Top NASA managers have formally approved the launch of the agency’s InSight Lander to the Red Planet in the spring of 2018 following a postponement from this spring due to the discovery of a vacuum leak in a prime science instrument supplied by France.
The InSight missions goal is to accomplish an unprecedented study of the deep interior of the most Earth-like planet in our solar system.
NASA is now targeting a new launch window that begins May 5, 2018, for the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). mission aimed at studying the deep interior of Mars. The Mars landing is now scheduled for Nov. 26, 2018.
InSight had originally been slated for blastoff on March 4, 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.
But the finding of a vacuum leak in its prime science instrument, the French-built Seismic Experiment for Interior Structure (SEIS), in December 2015 forced an unavoidable two year launch postponement. Because of the immutable laws of orbital mechanics, launch opportunities to the Red Planet only occur approximately every 26 months.
InSight’s purpose is to help us understand how rocky planets – including Earth – formed and evolved. The science goal is totally unique – to “listen to the heart of Mars to find the beat of rocky planet formation.”
The revised launch date was approved by the agency’s Science Mission Directorate.
“Our robotic scientific explorers such as InSight are paving the way toward an ambitious journey to send humans to the Red Planet,” said Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate, in Washington, in a statement.
“It’s gratifying that we are moving forward with this important mission to help us better understand the origins of Mars and all the rocky planets, including Earth.”
Since InSight would not have been able to carry out and fulfill its intended research objectives because of the vacuum leak in its defective SEIS seismometer instrument, NASA managers had no choice but to scrub this year’s launch. For a time its outlook for a future revival seemed potentially uncertain in light of today’s constrained budget environment.
The leak, if left uncorrected, would have rendered the flawed probe useless to carry out the unprecedented scientific research foreseen to measure the planets seismic activity and sense for “Marsquakes” to determine the nature of the Red Planet’s deep interior.
“The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet,” according to NASA.
The SEIS seismometer instrument was provided by the Centre National d’Études Spatiales (CNES) – the French national space agency equivalent to NASA. SEIS is one of the two primary science instruments aboard InSight. The other instrument measuring heat flow from the Martian interior is provided by the German Aerospace Center (DLR) and is named Heat Flow and Physical Properties Package (HP3). The HP3 instrument checked out perfectly.
NASA Jet Propulsion Laboratory (JPL) was assigned lead responsibility for the “replanned” mission and insuring that the SEIS instrument operates properly with no leaks.
JPL is “redesigning, developing and qualifying the instrument’s evacuated container and the electrical feedthroughs that failed previously. France’s space agency, the Centre National d’Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.”
“We’ve concluded that a replanned InSight mission for launch in 2018 is the best approach to fulfill these long-sought, high-priority science objectives,” said Jim Green, director of NASA’s Planetary Science Division.
The cost of the two-year delay and instrument redesign amounts to $153.8 million, on top of the original budget for InSight of $675 million.
NASA says this cost will not force a delay or cancellation to any current missions. However, “there may be fewer opportunities for new missions in future years, from fiscal years 2017-2020.”
Lockheed Martin is the prime contractor for InSight and placed the spacecraft in storage while SEIS is fixed.
InSight is funded by NASA’s Discovery Program of low cost, focused science missions along with the science instrument funding contributions from France and Germany.
Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Sep 6-8: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Fossilized remains are a fascinating thing. For paleontologists, these natural relics offer a glimpse into the past and a chance to understand what kind of lifeforms lurked there. But for astronomers, fossils are a way of ascertaining precisely when it was that life first began here on our planet – and perhaps even the Solar System.
And thanks to a team of Australian scientists, the oldest fossils to date have been uncovered. These fossilized remains have been dated to 3.7 billion years of age, and were of a community of microbes that lived on the ancient seafloor. In addition to making scientists reevaluate their theories of when life emerged on Earth, they could also tell us if there was ancient life on Mars.
The fossil find was made in what is known as the Isua Supracrustal Belt (ISB), an area in southwest Greenland that recently became accessible due to the ice melting in the area. According to the team, these fossils – basically tiny humps in rock measuring between one and four centimeters (0.4 and 1.6 inches) tall – are stromatolites, which are layers of sediment packed together by ancient, water-based bacterial colonies.
According to the team’s research paper, which appeared recently in Nature Communications, the fossilized microbes grew in a shallow marine environment, which is indicated by the seawater-like rare-earth elements and samples of sedimentary rock that were found with them.
They are also similar to colonies of microbes that can be found today, in shallow salt-water environments ranging from Bermuda to Australia. But of course, what makes this find especially interesting is just how old it is. Basically, the stone in the ISB is dated back to the early Archean Era, which took place between 4 and 3.6 billion years ago.
Based on their isotopic signatures, the team dated the fossils to 3.7 billion years of age, which makes them 220 million years older than remains that had been previously uncovered in the Pilbara Craton in north-western Australia. At the time of their discovery, those remains were widely believed to be the earliest fossil evidence of life on Earth.
As such, scientists are now reconsidering their estimates on when microbial life first emerged on planet Earth. Prior to this discovery, it was believed that Earth was a hellish environment 3.7 billion years ago. This was roughly 300 million years after the planet had finished cooling, and scientists believed it would take at least half a billion years for life to form after this point.
But with this new evidence, it now appears that life could have emerged faster than that. As Allen P. Nutman – a professor from the University of Wallongong, Australia, and the study’s lead author – said in a university press release:
“The significance of stromatolites is that not only do they provide obvious evidence of ancient life that is visible with the naked eye, but that they are complex ecosystems. This indicates that as long as 3.7 billion years ago microbial life was already diverse. This diversity shows that life emerged within the first few hundred millions years of Earth’s existence, which is in keeping with biologists’ calculations showing the great antiquity of life’s genetic code.”
When life emerged is a major factor when it comes to Earth’s chemical cycles. Essentially, Earth’s atmosphere during the Hadean was believed to be composed of heavy concentrations of CO² atmosphere, hydrogen and water vapor, which would be toxic to most life forms today. During the following Archean era, this primordial atmosphere slowly began to be converted into a breathable mix of oxygen and nitrogen, and the protective ozone layer was formed.
The emergence of microbial life played a tremendous role in this transformation, allowing for the sequestration of CO² and the creation of oxygen gas through photosynthesis. Therefore, when it comes to Earth’s evolution, the question of when life arose and began to affect the chemical cycles of the planet has always been paramount.
“This discovery turns the study of planetary habitability on its head,” said associate Professor Bennett, one of the study’s co-authors. “Rather than speculating about potential early environments, for the first time we have rocks that we know record the conditions and environments that sustained early life. Our research will provide new insights into chemical cycles and rock-water-microbe interactions on a young planet.”
The find has also inspired some to speculation that similar life structures could be found on Mars. Thanks to the ongoing efforts of Martian rovers, landers and orbiters, scientists now know with a fair degree of certainty that roughly 3.7 billion years ago, Mars had a warmer, wetter environment.
As a result, it is possible that life on Mars had enough time to form before its atmosphere was stripped away and the waters in which the microbe would have emerged dried up. As Professor Martin Van Kranendonk, the Director of the Australian Centre for Astrobiology at UNSW and a co-author on the paper, explained:
“The structures and geochemistry from newly exposed outcrops in Greenland display all of the features used in younger rocks to argue for a biological origin. This discovery represents a new benchmark for the oldest preserved evidence of life on Earth. It points to a rapid emergence of life on Earth and supports the search for life in similarly ancient rocks on Mars.”
Another thing to keep in mind is that compared to Earth, Mars experiences far less movement in its crust. As such, any microbial life that existed on Mars roughly 3.7 billion years ago would likely be easier to find.
This is certainly good news for NASA, since one of the main objectives of their Mars 2020 rover is to find evidence of past microbial life. I for one am looking forward to seeing what it leaves for us to pickup in its cache of sample tubes!
This is a key milestone for the Curiosity mission because the “Murray Buttes” are the entry way along Curiosity’s planned route up lower Mount Sharp.
Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.
The area features eroded mesas and buttes that are reminiscent of the U.S. Southwest.
So the team directed the rover to capture a 360-degree color panorama using the robots mast mounted Mastcam camera earlier this month on Aug. 5.
The full panorama shown above combines more than 130 images taken by Curiosity on Aug. 5, 2016, during the afternoon of Sol 1421 by the Mastcam’s left-eye camera.
In particular note the dark, flat-topped mesa seen to the left of the rover’s arm. It stands about 50 feet (about 15 meters) high and, near the top, about 200 feet (about 60 meters) wide.
Coincidentally, Aug. 5 also marks the fourth anniversary of the six wheeled rovers landing on the Red Planet via the unprecedented Sky Crane maneuver.
You can explore this spectacular Mars panorama in great detail via this specially produced 360-degree panorama from JPL. Simply move the magnificent view back and forth and up and down and all around with your mouse or mobile device.
Video Caption: This 360-degree panorama was acquired on Aug. 5, 2016, by the Mastcam on NASA’s Curiosity Mars rover as the rover neared features called “Murray Buttes” on lower Mount Sharp. The dark, flat-topped mesa seen to the left of the rover’s arm is about 50 feet (about 15 meters) high and, near the top, about 200 feet (about 60 meters) wide.
“The buttes and mesas are capped with rock that is relatively resistant to wind erosion. This helps preserve these monumental remnants of a layer that formerly more fully covered the underlying layer that the rover is now driving on,” say rover scientists.
“The relatively flat foreground is part of a geological layer called the Murray formation, which formed from lakebed mud deposits. The buttes and mesas rising above this surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer — the Stimson formation — during the first half of 2016 while crossing a feature called “Naukluft Plateau” between two exposures of the Murray formation.”
Three years ago, the team informally named the site to honor Caltech planetary scientist Bruce Murray (1931-2013), a former director of NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL manages the Curiosity mission for NASA.
As of today, Sol 1447, August 31, 2016, Curiosity has driven over 7.9 miles (12.7 kilometers) since its August 2012 landing, and taken over 348,500 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Mars’ natural satellites – Phobos and Deimos – have been a mystery since they were first discovered. While it is widely believed that they are former asteroids that were captured by Mars’ gravity, this remains unproven. And while some of Phobos’ surface features are known to be the result of Mars’ gravity, the origin of its linear grooves and crater chains (catenae) have remained unknown.
But thanks to a new study by Erik Asphaug of Arizona State University and Michael Nayak from the University of California, we may be closer to understanding how Phobos’ got its “groovy” surface. In short, they believe that re-accretion is the answer, where all the material that was ejected when meteors impacted the moon eventually returned to strike the surface again.
Naturally, Phobos’ mysteries extend beyond its origin and surface features. For instance, despite being much more massive than its counterpart Deimos, it orbits Mars at a much closer distance (9,300 km compared to over 23,000 km). It’s density measurements have also indicated that the moon is not composed of solid rock, and it is known to be significantly porous.
Because of this proximity, it is subject to a lot of tidal forces exerted by Mars. This causes its interior, a large portion of which is believed to consist of ice, to flex and stretch. This action, it has been theorized, is what is responsible for the stress fields that have been observed on the moon’s surface.
However, this action cannot account for another common feature on Phobos, which are the striation patterns (aka. grooves) that run perpendicular to the stress fields. These patterns are essentially chains of craters that typically measure 20 km (12 mi) in length, 100 – 200 meters (330 – 660 ft) in width, and usually 30 m (98 ft) in depth.
In the past, it was assumed that these craters were the result of the same impact that created Stickney, the largest impact crater on Phobos. However, analysis from the Mars Express mission revealed that the grooves are not related to Stickney. Instead, they are centered on Phobos’ leading edge and fade away the closer one gets to its trailing edge.
For the sake of their study, which was recently published in Nature Communications, Asphaug and Nayak used computer modeling to simulate how other meteoric impacts could have created these crater patterns, which they theorized were formed when the resulting ejecta circled back and impacted the surface in other locations.
As Dr. Asphaug told Universe Today via email, their work was the result of a meeting of minds that spawned an interesting theory:
“Dr. Nayak had been studying with Prof. Francis Nimmo (of UCSC), the idea that ejecta could swap between the Martian moons. So Mikey and I met up to talk about that, and the possibility that Phobos could sweep up its own ejecta. Originally I had been thinking that seismic events (triggered by impacts) might cause Phobos to shed material tidally, since it’s inside the Roche limit, and that this material would thin out into rings that would be reaccreted by Phobos. That still might happen, but for the prominent catenae the answer turned out to be much simpler (after a lot of painstaking computations) – that crater ejecta is faster than Phobos’ escape velocity, but much slower than Mars orbital velocity, and much of it gets swept up after several co-orbits about Mars, forming these patterns.”
Basically, they theorized that if a meteorite stuck Phobos in just the right place, the resulting debris could have been thrown off into space and swept up later as Phobos swung back around mars. Thought Phobos does not have sufficient gravity to re-accrete ejecta on its own, Mars’ gravitational pull ensures that anything thrown off by the moon will be pulled into orbit around it.
Once this debris is pulled into orbit around Mars, it will circle the planet a few times until it eventually falls into Phobos’ orbital path. When that happens, Phobos will collide with it, triggering another impact that throws off more ejecta, thus causing the whole process to repeat itself.
In the end, Asphaug and Nayak concluded that if an impact hit Phobos at a certain point, the subsequent collisions with the resulting debris would form a chain of craters in discernible patterns – possibly within days. Testing this theory required some computer modeling on an actual crater.
Using Grildrig (a 2.6 km crater near Phobos’ north pole) as a reference point, their model showed that the resulting string of craters was consistent with the chains that have been observed on Phobos’ surface. And while this remains a theory, this initial confirmation does provide a basis for further testing.
“The initial main test of the theory is that the patterns match up, ejecta from Grildrig for example,” said Asphaug. “But it’s still a theory. It has some testable implications that we’re now working on.”
In addition to offering a plausible explanation of Phobos’ surface features, their study is also significant in that it is the first time that sesquinary craters (i.e. craters caused by ejecta that went into orbit around the central planet) were traced back to their primary impacts.
In the future, this kind of process could prove to be a novel way to assess the surface characteristics of planets and other bodies – such as the heavily cratered moons of Jupiter and Saturn. These findings will also help us to learn more about Phobos history, which in turn will help shed light on the history of Mars.
“[It] expands our ability to make cross-cutting relationships on Phobos that will reveal the sequence of geologic history,” Asphaug added. “Since Phobos’ geologic history is slaved to the tidal dissipation of Mars, in learning the timescale of Phobos geology we learn about the interior structure of Mars”
And all of this information is likely to come in handy when it comes time for NASA to mount crewed missions to the Red Planet. One of the key steps in the proposed “Journey to Mars” is a mission to Phobos, where the crew, a Mars habitat, and the mission’s vehicles will all be deployed in advance of a mission to the Martian surface.
Learning more about the interior structure of Mars is a goal shared by many of NASA’s future missions to the planet, which includes NASA’s InSight Lander (schedules for launch in 2018). Shedding light on Mars geology is expected to go a long way towards explaining how the planet lost its magnetosphere, and hence its atmosphere and surface water, billions of years ago.
NASA’s Mars Exploration Program has accomplished some truly spectacular things in the past few decades. Officially launched in 1992, this program has been focused on three major goals: characterizing the climate and geology of Mars, looking for signs of past life, and preparing the way for human crews to explore the planet.
And in the coming years, the Mars 2020 rover will be deployed to the Red Planet and become the latest in a long line of robotic rovers sent to the surface. In a recent press release, NASA announced that it has awarded the launch services contract for the mission to United Launch Alliance (ULA) – the makers of the Atlas V rocket.
The mission is scheduled to launch in July of 2020 aboard an Atlas V 541 rocket from Cape Canaveral in Florida, at a point when Earth and Mars are at opposition. At this time, the planets will be on the same side of the Sun and making their closest approach to each other in four years, being just 62.1 million km (38.6 million miles) part.
Following in the footsteps of the Curiosity, Opportunity andSpirit rovers, the goal of Mars 2020 mission is to determine the habitability of the Martian environment and search for signs of ancient Martian life. This will include taking samples of soil and rock to learn more about Mars’ “watery past”.
But whereas these and other members of the Mars Exploration Program were searching for evidence that Mars once had liquid water on its surface and a denser atmosphere (i.e. signs that life could have existed), the Mars 2020 mission will attempt to find actual evidence of ancient microbial life.
The design of the rover also incorporates several successful features of Curiosity. For instance, the entire landing system (which incorporates a sky crane and heat shield) and the rover’s chassis have been recreated using leftover parts that were originally intended for Curiosity.
There’s also the rover’s radioisotope thermoelectric generator – i.e. the nuclear motor – which was also originally intended as a backup part for Curiosity. But it will also have several upgraded instrument on board that allow for a new guidance and control technique. Known as “Terrain Relative Navigation”, this new landing method allows for greater maneuverability during descent.
Another new feature is the rover’s drill system, which will collect core samples and store them in sealed tubes. These tubes will then be left in a “cache” on the surface, where they will be retrieved by future missions and brought back to Earth – which will constitute the first sample-return mission from the Red Planet.
In this respect, Mars 2020 will help pave the way for a crewed mission to the Red Planet, which NASA hopes to mount sometime in the 2030s. The probe will also conduct numerous studies designed to improve landing techniques and assess the planet’s natural resources and hazards, as well as coming up with methods to allow astronauts to live off the environment.
In terms of hazards, the probe will be looking at Martian weather patterns, dust storms, and other potential environmental conditions that will affect human astronauts living and working on the surface. It will also test out a method for producing oxygen from the Martian atmosphere and identifying sources of subsurface water (as a source of drinking water, oxygen, and hydrogen fuel).
As NASA stated in their press release, the Mars 2020 mission will “offer opportunities to deploy new capabilities developed through investments by NASA’s Space Technology Program and Human Exploration and Operations Mission Directorate, as well as contributions from international partners.”
They also emphasized the opportunities to learn ho future human explorers could rely on in-situ resource utilization as a way of reducing the amount of materials needed to be shipped – which will not only cut down on launch costs but ensure that future missions to the planet are more self-reliant.
The total cost for NASA to launch Mars 2020 is approximately $243 million. This assessment includes the cost of launch services, processing costs for the spacecraft and its power source, launch vehicle integration and tracking, data and telemetry support.
The use of spare parts has also meant reduced expenditure on the overall mission. In total, the Mars 2020 rover and its launch will cost and estimated $2.1 billion USD, which represents a significant savings over previous missions like the Mars Science Laboratory – which cost a total of $2.5 billion USD.
Between now and 2020, NASA also intends to launch the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander mission, which is currently targeted for 2018. This and the Mars 2020 rover will be the latest in a long line of orbiters, rovers and landers that are seeking to unlock the mysteries of the Red Planet and prepare it for human visitors!
A virgin SpaceX Falcon 9 rocket carrying the Japanese JCSAT-16 telecom satellite roared to life past midnight last Sunday, Aug. 14, at 1:26 a.m. EDT and streaked to orbit from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.
After the first stage firing was completed, it separated from the second stage, turned around 180 degrees, relit three of its Merlin 1D engines and began descending back to Earth towards the waiting drone ship barge.
Scarcely nine minutes later the 15 story tall first stage completed a pinpoint and upright soft landing on a prepositioned ocean going platform some 400 miles (650 km) off shore of of Florida’s east coast in the Atlantic Ocean., after successfully delivering the Japanese communications satellite to its intended geostationary orbit.
It was towed back into port on Wedenesday, Aug. 16 atop the diminutive ocean landing platform measuring only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The JCSAT-16 satellite was successfully deployed from the second stage about 32 minutes after liftoff from Cape Canaveral – as the primary objective of this flight.
The secondary experimental objective was to try and recover the first stage booster via a propulsive landing on the ocean-going platform named “Of Course I Still Love You” or OCISLY.
The ocean-going barge is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.
OCISLY and the vertical booster arrived back into Port Canaveral three days later on Wednesday morning, Aug. 17,floating past unsuspecting tourists and pleasure craft.
A heavy duty crane lifted the spent 156-foot-tall (47-meter) booster off the OCISLY barge and onto a restraining cradle within hours of arrival.
Watch this exquisitely detailed video from USLaunchReport showing workers capping the first stage and preparing the booster for craning off the barge on Aug. 17, 2016.
Video Caption: SpaceX – JCSAT-16 – In Port – YouTube 4K – 08-17-2016. Credit: USLaunchReport
One by one, workers then removed all four landing legs over the next two days.
It will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch processing facilities and hangars at Cape Canaveral for refurbishment, exhaustive engine and structural testing. It will also be washed, stored and evaluated for reuse.
This 6th successful Falcon upright first stage landing – two by land and four by sea – is part of a continuing series of technological marvels/miracles rocking the space industry to its core.
The sextet of intact and upright touchdowns of the recovered 156-foot-tall (47-meter) booster count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.
To date SpaceX had successfully recovered first stages three times in a row at sea earlier this year on the ocean going drone ship barge using the company’s OCISLY Autonomous Spaceport Drone Ship (ASDS) on April 8, May 6 and May 27.
Two land landings back at Cape Canaveral Landing Zone-1 were accomplished on Dec. 21, 2015 and July 18, 2016.
The JCSAT-16 communications satellite was built by Space Systems Loral for Tokyo-based SKY Perfect JSAT Corp. It is equipped Ku-band and Ka-band communications services for customers of SKY Perfect JSAT Corp.
The satellite was launched using the upgraded version of the 229 foot tall Falcon 9 rocket.
Relive the launch via this pair of videos from remote video cameras set at the SpaceX launch pad 40 facility:
Video caption: SpaceX Falcon 9 launch of JCSAT-16 on Aug. 14, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Video Caption: Launch of the JCSAT-16 communications satellite on a SpaceX Falcon 9 rocket on 8/14/2016 from Pad 40 of CCAFS. Credit: Jeff Seibert
SKY Perfect JSAT Corp. is a leading satellite operator in the Asia – Pacific region. JCSAT-16 will be positioned 22,300 miles (35,800 kilometers) above the equator.
The Aug. 14 launch was the second this year for SKY Perfect JSAT. The JCSAT-14 satellite was already successfully launched earlier this year atop a SpaceX Falcon 9 on May 6.
JCSAT-16 will primarily serve as an on orbit back up spare for the company’s existing services, a company spokeswomen told Universe Today at the media launch viewing site.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Conjunctions of bright planets make for jewelry in the sky. This week, get ready for some celestial shimmer. If you’ve been following the hither and thither of Mars and Saturn near Antares this summer, you know these planets have been constantly on the move, creating all kinds of cool alignments in the southern sky.
On Tuesday night (August 23) the hopscotching duo will fall in line atop Antares in the southwestern sky at nightfall. Mars will sit just 1.5° above the star and Saturn 4° above Mars. Viewed from the Americas and Europe, the line will appear slightly bent. To catch them perfectly lined up, you’ll have to be in central Asia on the following evening, but the view should be pleasing no matter where you live.
Nice as it is, the Mars-Saturn-Antares lineup is only the warm-up for the big event: the closest conjunction of the two brightest planets this year. On Saturday evening, August 27, Venus and Jupiter will approach within a hair’s breadth of each other as viewed with the naked eye — only 0.1° will separate the two gems. That’s one-fifth of a full moon’s width! While Mars and Saturn will be a snap to spot low in the southwestern sky during their conjunction, Venus and Jupiter snuggle near the western horizon at dusk.
To make sure you see them, find a place in advance of the date with a wide open view to the west. I also suggest bringing a pair of binoculars. It’s so much easier to find an object in bright twilight with help from the glass. You can start looking about 25 minutes after sunset; Venus will catch your eye first. Once you’ve found it, look a smidge to its lower right for Jupiter. If you’re using binoculars, lower them to see how remarkably close the two planets appear using nothing but your eyeballs. Perhaps they’ll remind you of a bright double star in a telescope or even the twin suns of Tatooine in Star Wars.
Have a small telescope? Take it along — Jupiter and Venus are so close together that they easily fit in the same high magnification field of view. Jupiter’s four brightest moons will be on display, and Venus will look just like a miniature version of the waxing gibbous moon. Rarely do the sky’s two brightest planets nearly fuse, making this a not-to-miss event.
If cloudy weather’s in the forecast that night, you can still spot them relatively close together the night before and night after, when they’ll be about 1° or two full moon diameters apart. I get pretty jazzed when bright objects approach closely in the sky, and I’m betting you do, too.
I also don’t mind being taken in by illusion once in a while. During a conjunction, planets only appear close together because we view them along the same line of sight. Their real distances add a dose of reality.
On Saturday evening Venus will be 143 million miles (230 million km) away vs. 592 million miles (953 million km) for Jupiter. In spite of appearing to almost touch, Jupiter is more than four times farther than the goddess planet.
That distance translates to the chill realm of the giant gaseous planets where sunlight is weak and ice is common. Try stretching your imagination that evening to sense as best you can the vast gulf between the two worlds.
You might also try taking a picture of them with your mobile phone. I suggest this because the sky will be light enough to get a hand-held photo of the scene. Photos or not, don’t miss what the planets have in store for earthlings this week.
NASA STENNIS SPACE CENTER, MISS – NASA engineers successfully carried out a key developmental test firing of an RS-25 rocket engine along with its modernized ‘brain’ controller at the Stennis Space Center on Thursday, Aug. 18, as part of the ongoing huge development effort coordinating the agency’s SLS Mars mega rocket slated for its maiden blastoff by late 2018.
“Today’s test was very successful,” Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, told Universe Today in an exclusive interview at the conclusion of the exciting RS-25 engine test gushing a huge miles long plume of steam at NASA Stennis on Aug. 18 under sweltering Gulf Coast heat.
“It was absolutely great!”
Thursday’s full thrust RS-25 engine hot fire test, using engine No. 0528, ran for its planned full duration of 7.5 minutes and met a host of critical test objectives required to confirm and scope out the capabilities and operating margins of the upgraded engines ,which are recycled from the shuttle era.
“We ran a full program duration of 420 seconds . And we had no failure identifications pop up.”
“It looks like we achieved all of our data objectives,” Wofford elaborated to Universe Today, after we witnessed the test from a viewing area just a few hundred meters away, with our ears protected by ear plugs.
A cluster of four RS-25 engines will power the Space Launch System (SLS) at the base of the first stage, also known as the core stage.
SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!
NASA’s goal is to send humans to Mars by the 2030s with SLS and Orion.
The primary goal of the development tests is to validate the capabilities of a new controller – or, “brain” – for the engine and to verify the different operating conditions needed for the SLS vehicle.
The test was part of a long continuing and new series aimed at certifying the engines for flight.
“We continue this test series in the fall. Which is a continuing part of our certification series to fly these engines on NASA’s SLS vehicle,” Wofford told me.
What was the primary objective of today’s test?
“Today’s test was mostly about wringing out the new control system. We have a new engine controller on this engine. And we have to certify that new controller for flight.”
“So to certify it we run it through its paces in ground tests. And we put it through a more stringent set of test conditions than it will ever see in flight.”
“The objectives we tested today required 420 seconds of testing to complete.”
Watch this NASA video of the full test:
Video Caption: RS-25 Rocket Engine Test Firing on 18 Aug. 2016: The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch of NASA’s Space Launch System mega rocket. Credit: NASA
What are the additional objectives from today’s test?
“Well you can’t do all of your objectives in one test. So the certification series are all about technical objectives and total accumulated time. So one thing we did was we accumulated time toward the time we need to certify this control system for the SLS engine,” Wofford explained.
“The other thing we did was you pick some technical objectives you want to put the controller through its paces for. And again you can’t do all of those in one test. So you spread them over a series. And we did some of those on this test.”
Aerojet Rocketdyne is the prime contractor for the RS-25 engine work and originally built them during the shuttle era.
The remaining cache of 16 heritage RS-25 engines are being recycled from their previous use as reusable space shuttle main engines (SSMEs). They are now being refurbished, upgraded and tested by NASA and Aerojet Rocketdyne to power the core stage of the Space Launch System rocket now under full development.
During launch they will fire at 109 percent thrust level for some eight and a half minutes while generating a combined two million pounds of thrust.
The SLS core stage is augmented with a pair of five segment solid rocket boosters (SRBs) generating about 3.3 million pounds of thrust each. NASA and Orbital just completed the QM-2 SRB qualification test on June 28.
Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX).
The first liquid hydrogen (LH2) qualification fuel tank for the core stage was just welded together at NASA’s Michoud Assembly Facility in New Orleans – as I witnessed exclusively and reported here.
The RS-25 engines measure 14 feet tall and 8 feet in diameter.
For SLS they will be operating at 109% of power – a higher power level compared to a routine usage of 104.5% during the shuttle era.
They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.
Why was about five seconds of Thursday’s test run at the 111% power level? Will that continue in future tests?
“We did that because we plan to fly this engine on SLS at 109% of power level. So it’s to demonstrate the feasibility of doing that. On shuttle we were certified to fly these engines at 109%,” Wofford confirmed to Universe Today.
“So to demonstrate the feasibility of doing 109% power level on SLS we ‘overtest’ . So we ran [today’s test] at 2 % above where we are going to fly in flight.”
“We will do more in the future.”
The fully assembled core stage intergrated with all 4 RS-25 flight engines will be tested at the B-2 test stand in Stennis during the first quarter of 2018 – some 6 months or more before the launch in late 2018.
How many more engines tests will be conducted prior to the core stage test?
“After today we will run 7 more tests before the core stage test and the first flight.”
“I’m thrilled. I’ve see a lot of these and it never gets old!” Wofford gushed.
The hardware for SLS and Orion is really coming together now and its becoming more and more real every day.
These are exciting times for NASA’s human deep space exploration strategy.
The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.
Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Many features on the surface of Mars hint at the presence of liquid water in the past. These range from the Valles Marineris, a 4,000 km long and 7 km deep system of canyons, to the tiny hematite spherules called “blueberries“. These features suggest that liquid water played a vital role in shaping Mars.
Some studies show that these features have volcanic origins, but a new study from two researchers at the Carl Sagan Institute and the NASA Virtual Planet Laboratory put the focus back on liquid water. The model that the two came up with says that, if other conditions were met, cirrus clouds could have provided the necessary insulation for liquid water to flow. The two researchers, Ramses M. Ramirez and James F. Kasting, constructed a climate model to test their idea.
Cirrus clouds are thin, wispy clouds that appear regularly on Earth. They’ve also been seen on Jupiter, Saturn, Uranus, possibly Neptune, and on Mars. Cirrus clouds themselves don’t produce rain. Whatever precipitation they produce, in the form of ice crystals, evaporates before reaching the surface. The researchers behind this study focussed on cirrus clouds’ because they tend to warm the air underneath them by 10 degrees Celsius.
If enough of Mars was covered by cirrus clouds, then the surface would be warm enough for liquid water to flow. On Earth, cirrus clouds cover up to 25% of the Earth and have a measurable heating effect. They allow sunlight in, but absorb outgoing infrared radiation. Kasting and Ramirez sought to show how the same thing might happen on Mars, and how much cirrus cloud cover would be necessary.
The cirrus clouds themselves wouldn’t have created all the warmth. Impacts from comets and asteroids would have created the heat, and extensive cirrus cloud cover would have trapped that heat in the Martian atmosphere.
The two researchers conducted a model, called a single-column radiative-convective climate model. They then tested different ice crystal sizes, the portion of the sky covered by cirrus clouds, and the thicknesses of those clouds, to simulate different conditions on Mars.
They found that under the right circumstances, the clouds in the early Martian atmosphere could last 4 to 5 times longer than on Earth. This favors the idea that cirrus clouds could have kept Mars warm enough for liquid water. However, they also found that 75% to 100% of the planet would have to be covered by cirrus. That amount of cloud cover seems unlikely according to the researchers, and they suggest that 50% would be more realistic. This figure is similar to Earth’s cloud cover, including all cloud types, not just cirrus.
As they adjusted the parameters of their model, they found that thicker clouds and smaller particle sizes reduced the heating effect of the cirrus cloud cover. This left a very thin set of parameters in which cirrus clouds could have kept Mars warm enough for liquid water. But their modelling also showed that there is one way that cirrus clouds could have done the job.
If the ancient Martian surface temperature was lower than 273 Kelvin, the value used in the model, then it would be possible for cirrus clouds to do their thing. And it would only have to be lower by 8 degrees Kelvin for that to happen. At times in Earth’s past, the surface temperature has been lower by 7 degrees Kelvin. The question is, might Mars have had a similarly lower temperature?
So, where does that leave us? We don’t have a definitive answer yet. It’s possible that cirrus clouds on Mars could have helped to keep the planet warm enough for liquid water. The modelling done by Ramirez and Kasting shows us what parameters were required for that to happen.
“We are in the full development stage right now and roughly 50% complete with the platforms on this job,” David Sumner, GSDO Deputy Sr. project manager for VAB development work at KSC, told Universe Today in an exclusive interview inside the VAB’s High Bay 3 on July 28, amidst workers actively turning NASA’s deep space dreams into full blown reality. See our exclusive up close photos herein – detailing the huge ongoing effort.
Upgrading and renovating the VAB is specifically the responsibility of NASA’s Ground Systems Development and Operations Program (GSDO) at Kennedy.
Inside VAB High Bay 3 – where previous generations of space workers proudly assembled NASA’s Saturn V Moon rocket and the Space Shuttle Orbiter launch stacks – today’s crews of workers were actively installing the newly manufactured work platforms needed to process and build the agency’s Space Launch System (SLS) rocket that will soon propel our astronauts back to exciting deep space destinations.
“We are very excited. We are at the beginning of a new program!” Sumner told me. “We have the infrastructure and are getting into operations soon.”
It’s certainly an exciting time as NASA pushes forward on all fronts in a coordinated nationwide effort to get the SLS rocket with the Orion EM-1 crew vehicle bolted on top ready and rolled out to Kennedy’s pad 39B for their planned maiden integrated blastoff by Fall 2018.
SLS and Orion are at the heart of NASA’s agency wide strategy to send astronauts on a ‘Journey to Mars’ by the 2030s.
SLS is the most powerful booster the world has even seen and is designed to boost NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!
I walked into High Bay 3, scanned all around and up to the ceiling some 525 feet away and was thrilled to see a bustling construction site – the future of human voyages in deep space unfolding before my eyes. As I looked up to see the newly installed work platforms, I was surrounded by the constant hum of plenty of hammering, cutting, welding, hoisting, fastening, banging and clanging and workers moving equipment and gear around.
Altogether a total of 10 levels of work platform levels will be installed in High Bay 3 – labeled K to A, from bottom to top. Each level consists of two platform halves, denoted as the North and South side platforms.
What’s the status today?
“We are looking up at 5 of 10 platform levels with 10 of 20 platform halves installed here. A total of ten levels are being installed,” Sumner explained.
“We are installing them from the bottom up. The bottom five levels are installed so far.”
“We are up to about the 190 foot level right now with Platform F installation. Then we are going up to about the 325 foot level with the 10th platform [Platform A].
“So there are 10 levels for EM-1.”
So much work was visible and actively in progress I definitely got the feeling from the ground up that NASA is now rapidly moving into the new post shuttle Era – dominated by the mammoth new SLS making its assembly debut inside these hallowed walls some 18 months or so from today.
“The work today is some outfitting on the platforms overhead here, as well as more work on the platform halves sitting in the transfer aisle and High Bay 4 to get them ready to lift and install into High Bay 3.”
“Overhead steel work is also ongoing here in High Bay 3 with additional steel work going vertical for reinforcement and mounting brackets for all the platforms going vertically.”
“So quite a few work locations are active with different crews and different groups.”
Two additional new platform halves are sitting in the VAB transfer aisle and are next in line for installation. With two more awaiting in VAB High Bay 4. Fabrication of additional platform halves is ongoing at KSC’s nearby Oak Hill facility.
“The rest are being fabricated in our Oak Hill facility. So we have almost everything on site so far.”
Hensel Phelps is the general contractor for the VAB transformation. Subcontractors include S&R, Steel LLC, Sauer Inc., Jacobs and Beyel Bros Crane and Rigging.
The work platforms enable access to the SLS rocket at different levels up and down the over 300 foot tall rocket topped by the Orion crew capsule. They will fit around the outer mold line of SLS – including the twin solid rocket boosters, the core stage, and upper stage – and Orion.
The SLS core stage is being manufactured at NASA’s Michoud Assembly Facility in New Orleans, where I recently inspected the first completed liquid hydrogen tank test article – as reported here. Orion EM-1 is being manufactured here at Kennedy – as I reported here.
The platforms will provide access for workers to assemble, process and test all the SLS and Orion components before rolling out to Launch Complex 39B atop the 380 foot tall Mobile Launcher – which is also undergoing a concurrent major renovation and overhaul.
As of today, five of the ten levels of platforms are in place.
Each of the giant platforms made of steel measures about 38 feet long and close to 62 feet wide. They weigh between 300,000 and 325,000 pounds.
The most recently installed F North and South platforms were put in place on the north and south walls of the high bay on July 15 and 19, respectively.
Here’s the view looking out to Platform F:
How are the platforms installed ?
The platforms are carefully lifted into place by workers during a process that lasts about four hours.
“The 325 and 250 ton overhead facility cranes are used to [slowly] lift and move the platform halves back and forth between the VAB transfer aisle and High Bay 4 and into the SLS High Bay 3.”
Then they are attached to rail beams on the north and south walls of the high bay.
Construction workers from Beyel Bros Crane and Rigging also use a Grove 40 ton all terrain crane. It is also outfitted with man baskets to get to the places that cannot be reached by scaffolding in High Bay 3.
Installation of the remaining five levels of platforms should be completed by mid-2017.
“The job will be done by the middle of 2017. All the construction work will be done,” Sumner explained.
“Then we will get into our verification and validations with the Mobile Launcher (ML). Then the ML will roll in here around middle to late 2017 [for checkouts and testing] and then roll out to the pad [for more testing]. After that it will roll back in here. Then we will be ready to stack the SLS starting after that!”
The platforms will be tested beginning later this year, starting with the lowest platforms at the K-level, and working all the way up to the top, the A-level.
The platforms are attached to a system of rail beams that “provide structural support and contain the drive mechanisms to retract and extend the platforms,” according to a NASA fact sheet.
“Each platform will reside on four Hillman roller systems on each side – much like a kitchen drawer slides in and out. A mechanical articulated tray also moves in and out with each platform.”
The F-level platforms are located about 192 feet above the VAB floor.
“They will provide access to the SLS core stage (CS) intertank for umbilical mate operations. The “F-1” multi-level ground support equipment access platform will be used to access the booster forward assemblies and the CS to booster forward attach points. The upper level of F-1 will be used to remove the lifting sling used to support forward assembly mate for booster stacking operations.”
“Using the five platforms that are now installed, workers will have access to all of the Space Launch System rocket’s booster field joints and forward skirts, the core stage intertank umbilical and interface plates,” says Mike Bolger, GSDO program manager at Kennedy.
‘NASA is transforming KSC into a launch complex for the 21st Century,’ as KSC Center Director and former shuttle commander Bob Cabana often explains.
So it was out with the old and in with the new to carry out that daunting task.
“We took the old shuttle platforms out, went down to the [building] structure over the past few years and are now putting up the new SLS platforms,” Sumner elaborated.
“All the demolition work was done a few years ago. So we are in the full development stage right now and roughly 50% complete with the platforms on this job.”
And after NASA launches EM-1, significantly more VAB work lies ahead to prepare for the first manned Orion launch on the EM-2 mission set for as soon as 2021 – because it will feature an upgraded and taller version of the SLS rocket – including a new upper stage.
“For EM-2, the plan right now is we will add two more levels and relocate three more. So we will do some adjustments and new installations in the upper levels for EM-2.”
“It’s been an honor to be here and work here in the VAB every day – and prepare for the next 50 years of its life.”
“We are at the beginning of a new program. We have the infrastructure and are getting into operations soon,” Sumner said. “We have hopefully got a long way to go on the future of space exploration, with many decades of exploration ahead.”
“We are on a ‘Journey to Mars’ and elsewhere. So this is the beginning of all that. It’s very exciting!”
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.