Planets can sneak up on you. Especially the ones that don’t rise till you’re in bed. Take Mars for instance. It’s been ambling east along the morning zodiac all winter long; today it enters Scorpius, rising around 1:30 a.m. Not two days later, the planet will have a spectacularly close conjunction with Beta Scorpii, the topmost star in the scorpion’s head.
Also known as Graffias, Beta shines at magnitude +2.6 next to the fiery, zero-magnitude Mars. With their striking color contrast, the two would make a superb ring setting: a tiny diamond nestled next to a plump garnet. They’ll be together for several mornings, their separation changing each day: 15 arc minutes on Tuesday (1/2 the diameter of the Full Moon); 9 arc minutes when closest on Wednesday and back out to 23 minutes on Thursday.
It’s a gas to see two celestial objects approach so closely, but this conjunction offers a rare treat. Did you know that Beta is one of the finest double stars in the sky? It has a fifth magnitude companion 14 arc seconds northeast of the primary. Any telescope will split this jewel and show Mars in the same field of view at both high and low magnifications. That’s just so cool — I sure hope you’ll get to see them.
Mars now measures 10 arc seconds in diameter, small for sure, but big enough to see the larger dark markings and a hint of the north polar cap. The planet is heading for opposition on May 22nd, when it will shine at magnitude -2.0 (brighter than Sirius) with a disk 18.4 arc seconds across, its biggest and closest since 2005.
Let this week’s lovely conjunction serve as a warm-up to the forthcoming season of Mars.
After settling into orbit around Mars, it’s instruments will scan for minute signatures of methane gas that could possibly be an indication of life or of nonbiologic geologic processes ongoing today.
The spacecraft is currently circling in a temporary and preliminary parking orbit around Earth following liftoff of the 191-foot-tall (58-meter) Russian-built rocket under overcast skies – awaiting a critical final engine burn placing the probe on an interplanetary trajectory to Mars.
The 9,550-pound (4,332-kilogram) ExoMars 2016 spacecraft continued soaring to orbit after nominal firings of the Proton’s second and third stages and jettisoning of the payload fairing halves protecting the vehicle during ascent through Earth’s atmosphere.
A total of four more burns from the Breeze-M upper stage are required to boost ExoMars higher and propel it outwards on its seven-month-long journey to the Red Planet.
So the excitement and nail biting is not over yet and continues to this moment. The final successful outcome of today’s mission cannot be declared until more than 10 hours after liftoff – after the last firing of the Breeze-M upper stage sets the probe on course for Mars and escaping the tug of Earth’s gravity.
The first three Breeze-M fourth stage burns have now been completed as of about 9:40 am EST, according to ESA mission control on Darmstadt, Germany.
The fourth and final ignition of the Breeze-M upper stage and spacecraft separation is slated for after 3 p.m. EDT today, March 14, 2016.
The first acquisition of signal from the spacecraft is expected later at about 5:21:29 p.m. EST (21:29 GMT).
The ExoMars 2016 mission is comprised of a joined pair of European-built spacecraft consisting of the Trace Gas Orbiter (TGO) plus the Schiaparelli entry, descent and landing demonstrator module, built and funded by the European Space Agency (ESA).
The cooperative mission includes significant participation from the Russian space agency Roscosmos who provided the Proton-M launcher, part of the science instrument package, the surface platform and ground station support.
The launch was carried live courtesy of a European Space Agency (ESA) webcast:
ESA is continuing live streaming of the launch events throughout the day as burns continue and events unfold lead up to the critical final burn of the Breeze-M upper stage
The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases, present at levels of one percent or far less.
On Earth methane can be produced by biology, volcanoes, natural gas and hydrothermal activity. TGO will investigate what makes it on Mars and follow up on measurements from NASA’s Curiosity rover and other space based assets and telescopes.
Martian methane has a lifetime of about 400 years, until it is destroyed by solar UV & mixed by atmosphere, says Jorge Vago, ESA ExoMars 2016 principal scientist.
The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.
The battery powered lander is expected to operate for perhaps four and up to eight days until the battery is depleted.
The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.
It is equipped with the first ever deep driller that can collect samples to depths of 2 meters (seven feet) where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.
ExoMars was originally a joint NASA/ESA project.
But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.
NASA is still providing the critical MOMA science instrument that will search for organic molecules.
Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.
TGO will also help search for safe landing sites for the ExoMars 2018 lander and serve as the all important data communication relay station sending signals and science from the rover and surface science platform back to Earth.
ExoMars 2016 is Europe’s most advanced mission to Mars and joins Europe’s still operating Mars Express Orbiter (MEX), which arrived back in 2004, as well as a fleet of NASA and Indian probes.
The Trace Gas Orbiter (TGO) and Schiaparelli lander arrive at Mars on October 19, 2016.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The countdown has begun for blastoff of the ambitious European/Russian ExoMars 2016 spacecraft from the Baikonur Cosmodrome in Kazakhstan on March 14. Its goal is to search for minute signatures of methane gas that could possibly be an indication of life or of nonbiologic geologic processes ongoing today.
Final launch preparations are now in progress. Liftoff of the powerful Russian Proton booster from Baikonur carrying the ExoMars spacecraft is slated for 5:31:42 a.m. EDT (0931:42 GMT), Monday morning, March 14.
You can watch the launch live courtesy of a European Space Agency (ESA) webcast:
The prelaunch play by play begins with live streaming at 4:30 a.m. EDT (08:30 GMT).
The first acquisition of signal from the spacecrft is expected at 21:29 GMT
As launch and post launch events unfold leading to spacecraft separation, ESA plans additional live streaming events at 7:00 a.m. EDT (11:00 GMT) and 5:10 p.m. (21:10 GMT)
Spacecraft separation from the Breeze upper stage is expected at about 10 hours, 41 minutes.
The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli entry, descent and landing demonstration lander, built and funded by the European Space Agency (ESA).
Russian is providing the Proton booster and part of the science instrument package.
“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.
ExoMars is Earth’s lone mission to the Red Planet following the two year postponement of NASA’s InSight lander from 2016 to 2018 to allow time to fix a defective French-built seismometer.
ESA reported late today , March 13, that at T-minus 12 hours the Trace Gas Orbiter has been successfully switch on, a telemetry link was established and the spacecrft battery charging has been completed.
The Proton rocket with the encapsulated spacecraft bolted atop were rolled out to the Baikonur launch pad on Friday, March 11 and the launcher was raised into the vertical position.
ESA mission controller then completed a full launch dress rehearsal on Saturday, March 12.
The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
NASA engineers have successfully test fired the first flight engine destined to power the agency’s mammoth new SLS rocket that will launch American astronauts back to the Moon and deep space for the first time in nearly five decades.
In the Autumn of 2014, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft arrived at Mars and entered into orbit. MAVEN wasn’t the only visitor to arrive at Mars at that time though, as comet Siding Spring (C/2013 A1) also showed up at Mars. Most of MAVEN’s instruments were shut down to protect sensitive electronics from Siding Spring’s magnetic field. But the magnetometer aboard the spacecraft was left on, which gave MAVEN a great view of the interaction between the planet and the comet.
Unlike Earth, which has a powerful magnetosphere created by its rotating metal core, Mars’ magnetosphere is created by plasma in its upper atmosphere, and is not very powerful. (Mars may have had a rotating metal core in the past, and a stronger magnetosphere because of it, but that’s beside the point.) Comet Siding Spring is small, with its nucleus being only about one half a kilometer. But its magnetosphere is situated in its coma, the long ‘tail’ of the comet that stretches out for a million kilometers.
When Siding Spring approached Mars, it came to within 140,000 km (87,000 miles) of the planet. But the comet’s coma nearly touched the surface of the planet, and during that hours-long encounter, the magnetic field from the comet created havoc with Mars’ magnetic field. And MAVEN’s magnetometer captured the event.
Jared Espley is a member of the MAVEN team at Goddard Space Flight Center. He said of the Mars/Siding Spring event, “We think the encounter blew away part of Mars’ upper atmosphere, much like a strong solar storm would.”
“The main action took place during the comet’s closest approach,” said Espley, “but the planet’s magnetosphere began to feel some effects as soon as it entered the outer edge of the comet’s coma.”
Espley and his colleagues describe the event as a tide that washed over the Martian magnetosphere. Comet Siding Spring’s tail has a magnetosphere due to its interactions with the solar wind. As the comet is heated by the sun, plasma is generated, which interacts in turn with the solar wind, creating a magnetosphere. And like a tide, the effects were subtle at first, and the event played out over several hours as the comet passed by the planet.
Siding Spring’s magnetic tide had only a subtle effect on Mars at first. Normally, Mars’ magnetosphere is situated evenly around the planet, but as the comet got closer, some parts of the planet’s magnetosphere began to realign themselves. Eventually the effect was so powerful that the field was thrown into chaos, like a flag flapping every which way in a powerful wind. It took Mars a while to recover from this encounter as the field took several hours to recover.
MAVEN’s task is to gain a better understanding of the interactions between the Sun’s solar wind and Mars. So being able to witness the effect that Siding Spring had on Mars is an added bonus. Bruce Jakosky, from the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder, is one of MAVEN’s principal investigators. “By looking at how the magnetospheres of the comet and of Mars interact with each other,” said Jakosky, “we’re getting a better understanding of the detailed processes that control each one.”
The Insight Mars lander has been saved from mission termination and will live to launch another day two years from now, NASA managers just announced following a thorough three month investigation into the causes of the last moment snafu involving the failure of its French-built seismometer science instrument that last December forced the agency to cancel its planned liftoff this month.
NASA is now targeting a new launch window that begins May 5, 2018, for the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission aimed at studying the deep interior of Mars.
The May 2018 launch amounts to an unavoidable 26 month launch delay from the originally planned launch on March 4, 2016. Because of the immutable laws of orbital mechanics, launch opportunities to the Red Planet only occur every 26 months.
Since InSight would not have been able to carry out and fulfill its intended research objectives because of a vacuum leak in its defective seismometer instrument, NASA managers had no choice but to scrub this year’s launch and its outlook for a future revival seemed potentially uncertain at best in today’s constrained budget environment.
“The spacecraft had been on track to launch this month until a vacuum leak in its prime science instrument prompted NASA in December to suspend preparations for launch,” said NASA officials.
The leak, if left uncorrected, would have rendered the flawed probe useless to carry out the unprecedented scientific research foreseen to measure the planets seismic activity and sense for “Marsquakes” to determine the nature of the Red Planet’s deep interior.
“The science goals of InSight are compelling, and the NASA and CNES plans to overcome the technical challenges are sound,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington.
“The quest to understand the interior of Mars has been a longstanding goal of planetary scientists for decades. We’re excited to be back on the path for a launch, now in 2018.”
InSight is now slated for a Mars landing on Nov. 26, 2018.
The seismometer instrument is named Seismic Experiment for Interior Structure (SEIS) and was provided by the Centre National d’Études Spatiales (CNES) – the French national space agency equivalent to NASA. SEIS is one of the two primary science instruments aboard InSight. The other instrument measuring heat flow from the Martian interior is provided by the German Aerospace Center (DLR) and is named Heat Flow and Physical Properties Package (HP3).
“InSight project managers recently briefed officials at NASA and France’s space agency, Centre National d’Études Spatiales (CNES), on a path forward; the proposed plan to redesign the science instrument was accepted in support of a 2018 launch,” said NASA.
JPL will assume lead responsibility for insuring that the SEIS instrument operates properly with no leak.
The cost of the 2 year delay is still being assessed but expected to be in the tens of millions of dollars, likely over $100 million. How that will be payed for has yet to be determined.
Lockheed Martin is the prime contractor for InSight and will place the spacecraft in storage while SEIS is fixed and until the 2018 launch date nears.
“We’re delighted that NASA has approved the launch of the InSight mission in May 2018,” Stu Spath, Lockhhed Martin spacecraft program manager told Universe Today.
“Currently, we are preparing the spacecraft to go into storage at our Space Systems facility near Denver.”
“Our team worked hard to get the InSight spacecraft built and tested, and although InSight didn’t launch this year as planned, we know ultimately the scientific knowledge it will bring us is crucial to our understanding of how Mars and other rocky planets formed.”
InSight is funded by NASA’s Discovery Program of low cost, focused science missions along with the science instrument funding contributions from France and Germany.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Today marks exactly 10 years since NASA’s Mars Reconnaissance Orbiter (MRO) arrived at Mars and began its journey of breathtaking discovery. It’s impossible to exaggerate the effect that the MRO has had on our understanding of Mars. Among MRO’s contributions to our knowledge of Mars is the (possible) detection of liquid water, an understanding of the seasonal changes on Mars, and the identification of underground geological structures.
To top it all off, MRO has produced some great Martian eye candy.
Martian Eye Candy: A beautiful picture of some dunes on the surface of Mars. Thanks MRO! (Image: NASA/JPL-Caltech/University of Arizona)
These kinds of discoveries are directly attributable to the mission’s longevity, and to the productivity of the science instruments aboard the orbiter. MRO’s 6 science instruments are still functioning 7 years after the principal science phase of the mission was completed.
MRO still has an important role to play, as an advance scout for rover missions and human missions. And, of course, it’s still doing important science work.
We’re a long ways away from colonizing another planet—depending on who you talk to—but it’s not too soon to start understanding how we might do it when the time comes. Growing enough food will be one of the primary concerns for any future settlers of Mars. With that in mind, researchers at the Wageningen University and Research Centre in the Netherlands have created simulated Martian soil and used it to grow food crops.
This is actually the second experiment the team has performed with simulated soil, and the results were promising. The team harvested not only tomatoes and peas, but also rye, garden rocket, radish, and watercress. But it’s not just the edibles that were promising, it was the overall ability of the simulated soil to produce biomass in general. According to the researchers, the soil produced biomass equal to that produced by Earth soil, which was used as a control.
The team also grew crops in simulated Moon soil, to understand how that soil performed, but it produced much less biomass, and only the humble spinach was able to grow in it. The simulated Martian and Lunar soils were provided by NASA. The Martian soil came from a Hawaiian volcano, and the Lunar soil came from a desert in Arizona.
The soil used was not exactly the same as the soil you would scoop up if you were on the Moon or Mars. It was amended with organic matter in the form of manure and fresh cut grass. While this may sound like a ‘cheat’, it’s no different than how gardens are grown on Earth, with gardeners using manure, compost, grass clippings, leaves, and even seaweed to provide organic matter.
Of course, none of these soil amendments will be available on the Moon or Mars, and we won’t be sending a supply ship full of manure. Colonists will have to make use of all of the inedible parts of their crops—and human feces—to provide the organic material necessary for plant growth. It’ll be a closed system, after all.
The crops were grown in a controlled environment, where temperature, humidity, and other factors were kept within Earthly parameters. Any crops grown on Mars will be grown in the same controlled environments, at least until genetic modification can create plants able to withstand the increased radiation and other factors.
A problem facing colonists trying to grow food on Mars is the heavy metal content of the soil. Mars soil contains mercury, lead, cadmium, and arsenic, which are all toxic to humans. The presence of these elements doesn’t bother the plants; they just keep growing. But any crops grown in this soil will have to be tested for toxicity before they can be consumed. This is the next experiment that the team has planned.
Researchers at the Wageningen University are currently crowdfunding for this next experiment. If you’d like to contribute, check out their page here.
On March 2, technicians working at the Baikonur Cosmodrome in Kazakhstan completed the complex multiday mating and enclosure operations of the composite ExoMars 2016 spacecraft to the launch vehicle adapter and the Breeze upper stage inside the nose cone.
The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA).
“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.
2016’s lone mission to the Red Planet will launch atop a Russian Proton rocket.
The individual orbiter and lander spacecraft were recently mated at Baikonur on February 12.
To prepare for the encapsulation, engineers first tilted the spacecraft horizontally. Then they rolled the first fairing half underneath the spacecraft and Breeze on a track inside the Baikonur cleanroom.
Then they used an overhead crane to carefully lower the second fairing half and maneuver it into place from above to fully encapsulate the precious payload.
The 13.5 foot (4.1-meter) diameter payload fairing holding the ExoMars 2016 spacecraft and Breeze upper stage will next be mated to the Proton rocket and rolled out to the Baikonur launch pad.
The launch window extends until March 25.
The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.
The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.
The battery powered lander is expected to operate for up to eight days.
The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.
It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.
ExoMars was originally a joint NASA/ESA project.
But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.
Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Science—like literature and the arts—helps nations cooperate together, even when they’re in conflict politically. The USA and Russia are in conflict over the Ukraine and Syria, yet both nations still cooperate when it comes to the International Space Station. With that in mind, it’s great to see other nations—in this case India—taking on a greater role in space exploration and sharing their scientific results.
India’s Mars Orbiter Mission (MOM) probe has been in orbit around Mars since September 2014, after being launched in November 2013. Though the Indian Space Research Organization (ISRO) has released plenty of pictures of the surface of Mars, they haven’t released any scientific data. Until now.
In September 2015, MOM’s orbit was adjusted to bring it to within 260 km of Mars’ surface, significantly closer to the surface than the usual 400 km altitude. This manoeuver allowed one of MOM’s six instruments, the Mars Exospheric Neutral Composition Analyzer (MENCA), to measure the atmospheric composition at different altitudes. The sensor measured carbon dioxide, oxygen, nitrogen and carbon monoxide to see how they were distributed at different altitudes.
MOM’s activity at Mars is important for a couple of reasons. Its results confirm the results of other probes that have studied Mars’ atmosphere. And confirmation is an important part of science. But there’s another reason why MOM is important, and this centres around the search for evidence of life on the Red Planet.
Methane is considered a marker for the presence of life. It’s not an absolute indicator that life is or was present, but it’s a good hint. One of MOM’s sensors is the Methane Sensor for Mars (MSM.) Methane has been detected in Mars’ atmosphere before, but these could have been spikes, and not a strong indicator of living processes. If MSM provides stronger data indicating a consistent methane presence, that would be very interesting.
Releasing these results is also vindication for ISRO. In 2008, ISRO released data from their lunar mission, Chandrayaan-1, showing the presence of water on the Moon. Those results, which were gathered with an instrument called Chandra’s Altitudinal Composition Explorer (CHACE) were rejected by several scientific publications, on the grounds that the results were contaminated. Only when they were confirmed by another of Chandrayaan-1’s instruments—the Moon Mineralogy Mapper (M3)—were the results accepted.
But MOM’s MENCA instrument is based on the CHACE instrument aboard Chandrayaan-1, so ISRO feels that MENCA’s success in the atmosphere at Mars vindicates CHACE’s results on the Moon. And rightly so.
You can read a blog post by Syed Maqbool Ahmed at the Planetary Society, where he talks about the success of MOM’s MENCA, and how it vindicates ISRO’s earlier results with CHACE that showed the presence of water on the Moon.
MOM is India’s first interplanetary mission, and is expected to last until its fuel runs out, which could take many years. India is the first Asian nation to make it to another planet, and the first of any nation to make it to Mars on their first attempt. Not bad for a mission that was initially considered to be only a technology demonstration mission.