First Tomatoes, Peas Harvested From Simulated Martian Soil

Researchers at Wageningen University in the Netherlands have harvested tomatoes and other vegetables grown in simulated Martian soil. Image: regan76 CC BY 2.0
Researchers at Wageningen University in the Netherlands have harvested tomatoes and other vegetables grown in simulated Martian soil. Credit: regan76 CC BY 2.0

We’re a long ways away from colonizing another planet—depending on who you talk to—but it’s not too soon to start understanding how we might do it when the time comes. Growing enough food will be one of the primary concerns for any future settlers of Mars. With that in mind, researchers at the Wageningen University and Research Centre in the Netherlands have created simulated Martian soil and used it to grow food crops.

This is actually the second experiment the team has performed with simulated soil, and the results were promising. The team harvested not only tomatoes and peas, but also rye, garden rocket, radish, and watercress. But it’s not just the edibles that were promising, it was the overall ability of the simulated soil to produce biomass in general.  According to the researchers, the soil produced biomass equal to that produced by Earth soil, which was used as a control.

The team also grew crops in simulated Moon soil, to understand how that soil performed, but it produced much less biomass, and only the humble spinach was able to grow in it. The simulated Martian and Lunar soils were provided by NASA. The Martian soil came from a Hawaiian volcano, and the Lunar soil came from a desert in Arizona.

The soil used was not exactly the same as the soil you would scoop up if you were on the Moon or Mars. It was amended with organic matter in the form of manure and fresh cut grass. While this may sound like a ‘cheat’, it’s no different than how gardens are grown on Earth, with gardeners using manure, compost, grass clippings, leaves, and even seaweed to provide organic matter.

Of course, none of these soil amendments will be available on the Moon or Mars, and we won’t be sending a supply ship full of manure. Colonists will have to make use of all of the inedible parts of their crops—and human feces—to provide the organic material necessary for plant growth. It’ll be a closed system, after all.

The crops were grown in a controlled environment, where temperature, humidity, and other factors were kept within Earthly parameters. Any crops grown on Mars will be grown in the same controlled environments, at least until genetic modification can create plants able to withstand the increased radiation and other factors.

A problem facing colonists trying to grow food on Mars is the heavy metal content of the soil. Mars soil contains mercury, lead, cadmium, and arsenic, which are all toxic to humans. The presence of these elements doesn’t bother the plants; they just keep growing. But any crops grown in this soil will have to be tested for toxicity before they can be consumed. This is the next experiment that the team has planned.

Researchers at the Wageningen University are currently crowdfunding for this next experiment. If you’d like to contribute, check out their page here.

 

 

ExoMars 2016 Spacecraft Encapsulated for Red Planet Launch in One Week

The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA - B. Bethge
The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing  at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016.  Copyright: ESA - B. Bethge
The ExoMars 2016 spacecraft composite, comprised of the Trace Gas Orbiter and Schiaparelli, seen during the encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA – B. Bethge

Final launch preparations are now in full swing for the ambitious European/Russian ExoMars 2016 spacecraft which has been encapsulated inside its payload launcher fairing and is slated to blast off for the Red Planet one week from now on March 14, 2016 from Kazakhstan.

On March 2, technicians working at the Baikonur Cosmodrome in Kazakhstan completed the complex multiday mating and enclosure operations of the composite ExoMars 2016 spacecraft to the launch vehicle adapter and the Breeze upper stage inside the nose cone.

The ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA).

“The main objectives of this mission are to search for evidence of methane and other trace atmospheric gases that could be signatures of active biological or geological processes and to test key technologies in preparation for ESA’s contribution to subsequent missions to Mars,” says ESA.

2016’s lone mission to the Red Planet will launch atop a Russian Proton rocket.

The individual orbiter and lander spacecraft were recently mated at Baikonur on February 12.

To prepare for the encapsulation, engineers first tilted the spacecraft horizontally. Then they rolled the first fairing half underneath the spacecraft and Breeze on a track inside the Baikonur cleanroom.

Then they used an overhead crane to carefully lower the second fairing half and maneuver it into place from above to fully encapsulate the precious payload.

Tilting the ExoMars 2016 spacecraft and Breeze upper stage into the horizontal position in preparation of encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016.  Copyright: ESA - B. Bethge
Tilting the ExoMars 2016 spacecraft and Breeze upper stage into the horizontal position in preparation of encapsulation within the launcher fairing at the Baikonur cosmodrome in Kazakhstan. Launch to Mars is slated for March 14, 2016. Copyright: ESA – B. Bethge

The 13.5 foot (4.1-meter) diameter payload fairing holding the ExoMars 2016 spacecraft and Breeze upper stage will next be mated to the Proton rocket and rolled out to the Baikonur launch pad.

The launch window extends until March 25.

The ExoMars 2016 TGO orbiter is equipped with a payload of four science instruments supplied by European and Russian scientists. It will investigate the source and precisely measure the quantity of the methane and other trace gases.

ExoMars 2016 Mission to the Red Planet.  It consists of two spacecraft -  the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land.  Credit: ESA
ExoMars 2016 Mission to the Red Planet. It consists of two spacecraft – the Trace Gas Orbiter (TGO) and the Entry, Descent and Landing Demonstrator Module (EDM) which will land. Credit: ESA

The 2016 lander will carry an international suite of science instruments and test European entry, descent and landing (EDL) technologies for the 2nd ExoMars mission in 2018.

The battery powered lander is expected to operate for up to eight days.

The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface.

It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.

ExoMars was originally a joint NASA/ESA project.

But thanks to hefty cuts to NASA’s budget by Washington DC politicians, NASA was forced to terminate the agencies involvement after several years of extremely detailed work and withdraw from participation as a full partner in the exciting ExoMars missions.

Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of launches in March 2016 and May 2018.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

India’s MOM Publishes Amazing Mars Images

An artist's illustration of the MOM orbiter at Mars. Image:By Nesnad - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=29435816
An artist's illustration of the MOM orbiter at Mars. Image: By Nesnad - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=29435816

Science—like literature and the arts—helps nations cooperate together, even when they’re in conflict politically. The USA and Russia are in conflict over the Ukraine and Syria, yet both nations still cooperate when it comes to the International Space Station. With that in mind, it’s great to see other nations—in this case India—taking on a greater role in space exploration and sharing their scientific results.

India’s Mars Orbiter Mission (MOM) probe has been in orbit around Mars since September 2014, after being launched in November 2013. Though the Indian Space Research Organization (ISRO) has released plenty of pictures of the surface of Mars, they haven’t released any scientific data. Until now.

A beautiful full-disc image of Mars captured by MOM. Image: ISRO/MOM.
A beautiful full-disc image of Mars captured by MOM. Image: ISRO/MOM.

In September 2015, MOM’s orbit was adjusted to bring it to within 260 km of Mars’ surface, significantly closer to the surface than the usual 400 km altitude.  This manoeuver allowed one of MOM’s six instruments, the Mars Exospheric Neutral Composition Analyzer (MENCA), to measure the atmospheric composition at different altitudes. The sensor measured carbon dioxide, oxygen, nitrogen and carbon monoxide to see how they were distributed at different altitudes.

MOM’s activity at Mars is important for a couple of reasons.  Its results confirm the results of other probes that have studied Mars’ atmosphere. And confirmation is an important part of science. But there’s another reason why MOM is important, and this centres around the search for evidence of life on the Red Planet.

Methane is considered a marker for the presence of life. It’s not an absolute indicator that life is or was present, but it’s a good hint. One of MOM’s sensors is the Methane Sensor for Mars (MSM.) Methane has been detected in Mars’ atmosphere before, but these could have been spikes, and not a strong indicator of living processes. If MSM provides stronger data indicating a consistent methane presence, that would be very interesting.

Releasing these results is also vindication for ISRO. In 2008, ISRO released data from their lunar mission, Chandrayaan-1, showing the presence of water on the Moon. Those results, which were gathered with an instrument called Chandra’s Altitudinal Composition Explorer (CHACE) were rejected by several scientific publications, on the grounds that the results were contaminated. Only when they were confirmed by another of Chandrayaan-1’s instruments—the Moon Mineralogy Mapper (M3)—were the results accepted.

But MOM’s MENCA instrument is based on the CHACE instrument aboard Chandrayaan-1, so ISRO feels that MENCA’s success in the atmosphere at Mars vindicates CHACE’s results on the Moon. And rightly so.

You can read a blog post by Syed Maqbool Ahmed at the Planetary Society, where he talks about the success of MOM’s MENCA, and how it vindicates ISRO’s earlier results with CHACE that showed the presence of water on the Moon.

MOM is India’s first interplanetary mission, and is expected to last until its fuel runs out, which could take many years. India is the first Asian nation to make it to another planet, and the first of any nation to make it to Mars on their first attempt. Not bad for a mission that was initially considered to be only a technology demonstration mission.

 

Scott Kelly Arrives Back On Earth and the USA from Year in Space! Enjoys Dip in His Pool

NASA astronaut Scott Kelly landed at Houston’s Ellington Field around 2:30 AM, Mar. 3, 2016, marking his return to the U.S. following an agency record-setting year in space aboard the International Space Station. Kelly was greeted in Houston by Second Lady of the United States Dr. Jill Biden, Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator Charles Bolden, and Kelly’s identical twin brother and former NASA astronaut Mark Kelly. Credit: NASA
NASA astronaut Scott Kelly landed at Houston’s Ellington Field around 2:30 PM, Mar. 3, 2016, marking his return to the U.S. following an agency record-setting year in space aboard the International Space Station.  Kelly was greeted in Houston by Second Lady of the United States Dr. Jill Biden, Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator Charles Bolden, and Kelly’s identical twin brother and former NASA astronaut Mark Kelly. Credit: NASA
NASA astronaut Scott Kelly landed at Houston’s Ellington Field around 2:30 AM, Mar. 3, 2016, marking his return to the U.S. following an agency record-setting year in space aboard the International Space Station. Kelly was greeted in Houston by Second Lady of the United States Dr. Jill Biden, Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator Charles Bolden, and Kelly’s identical twin brother and former NASA astronaut Mark Kelly. Credit: NASA

KENNEDY SPACE CENTER, FL – NASA’s first ever ‘Year in Space’ astronaut Scott Kelly was in good shape and smiling broadly for the Earth bound photographers after safely returning to Earth from his orbiting home of the past year on the International Space Station (ISS), for a smooth touchdown in the steppes of Kazakhstan late Monday evening, March 1.

He soon jetted back to the USA for a grand arrival ceremony back home in Houston in the wee hours of the morning, today, March 3, 2016.

“Great to be back on Earth, said Kelly. “There’s no place like home!”

Kelly landed on US soil at Houston’s Ellington Field early this morning at about 2:30 a.m.

Kelly was welcomed back to the USA by Second Lady of the United States Dr. Jill Biden, Assistant to the President for Science and Technology Dr. John P. Holdren, NASA Administrator and former astronaut Charles Bolden, and Kelly’s identical twin brother and former NASA astronaut Mark Kelly.

Before departing the station after a 340 day stay, Kelly said that among the things he missed most on Earth were fresh air and food and freedom of movement. And swimming in his pool.

Well he quickly made good on those wishes and after arriving back home before daylight soon took a dip in his backyard pool.

Kelly posted a video of his pleasant pool plummet in all its glory on twitter:

“Man, that feels good!” he exclaimed.

Expedition 46 Commander Scott Kelly of NASA rests in a chair outside of the Soyuz TMA-18M spacecraft just minutes after he and cosmonauts Mikhail Kornienko and Sergey Volkov of the Russian space agency Roscosmos landed in a remote area near the town of Zhezkazgan, Kazakhstan late Tuesday, March 1 EST.  Credits: NASA/Bill Ingalls
Expedition 46 Commander Scott Kelly of NASA rests in a chair outside of the Soyuz TMA-18M spacecraft just minutes after he and cosmonauts Mikhail Kornienko and Sergey Volkov of the Russian space agency Roscosmos landed in a remote area near the town of Zhezkazgan, Kazakhstan late Tuesday, March 1 EST. Credits: NASA/Bill Ingalls

The long trip back home began after Kelly boarded his Russian Soyuz TMA-18M return capsule along with Russian cosmonaut crewmates Mikhail Kornienko and Sergey Volkov.

Kelly and his Russian cohort Mikhail Kornienko comprised the first ever crew to live and work aboard the ISS for a record breaking year-long mission aimed at taking concrete steps towards eventually dispatching human crews for multiyear-long expeditions to the surface of Mars and back.

Volkov spent a normal six month increment aboard the station.

Expedition 46 Commander Scott Kelly of NASA is seen after returning to Ellington Field, Thursday, March 3, 2016 in Houston, Texas after his return to Earth the previous day. Credit: NASA/Joel Kowsky

The goal of the 1 year ISS mission was to collect a variety of data on the effects of long duration weightlessness on the human body that will be used to formulate a human mission to Mars.

Kelly and Kornienko originally launched to the station on March 27, 2015 along with Russian crewmate Gennady Padalka.

The trio undocked from the station inside their cramped Soyuz capsule, pulled away, fired breaking thrusters and plummeted back to Earth a few hours later, surviving scorching reentry temperatures as the passed through the Earth atmosphere.

They safely landed in Kazakhstan at 11:26 p.m. EST on Tuesday night, March 1, 2016 (10:26 a.m. March 2 Kazakhstan time), concluding Expedition 46.

The Soyuz TMA-18M spacecraft is seen as it lands with Expedition 46 Commander Scott Kelly of NASA and Russian cosmonauts Mikhail Kornienko and Sergey Volkov of Roscosmos near the town of Zhezkazgan, Kazakhstan on Wednesday, March 2, 2016 (Kazakh time). Kelly and Kornienko completed an International Space Station record year-long mission to collect valuable data on the effect of long duration weightlessness on the human body that will be used to formulate a human mission to Mars. Volkov returned after spending six months on the station. Photo Credit: (NASA/Bill Ingalls)
The Soyuz TMA-18M spacecraft is seen as it lands with Expedition 46 Commander Scott Kelly of NASA and Russian cosmonauts Mikhail Kornienko and Sergey Volkov of Roscosmos near the town of Zhezkazgan, Kazakhstan on Wednesday, March 2, 2016 (Kazakh time). Kelly and Kornienko completed an International Space Station record year-long mission to collect valuable data on the effect of long duration weightlessness on the human body that will be used to formulate a human mission to Mars. Volkov returned after spending six months on the station. Photo Credit: (NASA/Bill Ingalls)

Kelly set an American record for longest time in space on a single mission by living and working for 340 days straight aboard the ISS.

Kelly and Kornienko share the history making distinction of comprising the first ever ‘1 Year Crew’ to serve aboard the massive Earth orbiting science research outpost in space.

With a cumulative total of 520 days in space, Kelly has amassed the most time for an American in space. Kornienko has accumulated 516 days across two flights, and Volkov has 548 days on three flights.

During the yearlong mission 10 astronauts and cosmonauts representing six different nations including the United States, Russia, Japan, Denmark, Kazakhstan and England lived aboard the space station.

The station currently remains occupied by a three person crew hailing from the US, Russia and England. A new three person crew launches later in March.

NASA’s next commercial resupply launch to the station is slated for March 22 by a United Launch Alliance Atlas V rocket carrying an Orbital ATK Cygnus cargo freighter with over 7000 pounds of fresh science experiments and crew supplies.

Technicians process the Orbital ATK Cygnus spacecraft inside the Kennedy Space Center clean room facility that is launching on the OA-4 mission on Dec. 3, 2015.  Credit: Ken Kremer/kenkremer.com
Technicians process the Orbital ATK Cygnus spacecraft inside the Kennedy Space Center clean room facility that is launching on the OA-4 mission on Dec. 3, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 4: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

An Ancient Volcanic Cataclysm Spun Mars Off Its Poles

A colorized image of the surface of Mars taken by the Mars Reconnaissance Orbiter. The line of three volcanoes is the Tharsis Montes, with Olympus Mons to the northwest. Valles Marineris is to the east. Image: NASA/JPL-Caltech/ Arizona State University
A colorized image of the surface of Mars taken by the Mars Reconnaissance Orbiter. The line of three volcanoes is the Tharsis Montes, with Olympus Mons to the northwest. Valles Marineris is to the east. Image: NASA/JPL-Caltech/ Arizona State University

“What happened to Mars?” is one of the most compelling questions in space science. It probably wasn’t always the dead, dry, cold place it is now. Did its core cool and stop rotating, allowing the full glare of the sun to blast away its atmosphere and water, and kill anything that may have lived there? Was it struck by a large body, which incinerated its atmosphere, and led to its demise? Were there other causes?

According to a new research paper from Sylvain Bouley at the University of Paris-South, and his colleagues, it may have been a massive, ancient outpouring of molten rock that threw Mars off kilter and helped change Mars into what it is today.

The Tharsis region is an ancient lava complex on Mars that dates back to between 4.1 billion and 3.7 billion years ago. It’s located in Mars’ Western Hemisphere, right near the equator. It’s made up of three huge shield volcanoes—Arsia Mons, Pavonis Mons, and Ascraeus Mons. Collectively, they’re known as Tharsis Montes. (Olympus Mons, the largest volcano in the Solar System, is not a part of the Tharsis complex, though it is near it.)

Tharsis is over 5,000 km across and over 10 miles thick, making it the largest volcanic complex in the Solar System. That much mass positioned after Mars was already formed and had an established rotation would have been cataclysmic. Think what would happen to Earth if Australia rose up 10 miles.

An image of the Syria-Thaumasia region of the Tharsis complex, showing the volcano Arsia Mons on the left, and Valles Marineris on the northern edge. Brown areas are the highest altitude. Open Source Image: Arizona State University, JMars.
An image of the Syria-Thaumasia region of the Tharsis complex, showing the volcano Arsia Mons on the left, and Valles Marineris on the northern edge. Brown areas are the highest altitude. Open Source Image: Arizona State University, JMars.

The new paper, published on March 2nd, 2016, in the journal Nature, says that the position of the Tharsis complex would have initiated a True Polar Wander (TPW.) Basically, what this means is that Tharsis’ huge mass would have forced Mars to shift its rotation, so that the location of Tharsis became the new equator.

It was thought that the emergence of Tharsis made Martian rivers—which formed later—flow the direction they do. But the study from Bouley and his colleagues shows that Martian rivers and valleys formed first—or maybe concurrently—and that the Tharsis TPW deformed the planet later.

The authors of the study calculated where the Martian poles would have been prior to Tharsis, and looked for evidence of polar conditions at those locations. The location of this ancient north pole contains a lot of ice today, and the location of the ancient south polar region also shows evidence of water.

What it all adds up to is that the disappearance of water on Mars probably happened at the same time as the TPW. Whether the appearance of the Tharsis lava complex, and the resulting cataclysmic shifting of Mars’ rotational orientation, were the cause of Mars losing its climate is not yet known for sure. But this study shows that the ancient volcanic cataclysm did at least help shape Mars into what it is today.

 

NASA Astronaut Scott Kelly Returns from a Historic Year in Space on Station

NASA astronaut and Expedition 46 Commander Scott Kelly and his Russian counterpart Mikhail Kornienko enjoy the cold fresh air back on Earth after their historic 340-day mission aboard the International Space Station. Credits: NASA TV
NASA astronaut and Expedition 46 Commander Scott Kelly and his Russian counterpart Mikhail Kornienko enjoy the cold fresh air back on Earth after their historic 340-day mission aboard the International Space Station.  Credits: NASA TV
NASA astronaut and Expedition 46 Commander Scott Kelly and his Russian counterpart Mikhail Kornienko enjoy the cold fresh air back on Earth after their historic 340-day mission aboard the International Space Station. Credits: NASA TV

KENNEDY SPACE CENTER, FL – NASA Astronaut Scott Kelly and his Russian cohort Mikhail Kornienko successful returned to Earth late Tuesday night (March 1), after spending nearly a year in space aboard the space station on a mission to gauge the limits of human endurance in microgravity and blaze a path forward to eventual human expeditions to the Red Planet.

After boarding their Russian Soyuz capsule, Kelly and Kornienko along with the third member of their crew Russian cosmonaut Sergey Volkov safely landed in Kazakhstan at 11:26 p.m. EST (10:26 a.m. March 2 Kazakhstan time). Continue reading “NASA Astronaut Scott Kelly Returns from a Historic Year in Space on Station”

ExoMars 2016 Orbiter and Lander Mated for March Launch

ExoMars Schiaparelli lander being mated with the Trace Gas Orbiter on 12 February 2016. Credit: ESA - B. Bethge
ExoMars Schiaparelli lander being mated with the Trace Gas Orbiter on 12 February 2016. Credit: ESA - B. Bethge
ExoMars Schiaparelli lander being mated with the Trace Gas Orbiter on 12 February 2016. Credit: ESA – B. Bethge

Earth’s lone mission to the Red Planet this year has now been assembled into launch configuration and all preparations are currently on target to support blastoff from Baikonur at the opening of the launch window on March 14, 2016.

The ambitious ExoMars 2016 mission is comprised of a pair of European spacecraft named the Trace Gas Orbiter (TGO) and the Schiaparelli lander, built and funded by the European Space Agency (ESA). Continue reading “ExoMars 2016 Orbiter and Lander Mated for March Launch”

Space Farmer Scott Kelly Harvests First ‘Space Zinnias’ Grown Aboard Space Station

NASA astronaut Scott Kelly harvested his space grown Zinnia’s on Valentine’s Day, Feb. 14, 2016 aboard the International Space Station. Credit: NASA/Scott Kelly/@StationCDRKelly
NASA astronaut Scott Kelly harvested his space grown Zinnia’s on Valentine’s Day, Feb. 14, 2016 aboard the International Space Station.  Credit: NASA/Scott Kelly/@StationCDRKelly
NASA astronaut Scott Kelly harvested his space grown Zinnia’s on Valentine’s Day, Feb. 14, 2016 aboard the International Space Station. Credit: NASA/Scott Kelly/@StationCDRKelly

KENNEDY SPACE CENTER, FL – Nearing the final days of his history making one-year-long sojourn in orbit, space farming NASA astronaut Scott Kelly harvested the first ever crop of ‘Space Zinnias’ grown aboard the International Space Station (ISS) on a most appropriate day – Valentine’s Day, Sunday, Feb. 14, 2016.

After enduring an unexpected series of trial and tribulations – including a fearsome attack of ‘space mold’ – Kelly summoned his inner ‘Mark Watney’ and brought the Zinnia’s to life, blossoming in full color and drenched in natural sunlight. See photo above. Continue reading “Space Farmer Scott Kelly Harvests First ‘Space Zinnias’ Grown Aboard Space Station”

Obama Administration Proposes Smaller 2017 NASA Budget of $19 Billion with Big Exploration Cuts

NASA releases budget request for Fiscal Year 2017. Credit: NASA
NASA releases budget request for Fiscal Year 2017. Credit: NASA
NASA releases budget request for Fiscal Year 2017. Credit: NASA

The Obama Administration has announced its new Federal budget and is proposing to cut NASA’s Fiscal Year 2017 Budget to $19 billion by carving away significant funding for deep space exploration, whereas the overall US Federal budget actually increases to over $4.1 trillion.

This 2017 budget request amounts to almost $300 million less than the recently enacted NASA budget for 2016 and specifically stipulates deep funding cuts for deep space exploration programs involving both humans and robots, during President Obama’s final year in office.

The 2017 budget proposal would slash funding to the very programs designed to expand the frontiers of human knowledge and aimed at propelling humans outward to the Red Planet and robots to a Jovian moon that might be conducive to the formation of life.

Absent sufficient and reliable funding to keep NASA’s exploration endeavors on track, further launch delays are almost certainly inevitable – thereby fraying American leadership in space and science.

The administration is specifying big funding cuts to the ongoing development of NASA’s mammoth Space Launch System (SLS) heavy lift rocket and the state of the art Orion deep space crew capsule. They are the essential first ingredients to carry out NASA’s ambitious plans to send astronauts on deep space ‘Journey to Mars’ expeditions during the 2030s.

The overall Exploration Systems Development account for human deep space missions would be slashed about 18 percent from the 2016 funding level; from $4.0 Billion to only $3.3 Billion, or nearly $700 million.

SLS alone is reduced the most by $700 million from $2.0 billion to $1,31 billion, or a whopping 35 percent loss. Orion is reduced from $1.27 billion to $1.12 billion for a loss of some $150 million.

Make no mistake. These programs are already starved for funding and the Obama administration tried to force similar cuts to these programs in 2016, until Congress intervened.

Likewise, the Obama administration is proposing a draconian cut to the proposed robotic mission to Jupiter’s moon Europa that would surely delay the launch by at least another half a decade or more – to the late 2020s.

The Europa mission budget proposal is cut to only $49 million and the launch is postponed until the late 2020s. The mission received $175 million in funding in 2016 – amounting to a 72 percent reduction.

Furthermore there is no funding for a proposed lander and the launch vehicle changes from SLS to a far less powerful EELV – causing a year’s long increased travel time.

In order to maintain an SLS launch in approximately 2022, NASA would require a budget of about $150 million in 2017, said David Radzanowski, NASA’s chief financial officer, during a Feb. 9 teleconference with reporters.

Why is Europa worth exploring? Because Europa likely possesses a subsurface ocean of water and is a prime target in the search for life!

Overall, NASA’s hugely successful Planetary Sciences division suffers a huge and nearly 10 percent cut of $141 million to $1.51 billion – despite undeniably groundbreaking scientific successes this past year at Pluto, Ceres, Mars and more!

Altogether NASA would receive $19.025 billion in FY 2017. This totals $260 million less than the $19.285 billion appropriated in FY 2016, and thus corresponds to a reduction of 1.5 percent.

By contrast, the overall US Federal Budget will increase nearly 5 percent to approximately $4.1 trillion. Simple math demonstrates that NASA is clearly not a high priority for the administration. NASA’s share of the Federal budget comes in at less than half a cent on the dollar.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

NASA’s Fiscal Year 2017 budget proposal was announced by NASA Administrator Charles Bolden during a televised ‘State of NASA’ address at the agency’s Langley Research Center in Virginia on Feb. 9.

Bolden did not dwell at all on the significant funding reductions for exploration.

“We are hitting our benchmarks with new exploration systems like the Space Launch System rocket and the Orion Crew Vehicle. A new consensus is emerging in the scientific and policy communities around our vision, timetable and plan for sending American astronauts to Mars in the 2030s.”

And he outlined some milestones ahead.

“We’ll continue to make great progress on the Space Launch System – SLS–rocket and we’re preparing for a second series of engine tests,” said Bolden.

“At the Kennedy Space Center, our teams will outfit Orion’s crew module with the spacecraft’s heat-shielding thermal protection systems, avionics and subsystems like electrical power storage, cabin pressure control and flight software –to name just a few.”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

NASA plans to launch the first combined SLS/Orion on the uncrewed Exploration Mission-1 (EM-1) in November 2018.

Indeed the Orion EM-1 pressure vessel just arrived at the Kennedy Space Center last week to completely install all the systems required for flight.

NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo.  Credit: Ken Kremer/kenkremer.com
NASA’s Orion EM-1 crew module pressure vessel arrived at the Kennedy Space Center’s Shuttle Landing Facility tucked inside NASA’s Super Guppy aircraft on Feb 1, 2016. The Super Guppy opens its hinged nose to unload cargo. Credit: Ken Kremer/kenkremer.com

The launch date for the first crewed flight on EM-2 was targeted for 2021. But EM-2 is likely to slip to the right to 2023, due to insufficient funding.

Lack of funding will also force NASA to delay development of the far more capable and powerful Exploration Upper Stage (EUS) to propel Orion on deep space missions. It will now not be available for the SLS/EM-2 launch as hoped.

The proposed huge budget cuts to SLS, Orion and Europa are certain to arose the ire of multiple members of Congress and space interest groups, who just successfully fought to increase NASA’s FY 2016 budget for these same programs in the recently passed 2016 omnibus spending bill.

“This administration cannot continue to tout plans to send astronauts to Mars while strangling the programs that will take us there,” said Rep. Lamar Smith (R-Texas), Chairman of the House Science, Space, and Technology Committee, in a statement in response to the president’s budget proposal.

“President Obama’s FY17 budget proposal shrinks our deep space exploration programs by more than $800 million. And the administration once more proposes cuts of more than $100 million to the Planetary Science accounts, which have previously funded missions like this past year’s Pluto flyby.”

“This imbalanced proposal continues to tie our astronauts’ feet to the ground and makes a Mars mission all but impossible. This is not the proposal of an administration that is serious about maintaining America’s leadership in space.”

A "true color" image of the surface of Jupiter's moon Europa as seen by the Galileo spacecraft. Image credit: NASA/JPL-Caltech/SETI Institute
A “true color” image of the surface of Jupiter’s moon Europa as seen by the Galileo spacecraft. Image credit: NASA/JPL-Caltech/SETI Institute

“The Coalition for Deep Space Exploration … had hoped the request would reflect the priorities laid out for NASA in the FY16 Omnibus, for which there was broad support,” said Mary Lynne Dittmar, executive director of the Coalition for Deep Space Exploration, in a statement.

“Unfortunately this was not the case. The Coalition is disappointed with the proposed reduction in funding below the FY16 Omnibus for NASA’s exploration programs. We are deeply concerned about the Administration’s proposed cut to NASA’s human exploration development programs.”

“This proposed budget falls well short of the investment needed to support NASA’s exploration missions, and would have detrimental impacts on cornerstone, game-changing programs such as the super-heavy lift rocket, the Space Launch System (SLS), and the Orion spacecraft – the first spacecraft designed to reach multiple destinations in the human exploration of deep space.”

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014.  Credit: Ken Kremer - kenkremer.com
Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Funding for the James Webb Space Telescope (JWST) was maintained at planned levels to keep it on track for launch in 2018.

All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland.  Credit: Ken Kremer/kenkremer.com
All 18 primary mirrors of NASA’s James Webb Space Telescope are seen fully installed on the backplane structure by technicians using a robotic arm (center) inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: Ken Kremer/kenkremer.com

On Dec. 18, 2015, the US Congress passed and the president signed the 2016 omnibus spending bill which funds the US government through the remainder of the 2016 Fiscal Year.

As part of the omnibus bill, NASA’s approved budget amounted to nearly $19.3 Billion. That was an outstanding result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier in 2015.

The 2016 budget represented an increase of some $750 million above the Obama Administration’s proposed NASA budget allocation of $18.5 Billion for Fiscal Year 2016, and an increase of more than $1.2 Billion over the enacted budget for FY 2015.

Under the proposed NASA budget for Fiscal Year 2017, the fictional exploits of ‘The Martian’ will never become reality.

And the hunt for extraterrestrial life on the icy moons of the outer solar system is postponed yet again.

Scene from ‘The Martian’ starring Matt Damon as NASA astronaut Mark Watney contemplating magnificent panoramic vista while stranded alone on Mars.    Credits: 20th Century Fox
Scene from ‘The Martian’ starring Matt Damon as NASA astronaut Mark Watney contemplating magnificent panoramic vista while stranded alone on Mars. Credits: 20th Century Fox

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

This global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015.   The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).  This mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized.  Right side mosaic comprises twelve highest resolution views of Tombaugh Regio heart shaped feature and shows objects as small as 0.5 miles (0.8 kilometers) in size.  Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
This global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Right side mosaic comprises twelve highest resolution views of Tombaugh Regio heart shaped feature and shows objects as small as 0.5 miles (0.8 kilometers) in size. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

Retro Travel Posters Show Us The Future

Visitors to Jupiter view the Jovian auroras from balloons. Image: NASA/JPL.
Visitors to Jupiter view the Jovian auroras from balloons. Image: NASA/JPL.

One of the greatest things about being a space enthusiast is all of the discoveries that come out on an almost daily basis. One of the saddest things about being a space enthusiast is all of the discoveries and destinations that are so close, just beyond the horizon of our lifespan.

Will we colonize other planets? Sure, but most of us living will be gone by then. Will we spend time in glorious, gleaming space habitats? Obviously, but we’ll just be epitaphs by then. Sentient, alien species that gift us faster-than-light travel and other wonders? Maybe, but not before my bucket list has its final item checked off.

Citizen space travel? Hmmmm, tantalizingly within reach.

But now, new retro style posters from NASA, designed by the team at Invisible Creature, are making us feel nostalgic about things that haven’t even happened yet, and are helping us leave behind gloomy thoughts of being born at the wrong time.

The Grand Tour. Image: NASA/JPL
The Grand Tour. Image: NASA/JPL

The Grand Tour celebrates a time when our probes toured the planets, using gravity assist to propel them on their missions.

“Grandpa, do you remember the Grand Tour, when spacecraft used gravity assist to visit other worlds?”

“I sure do. Gravity assist. Those were the days. Swooping so close to Jupiter, you could feel the radiation killing your hair follicles. Only to be sling-shotted on to the next planet.”

“But why didn’t you just use a quantum drive to bend space time and appear at your destination?”

“Quantum drives! Those things ain’t natural. And neither is bending space-time. Give me a good old-fashioned chemical rocket any time.”

“Oh Grandpa.”

Visit Historic Mars. Image: NASA/JPL
Visit Historic Mars. Image: NASA/JPL

Visit the Historic Sites of Mars recalls a time when space pioneers colonized and terraformed Mars.

“Grandpa, what was Mars like in the Early Days?”

“You mean before it was terraformed? Very tough times.”

“Because conditions were so difficult? And food was hard to grow?”

“No. Because of the protesters.”

“Protesters? On Mars?”

“Yup. Every time we found a good spot for a Bacterial Production Facility (BPF), it seemed like there was an expired old rover in the way. The protesters didn’t think we should move ’em. Part of our heritage.”

“So what did you do Grandpa?”

“We created a network of computers that everybody would stare at all day. After that, nobody noticed what we did anymore.”

“Oh Grandpa.”

Visit Beautiful Southern Enceladus. Image: NASA/JPL
Visit Beautiful Southern Enceladus. Image: NASA/JPL

Visit Beautiful Southern Enceladus invites vacationers to visit Saturn’s sixth largest moon to view the ice geysers there.

“Grandpa, did you ever visit Enceladus?”

“I sure did. A beautiful, haunting place.”

“Was it scary? With all of the ice geysers erupting unpredictably?”

“On no. I always knew when one was going to erupt.”

“What? How did you know?”

“My arthritis would flare up.”

“Oh Grandpa.”

Other Posters

NASA has a growing collection of other posters. You can see them here.

SpaceX has their own posters, which you can see here. They also have cool t-shirts with the same designs.