL- Think a Holodeck adventure on Star Trek guided by real life Apollo 11 moonwalker Buzz Aldrin and you’ll get a really good idea of what’s in store for you as you explore the surface of Mars like never before in the immersive new ‘Destination Mars’ interactive holographic exhibit opening to the public today, Monday, Sept.19, at the Kennedy Space Center visitor complex in Florida.
The new Red Planet exhibit was formally opened for business during a very special ribbon cutting ceremony featuring Buzz Aldrin as the star attraction – deftly maneuvering the huge ceremonial scissors during an in depth media preview and briefing on Sunday, Sept. 18, 2016, including Universe Today.
The fabulous new ‘Destination Mars’ limited engagement exhibit magically transports you to the surface of the Red Planet via Microsoft HoloLens technology.
It literally allows you to ‘Walk on Mars’ using real imagery taken by NASA’s Mars Curiosity rover and explore the alien terrain, just like real life scientists on a geology research expedition.
“Technology like HoloLens leads us once again toward exploration,” Aldrin said during the Sept. 18 media preview. “It’s my hope that experiences like “Destination: Mars” will continue to inspire us to explore.”
Destination Mars was jointly developed by NASA’s Jet Propulsion Laboratory – which manages the Curiosity rover mission for NASA – and Microsoft HoloLens.
Buzz was ably assisted at the grand ribbon cutting ceremony by Bob Cabana, former shuttle commander and current Kennedy Space Center Director, Therrin Protze, chief operating officer of the visitor complex, Kudo Tsunoda of Microsoft, and Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California.
The experience is housed in a pop-up theater that only runs for the next three and a half months, until New Years Day, January 1, 2017.
Before entering the theater, you will be fitted with specially adjusted HoloLens headsets individually tailored to your eyes.
The entire ‘Destination Mars’ experience only lasts barely 8 minutes.
So, if you are lucky enough to get a ticket inside you’ll need to take advantage of every precious second to scan around from left and right and back, and top to bottom. Be sure to check out Mount Sharp and the rim of Gale Crater.
You’ll even be able to find a real drill hole that Curiosity bored into the Red Planet at Yellowknife Bay about six months after the nailbiting landing in August 2012.
During your experience you will be guided by Buzz and Curiosity rover driver Erisa Hines of JPL. They will lead you to areas of Mars where the science team has made many breakthrough discoveries such as that liquid water once flowed on the floor of Curiosity’s Gale Crater landing site.
The scenes come to life based on imagery combining the Mastcam color cameras and the black and white navcam cameras, Jeff Norris of NASA’s Jet Propulsion Laboratory in Pasadena, California, told Universe Today in an interview.
Among the surface features visited is Yellowknife Bay where Curiosity conducted the first interplanetary drilling and sampling on another planet in our Solar System. The sample were subsequently fed to and analyzed by the pair of miniaturized chemistry labs – SAM and CheMin – inside the rovers belly.
They also guide viewers to “a tantalizing glimpse of a future Martian colony.”
“The technology that accomplishes this is called “mixed reality,” where virtual elements are merged with the user’s actual environment, creating a world in which real and virtual objects can interact, “ according to a NASA description.
“The public experience developed out of a JPL-designed tool called OnSight. Using the HoloLens headset, scientists across the world can explore geographic features on Mars and even plan future routes for the Curiosity rover.”
Curiosity is currently exploring the spectacular looking buttes in the Murray Buttes region in lower Mount Sharp. Read my recent update here.
Be sure to pay attention or your discovery walk on Mars will be over before you know it. Personally, as a Mars lover and Mars mosaic maker I was thrilled by the 3 D reality and I was ready for more.
This limited availability, timed experience is available on a first-come, first-served basis. Reservations must be made the day of your visite at the Destination: Mars reservation counter, says the KSC Visitor Complex (KSCVC).
You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:
Be sure to visit this spectacular holographic exhibit before it closes on New Year’s Day 2017 because it is only showing at KSCVC.
There are no plans to book it at other venues, Norris told me.
As of today, Sol 1465, September 19, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing inside Gale Crater, and taken over 354,000 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
What did you do during your summer this year? Award-winning astrophotographer Damian Peach spent much of his 2016 summer capturing incredibly clear images of Mars during opposition, when the Red Planet was closest to Earth. Peach has now compiled a wonderful “rotating planet” movie of images taken between June 4th – 18th, 2016, showing amazing detail of the planet.
At its closest point this year, Mars was about 46.8 million miles (75.3 million kilometers) from Earth.
Peach has said this summer held “excellent seeing,” both from his home in the UK and from a photography trip to Barbados. He even captured a fleeting localized dust storm on Mars during mid-June over Mare Erythraeum, one of the prominent dark areas on the planet that were once thought to be seas. In the image below of the dust storm, Peach also pointed out the “linear cloud streak in the southern hemisphere – clearly those Martian flying saucer pilots have been having fun!”
See more of Peach’s excellent astrophotography work at his website , or on Twitter. See a larger version of the lead image here.
Mars is still visible in the night sky, but if you missed seeing this planet at its brightest in 2016, the next time Mars will be at opposition will be in 2018, with close approach on July 31, 2018.
The most stunning panoramic vistas likely ever snapped by NASA’s Curiosity rover reveal spectacularly layered Martian rock formations in such exquisite detail that they look and feel just like America’s desert Southwest landscapes. They were just captured a week ago and look like a scene straight out of the hugely popular science fiction movie ‘The Martian’ – only they are real !!
Indeed several magnificent panoramas were taken by Curiosity in just the past week and you can see our newly stitched mosaic versions of several – above and below.
The rock formations lie in the “Murray Buttes” region of lower Mount Sharp where Curiosity has been exploring for roughly the past month. She just finished a campaign of detailed science observations and is set to bore a new sampling hole into the Red Planet, as you read this.
While scouting around the “Murray Buttes,” the SUV sized rover captured thousands of color and black and white raw images to document the geology of this thus far most unrivaled spot on the Red Planet ever visited by an emissary from Earth.
So the image processing team of Ken Kremer and Marco Di Lorenzo has begun stitching together wide angle mosaic views starting with images gathered by the high resolution mast mounted Mastcam right color camera, or M-100, on Sept, 8, 2016, or Sol 1454 of the robots operations on Mars.
The mosaics give context and show us exactly what the incredible alien surroundings look like where the six wheeled rover is exploring today.
The imagery of the Murray Buttes and mesas show them to be eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed.
Scanning around the Murray Buttes mosaics one sees finely layered rocks, sloping hillsides, the distant rim of Gale Crater barely visible through the dusty haze, dramatic hillside outcrops with sandstone layers exhibiting cross-bedding. The presence of “cross-bedding” indicates that the sandstone was deposited by wind as migrating sand dunes, says the team.
But there is no time to rest as she was commanded to head further south to the last of these Murray Buttes. And right now the team is implementing a plan for Curiosity to drill a new hole in Mars today – at a target named “Quela” at the base of the last of the buttes. The rover approached the butte from the south side a few days ago to get in place and plan for the drilling, take imagery to document stratigraphy and make compositional observations with the ChemCam laser instrument.
“It’s always an exciting day on Mars when you prepare to drill another sample – an engineering feat that we’ve become so accustomed to that I sometimes forget how impressive this really is!” wrote Lauren Edgar, in a mission update today. Edgar is a Research Geologist at the USGS Astrogeology Science Center and a member of the MSL science team.
Curiosity will then continue further south to begin exploring higher and higher sedimentary layers up Mount Sharp. The “Murray Buttes” are the entry way along Curiosity’s planned route up lower Mount Sharp.
Meanwhile Curiosity is still conducting science observations of the last drill sample gathered from the “Marimba” target in August focusing on MAHLI and APXS examination of the dump pile leftovers from the sieved sample. She just completed chemical analysis of the sieved sample using the miniaturized SAM and CheMin internal chemistry laboratories.
It’s interesting to note that although the buttes are striking, their height also presents communications issues by blocking radio signals with NASA’s orbiting relay satellites. NASA’s Opportunity rover faced the same issues earlier this year while exploring inside the high walled Marathon Valley along Ecdeavour Crater.
“While the buttes are beautiful, they pose a challenge to communications, because they are partially occluding communications between the rover and the satellites we use to relay data (MRO and ODY), so sometimes the data volume that we can relay is pretty low” wrote Edgar.
“But it’s a small price to pay for the great stratigraphic exposures and gorgeous view!”
Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.
Three years ago, the team informally named the Murray Buttes site to honor Caltech planetary scientist Bruce Murray (1931-2013), a former director of NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL manages the Curiosity mission for NASA.
As of today, Sol 1461, September 15, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing inside Gale Crater, and taken over 353,000 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Since its deployment in 2012 to the surface of Mars, the Curiosity rover has sent back many breathtaking images of the Red Planet. In addition to snapping photos of the comet Siding Spring and Earth from the surface, not to mention some wonderful panoramic selfies, the rover has also taken countless images that show the geology and surface features of Mars’ in stunning detail.
And with the latest photos to be released by NASA, the Curiosity rover has provided us with a wonderful look at the “Murray Buttes” region, which is in the lower part of Mount Sharp. These images were taken by the Curiosity Mast Camera (Mastcam) on Sept. 8th, and provide some lovely insight into the geological history of the region.
Using these images, the Curiosity team hopes to assemble another impressive color mosaic that will give a detailed look at the region’s rocky, desert-like landscape. As you can see from the images provided, the region is characterized by mesas and buttes, which are the eroded remnants of ancient sandstone. Much like other spots around Mount Sharp, the area is of particular interest to the Curiosity team.
For years, scientists have understood that the rock layers that form the base of Mount Sharp accumulated as a result of sediment being deposited within the ancient lake bed billions of years ago. In this respect, the geological formations are similar to those found in the desert regions of the southwestern United States.
Ashwin Vasavada, the Curiosity Project Scientist of NASA’s Jet Propulsion Laboratory, told Universe Today via email:
” The Murray Buttes region of Mars is reminiscent of parts of the American southwest because of its butte and mesa landscape. In both areas, thick layers of sediment were deposited by wind and water, eventually resulting in a “layer cake” of bedrock that then began to erode away as conditions changed. In both places, more resistant sandstone layers cap the mesas and buttes because they protect the more easily eroded, fine-grained rock underneath.
“Like at Monument Valley near the Utah-Arizona border, at Murray Buttes there are just small remnants of these layers that once covered the surface more completely. There were wind-driven sand dunes at both places, too, that now appear as cross-bedded sandstone layers. There are of course many differences between Mars and the American Southwest. For example, there were large inland seas in the Southwest, while at Gale crater there were lakes.”
These sediment layers are believed to have been laid down over the course of 2 billion years, and may have completely filled the crater at one time. Since it is widely believed that lakes and streams existed in the Gale Crater 3.3 – 3.8 billion years ago, some of the lower sediment layers may have originally been deposited on a lake bed.
For this reason, the Curiosity team also took drill samples from the Murray Buttes area for analysis. This began on Sept. 9th, after the rover was finished taking pictures of the area. As Vasavada explained:
“The Curiosity team is drilling regularly as the rover ascends Mount Sharp. We are drilling into the fine-grained rock that was deposited within lakes in order to see how the lake chemistry, and therefore the environment, changed over time. Curiosity drilled into the coarser sandstone that forms the upper layers of the buttes when the rover crossed the Naukluft Plateau earlier in 2016.”
After the drilling is completed, Curiosity will continue farther south and higher up Mount Sharp, leaving behind these spectacular formations. These pictures represent Curiosity‘s last stop in the Murray Buttes, where the rover has been spending the past month.
And as of this past September 11th, 2016, Curiosity has been on the planet Mars for a total of 4 years and 36 days (or 1497 Earth days; 1458 sols) since it landed on August 6th, 2012.
One has to wonder how the pareidolia folks are going to interpret these ones. After “seeing” a rat, a lizard, a doughnut, a coffin, and so forth, what’s left? Might I suggest that the top image kind of looks like a statue-column?
After four years on Mars, the Curiosity rover has made some pretty impressive discoveries. These have ranged from characterizing what Mars’ atmosphere was like billions of years ago to discovering organic molecules and methane there today. But arguably the biggest discovery Curiosity has made has been uncovering evidence of warm, flowing water on Mars’ surface.
Unfortunately, now faced with what could be signs of water directly in its path, NASA is forced to enact strict protocols. These signs take the form of dark streaks that have been observed along the sloping terrain of Aeolis Mons (aka. Mount Sharp), which the rover has been preparing to climb. In order to prevent contamination, the rover must avoid any contact with them, which could mean a serious diversion.
These sorts of dark streaks are known as recurring slope lineae (RSLs) because of their tendency to appear, fade away and reappear seasonally on steep slopes. The first RSLs were reported in 2011 by the Mars Reconnaissance Orbiter in a variety of locations, and are now seen as proof that water still periodically flows on Mars (albiet in the form of salt-water).
Since that time, a total of 452 possible RSLs have been observed, mostly in Mars’s southern mid-latitudes or near the equator (particularly in Mars’ Valles Marineris). They are generally a few meters wide, and appear to lengthen at the warmest times of the year, then fade during the colder times.
These seasonal flows of salt water are believed to have come from ice trapped about a meter below the surface. Ordinarily, such features would present an opportunity to conduct research. But doing so would cause the water source to be contaminated by Earth microbes aboard Curiosity. And right now, Curiosity has bigger fish to fry (so to speak).
During its planned climb, Curiosity was supposed to pass within a few kilometers of an RSL. However, if NASA determines that the risk is too high, the rover will have to alter its course. Unfortunately, that presents a major challenge, since there is currently only one clear route between Curiosity’s current location and its next destination.
But then again, Curiosity may not have to alter its course at all. Or it could find a route that lets it still accomplish its scientific goals, depending on the circumstances. As Ashwin R. Vasavada, the Project Scientist at the Mars Science Laboratory, told Universe Today via email:
“It may depend on the distance between the rover and a potentially sensitive region, for example. Based on that understanding, we’ll determine the right course of action. For example, it may be possible to achieve Curiosity’s science goals while maintaining a safe distance. Another possible outcome is that we determine that there are no Recurring Slope Lineae on Mount Sharp.”
For years, NASA scientists have been seeking to obtain samples from different locations around Mount Sharp. By studying the sedimentary deposits in the mountainside, the rover’s science team hopes to see how Mars’ environment changed over the past 3 billion years. As Vasavada explained:
“Curiosity’s science mission has focused on understanding whether the area around 5-km high Mount Sharp ever had conditions suitable for life. We’ve already found evidence for an ancient, 3-billion-year-old habitable environment out on the plains around the mountain, and in the lowest levels of the mountain.”
“The geology indicates that a series of lakes once was present in the basin of the crater, before the mountain took shape. Curiosity will continue climbing lower Mount Sharp to see how long these habitable conditions lasted. Every step higher we go, we encounter rocks that are a bit younger, but still around 3 billion years old.”
In the end, the job of determining the risk falls to NASA’s Planetary Protection Office. In addition to reviewing the current predicament, the issue of pre-mission safety standards is also likely to come up. Prior to its deployment to Mars, the Curiosity rover was only partially sterilized, and it is currently unknown how long Earth microbes could survive in the Martian atmosphere, or how far they could be carried in Mars’ atmosphere.
Answering these questions and coming up with new protocols that will address them in advance will come in handy for future missions – particularly the Mars 2020 Rover mission. In the course of its mission, which will include obtaining samples and leaving them behind for possible retrieval by a future crewed mission, the rover is likely to encounter several RSLs.
One of the Mars 2020 rover’s primary tasks will be finding evidence of microbial life, so ensuring that Earth microbes don’t get in the way will be of extreme importance. And with crewed missions on the horizon, knowing how we can prevent contaminating Mars with our own germs (of which there are many) is paramount!
On its currently project path, the Curiosity rover would not get closer than 2 km from the potential RSL (which it is currently 5 km from). And as Vasavada indicated, it is not known at the present time what alternate routes Curiosity could take, or if a diversion in the rover’s path will effect it’s overall mission.
“It’s unclear at this time,” he said. “But I’m optimistic that we can find a solution that protects Mars, allows us to accomplish our mission goals, and even gives us new insight into modern water on Mars, if it is there.”