India’s space agency has released a spectacular new batch of images taken by everyone’s favorite MOM – the Mars Orbiter Mission – the nation’s first probe ever dispatched to the Red Planet and which achieved orbit nearly a year ago.
The lead image was taken over the Ophir Chasma canyon on the Martian surface by the Mars Colour Camera aboard India’s Mars Orbiter Mission.
Ophir Chasma is a canyon in the Coprates quadrangle located at 4° south latitude and 72.5° west longitude. It is part of the Valles Marineris – the ‘Grand Canyon of Mars’ – and the largest known canyon in the Solar System.
The image was captured on July 19, 2015 from an altitude of 1857 kilometers (1154 miles). It has with a resolution of 96 meters.
The steep walled Ophir Chasma canyon contains many layers and the floors contain large deposits of layered materials, perhaps even sulfates.
Ophir Chasma is about 317 kilometers long and about 8 to 10 kilometers deep located near the center of Valles Marineris – see map below.
Valles Marineris stretches over 4,000 km (2,500 mi) across the Red Planet, is as much as 600 km wide and measures as much as 10 kilometers (6 mi) deep. It is nearly as wide as the United States.
Here’s an illuminating and magnificent 3D portrayal of Ophir Chasma created by Indian scientists that gives a sense of the canyons scale, sheer walls and cliffs and depth:
The newest images were snapped after the spacecraft exited the communications blackout encountered by all of Earth’s invasion fleet of Red Planet orbiters and rovers during the recent conjunction period when Mars was behind the sun during much of June.
See the prior image release from ISRO in my MOM story – here.
Here’s a wider view of Valles Marineris showing Ophir Chasma in a previously published MOM image from ISRO.
ISRO also released a delightful new image of Gale Crater and the surrounding vicinity.
Gale Crater is home to humongous Mount Sharp, a mountain that rises 5.5 kilometers (3.4 miles) from the crater floor and is easily visible in the photo from MOM. The crater is 154 kilometers (96 mi) wide.
Curiosity is currently exploring the foothills of Mount Sharp around the top of the image – which shows a rather different perspective from what we’ve seen from prior familiar orbital imagery snapped by several NASA and ESA orbiters.
The 1 ton rover recently celebrated the 3rd anniversary since its nailbiting touchdown inside Gale crater. And the new wider angle image from MOM gives a fabulous sense of exactly why a highly precise landing was essential – otherwise it would have been doomed.
Curiosity recently drilled into the “Buckskin” target at an outcrop at the foothills of Mount Sharp. See the mountain in our ground level mosaic from the crater floor. And its kind of neat to actually imagine Curiosity sitting there while perusing MOM’s photo.
MOM’s goal is to study Mars atmosphere, surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It is also sniffing for methane, a potential marker for biological activity.
MOM is India’s first deep space voyager to explore beyond the confines of her home planets influence and successfully arrived at the Red Planet after the “history creating” orbital insertion maneuver on Sept. 23/24, 2014 following a ten month journey from Earth.
The Indian probe arrived just after NASA’s MAVEN Mars orbiter, the first mission specifically targeted to study Mars tenuous upper atmosphere and the escape rates of atmospheric constituents.
MOM swoops around Mars in a highly elliptical orbit whose nearest point to the planet (periapsis) is at about 421 km and farthest point (apoapsis) at about 76,000 km, according to ISRO.
It takes MOM about 3.2 Earth days or 72 hours to orbit the Red Planet.
MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.
The $73 million MOM mission was expected to last at least six months. In March, ISRO extended the mission duration for another six months since its healthy, the five science instruments are operating fine and it has sufficient fuel reserves.
Including MOM, Earth’s invasion fleet at the Red Planet numbers a total of seven spacecraft comprising five orbiters from NASA, ESA and ISRO as well as the sister pair of mobile surface rovers from NASA – Curiosity and Opportunity.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA Story/imagery updated
See video below of full duration hot-fire test[/caption]
With today’s (Aug. 13) successful test firing of an RS-25 main stage engine for NASA’s Space Launch System (SLS) monster rocket currently under development, the program passed a key milestone advancing the agency on the path to propel astronauts back to deep space at the turn of the decade.
The 535 second long test firing of the RS-25 development engine was conducted on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – and ran for the planned full duration of nearly 9 minutes, matching the time they will fire during an actual SLS launch.
All indications are that the hot fire test apparently went off without a hitch, on first look.
“We ran the full duration and met all test objectives,” said Steve Wofford, SLS engine manager, on NASA TV following today’s’ test firing.
“There were no anomalies.” – based on the initial look.
The RS-25 is actually an upgraded version of former space shuttle main engines that were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit. Those same engines are now being modified for use by the SLS.
“Data collected on performance of the engine at the various power levels will aid in adapting the former space shuttle engines to the new SLS vehicle mission requirements, including development of an all-new engine controller and software,” according to NASA officials .
The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.
The core stage (first stage) of the SLS will be powered by four RS-25 engines and a pair of the five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the most powerful rocket the world has ever seen.
Since shuttle orbiters were equipped with three space shuttle main engines, the use of four RS-25s on the SLS represents another significant change that also required many modifications being thoroughly evaluated as well.
The SLS will be some 10 percent more powerful than the Saturn V rockets that propelled astronauts to the Moon, including Neil Armstrong, the human to walk on the Moon during Apollo 11 in July 1969.
SLS will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal.
Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.
They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.
This video shows the full duration hot-fire test:
NASA has 16 of the RS-25s leftover from the shuttle era and they are all being modified and upgraded for use by the SLS rocket.
Today’s test was the sixth in a series of seven to qualify the modified engines to flight status. The engine ignited at 5:01 p.m. EDT and reached the full thrust level of 512,000 pounds within about 5 seconds.
The hot gas was exhausted out of the nozzle at 13 times the speed of sound.
Since the shuttle engines were designed and built over three decades ago, they are being modified where possible with state of the art components to enhance performance, functionality and ease of operation, by prime contractor Aerojet-Rocketdyne of Sacramento, California.
One of the key objectives of today’s engine firing and the entire hot fire series was to test the performance of a brand new engine controller assembled with modern manufacturing techniques.
“Operators on the A-1 Test Stand at Stennis are conducting the test series to qualify an all-new engine controller and put the upgraded former space shuttle main engines through the rigorous temperature and pressure conditions they will experience during a SLS mission,” says NASA.
“The new controller, or “brain,” for the engine, which monitors engine status and communicates between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine’s health and status.’
Video caption: RS-25 – The Ferrari of Rocket Engines explained. Credit: NASA
“The RS-25 is the most complicated rocket engine out there on the market, but that’s because it’s the Ferrari of rocket engines,” says Kathryn Crowe, RS-25 propulsion engineer.
“When you’re looking at designing a rocket engine, there are several different ways you can optimize it. You can optimize it through increasing its thrust, increasing the weight to thrust ratio, or increasing its overall efficiency and how it consumes your propellant. With this engine, they maximized all three.”
Engineers will now pour over the data collected from hundreds of data channels in great detail to thoroughly analyze the test results. They will incorporate any findings into future test firings of the RS-25s.
NASA says that testing of RS-25 flight engines is set to start later this fall.
“The RS-25 engine gives SLS a proven, high performance, affordable main propulsion system for deep space exploration. It is one of the most experienced large rocket engines in the world, with more than a million seconds of ground test and flight operations time.”
NASA plans to buy completely new sets of RS-25 engines from Aerojet-Rocketdyne taking full advantage of technological advances and modern manufacturing techniques as well as lessons learned from this hot fire series of engine tests.
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
A massive conspiracy, spanning over a decade, has been revealed at last by basement bloggers, YouTubers and Facebook users everywhere, implicating ‘big-NASA’ and the powers that be in a massive cover-up.
Yes, it’s the month of August once again, and the Red Planet Mars is set to appear ‘larger than a Full Moon’ over the skies of Earth, as it apparently does now… every year.
Um, no. Stop. Just… stop.
Sure, by now, you’ve had the hoax forwarded to you by that certain well-meaning, but astronomically uninformed family member/co-worker/anonymous person on Facebook.
What’s new under the Sun concerning the August Mars Hoax? To see where the hoax was born, we have to journey all the way back to the close opposition of Mars on August 27th, 2003. Hey, we actually took two weeks leave in the Fall of 2003 just to sketch and image Mars each night from our backyard lair in the Sonoran desert south of Tucson, Arizona from the then known Very Small Optical Observatory. Those were the days. We measured dial-up internet speeds in kbit/s, ‘burned CDs,’ and Facebook and Twitter were still some years away. Even spam e-mail was still sorta hip.
Two years later in 2005, we were all amused, as the ‘August Mars Hoax’ chain email made its first post-2003 appearance in our collective inboxes. Heck, we were even eager in those halcyon days to take to the nascent web, and do that new hipster thing known as ‘blogging’ to explain just exactly why this couldn’t be so to the masses.
Later in 2006, 2007, and 2008, it wasn’t so funny.
The Mars Hoax just wouldn’t die. “One more unto the breach,” the collective astro-blogging community sighed, as we all dusted off last year’s post explaining how the Red Planet could never approach our own fair world so closely.
It. Just. Couldn’t. Because orbital mechanics. Because physics.
Even the advent of social media couldn’t kill in annual onslaught of the Mars Hoax, and over a Spiderman movie reboot later, we’re now seeing it shared across Facebook, Twitter and more.
Sure, the Mars Hoax is as fake as Donald Trump’s hair. If there’s any true science lesson to learn here, it’s perhaps the mildly interesting social science study of just how the Mars hoax weathers the lean months of winter, to reemerge every August.
Here’s the skinny (again!) on just why Mars can’t appear as large as the Full Moon:
-The Moon is 3,474 kilometers in diameter, and orbits the Earth at an average distance of just under 400,000 kilometers.
-At this distance, the Moon can only appear about 30’ (half a degree) across.
-Think that’s a lot? Well, you could ring the 360 degree circle of the local horizon with 720 Full Moons.
-Mars, like the Earth, orbits the Sun. Even with Earth at aphelion (its most distant point) and Mars at perihelion, we’re still 206.7 – 151.9 = 54.8 million km apart. Sure, aphelion and perihelion of our respective worlds don’t quite line up in our current epochs, but we’ll indulge imagination and fudge things a bit.
-Though Mars is just over 2x times larger in diameter than the Moon, it’s also more than 143 times farther away, even at its said hypothetical closest.
-Still want to see Mars as big as a Full Moon? Perhaps one day, astronauts will, though they’ll have to be orbiting just over a 800,000 km from the Red Planet to do it.
If we sound a little pessimistic in our characterizing the Mars Hoax as a recurring non-story, it’s because we see many truly fantastic things in space news that get far from their far shake. Real stories, of collapsing stars, rogue exoplanets, and intrepid rovers exploring distant worlds. Tales of humanoids, exploring space and doing the very best and noble things humanoids as a species can do.
Want to trace the history the Mars Hoax?
Here’s the saga of Universe Today’s coverage of all things ‘Mars Hoax’ since those olden days of the early web:
Hey, it looks like the hoax did take a break in 2012 and 2014, so that’s encouraging at least…
Now, I’m going to do my best to truly terrify all of science blogger-dom, and leave you with one final thought to consider. Mars reaches opposition (otherwise known in astronomical circles as ‘when it’s really nearest to the Earth’) once roughly every 26 months. All oppositions of Mars are not created equal, owing mostly to the eccentric orbit of the Red Planet. We have another fine opposition of Mars coming right up next year on May 22nd, 2016, followed by one that’s very nearly as favorable as the historic 2003 opposition in 2018, falling juuuuust shy of August on July 28th of that year…
Will the Mars Hoax meme find a new unwitting audience, and with it, new life?
Sleep tight…. we’ll be covering real science stories in the meantime, ’til we’re called to do battle with the Mars Hoax once again.
Curiosity extends robotic arm and conducts sample drilling at “Buckskin” rock target at bright toned “Lion” outcrop at the base of Mount Sharp on Mars, seen at right, during August 2015. Gale Crater eroded rim seen in the distant background at left, in this composite multisol mosaic of navcam raw images taken to Sol 1059, July 30, 2015. Navcam camera raw images stitched and colorized. Inset: MAHLI color camera up close image of full depth drill hole at “Buckskin” rock target on Sol 1060. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/kenkremer.com/Marco Di Lorenzo
Story updated[/caption]
NASA’s Curiosity Mars Science Laboratory (MSL) rover has successfully drilled into the first high silica rock target on Mars after recently discovering this new type of rock that’s unlike any found before – as she is about to mark the 3rd anniversary since the hair-raising touchdown on the Red Planet.
The SUV-sized rover bored a full depth hole into a Mars outcrop at a target dubbed “Buckskin” as commanded by the mission team over the weekend, after first conducting a mini drill test to assess the safety of the intended drill campaign to sample the alien rock interior beneath the Martian crater floor.
“This morning, the MSL operations team was very happy to see that drilling into Buckskin was successful!” said Ken Herkenhoff, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in a mission update.
Confirmation of the success of the full depth drilling into “Buckskin” on Sol 1060 at the bright toned “Lion” outcrop came later after receipt of new high resolution images from the rover showing the approximately 1.6 cm (0.63 inch) diameter bore hole next to the initial mini hole test, along with the indicative residue of grey colored tailings from the Martian subsurface seen distributed around the new hole.
“Successful drilling at Buckskin!” added team member Professor John Bridges of the University of Leicester, England, in an update.
“Like the other drill holes this is showing how thin red Mars is,” Bridges elaborated.
Beneath a thin veneer of rusty red colored iron oxide, the Red Planet is remarkably grey as demonstrated by Curiosity’s prior drilling campaigns.
The hole was bored to a full depth of about 2.6 inches (6.5 centimeters) using the percussion drill on the terminus of the 7 foot-long (2.1 meter-long) robotic arm.
Buckskin was “chosen because this sedimentary horizon has some very high silica enrichments,” Bridges explains.
The findings of elevated levels of silicon as well as hydrogen were derived from data collected by Curiosity’s laser-firing Chemistry & Camera (ChemCam) and Dynamic Albedo of Neutrons (DAN) instruments on certain local area rocks.
Silica is a rock-forming compound containing silicon and oxygen, commonly found on Earth as quartz.
“High levels of silica could indicate ideal conditions for preserving ancient organic material, if present, so the science team wants to take a closer look,” say mission team officials.
See the rover at work reaching out with her robotic arm and drilling into Buckskin, as illustrated in our new mosaics of mastcam and navcam camera raw images created by the image processing team of Ken Kremer and Marco Di Lorenzo (above and below).
“Buckskin” sits at the base of Mount Sharp, a huge layered mountain that dominates the center of the 96 mile-wide (154 kilometers-wide) Gale Crater landing site.
Exploring the sedimentary layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rovers long term scientific expedition on the Red Planet.
The silica enrichment “may have occurred as the Gale sediments were altered by subsurface fluids after burial. As the basaltic composition was altered (as we saw from the clay and Fe oxide at Yellowknife Bay) ultimately a lot of silica is released which can be precipitated at horizons like this,” explains Bridges.
The Curiosity Mars Science Laboratory (MSL) rover safely touched down on the crater floor on August 5, 2012 following the unprecedented and nail-biting sky crane maneuver that delivered her with pinpoint precision to a landing site nearby Mount Sharp inside Gale Crater.
The goal of the drilling is to provide geologic context for Curiosity’s long term climb up the mountains sedimentary layers by collecting samples to assess the habitability of the Red Planet over billions of years of time.
So the plan was for the robot to process and pulverize the samples for eventual delivery to the onboard pair of miniaturized chemistry labs located inside her belly – SAM and CheMin. Tiny samples are fed to a trio of inlet ports on the rover deck through the sieved filters.
Images are taken to document and assess the entire sample collection and delivery process.
After gathering the Buckskin sample, a portion was transferred to the robots scoop for inspection.
Then the first portion was successfully fed into CheMin for inorganic elemental analysis over the weekend.
“The activities planned for last weekend completed successfully, including sample dropoff to CheMin and analysis of the minerals present,” Herkenhoff confirmed.
The one ton robots next steps involve “dumping the portion of the drill sample that has not been sieved and Mastcam, ChemCam, MAHLI, and APXS observations of the dump pile. ChemCam and Mastcam will also observe nearby targets “Martz” and “Mountain Home.” MAHLI will image the drill hole, tailings and CheMin inlet at night using its LEDs for illumination.”
After completing these science activities, the six wheeled rover will move on to the next exciting destination.
“It’s been a great couple of weeks at the Lion outcrop, but it’s time to move on,” says Lauren Edgar, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in the latest mission update from today, August 4, Sol 1065.
“After a successful investigation that included observations by almost every science instrument, we’re getting ready to drive away tomorrow. That means that today (and tomorrow before we drive) is the last call for science observations.”
For about the past two months, the six wheeled robot has been driving around and exploring a geological contact zone named “Marias Pass” – an area on lower Mount Sharp, by examining the rocks and outcrops with her suite of state-of-the-art science instruments.
“Marias Pass” is a geological context zone where two rock types overlap – pale mudstone meets darker sandstone.
The prior hole was drilled at Telegraph Peak on Feb. 24, 2015, on Sol 908.
Curiosity recently celebrated 1000 Sols of exploration on Mars on May 31, 2015 – detailed here with our Sol 1000 mosaic also featured at Astronomy Picture of the Day on June 13, 2015.
As of today, Sol 1065, August 4, 2015, she has driven some 11 kilometers and taken over 256,000 amazing images.
Curiosity has already accomplished her primary objective of discovering a habitable zone on the Red Planet – at the Yellowknife Bay area – that contains the minerals necessary to support microbial life in the ancient past when Mars was far wetter and warmer billions of years ago.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
On the eve of the 3rd anniversary since her nail biting touchdown inside Gale Crater, NASA’s car sized Curiosity Mars Science Laboratory (MSL) rover has discovered a new type of Martian rock that’s surprisingly rich in silica – and unlike any other targets found before.
Excited by this new science finding on Mars, Curiosity’s handlers are now gearing the robot up for her next full drill campaign today, July 31 (Sol 1060) into a rock target called “Buckskin” – which lies at the base of Mount Sharp, the huge layered mountain that is the primary science target of this Mars rover mission.
“The team selected the “Buckskin” target to drill,” says Lauren Edgar, Research Geologist at the USGS Astrogeology Science Center and an MSL science team member, in a mission update.
See the rover at work reaching out with her robotic arm and drilling into Buckskin, as illustrated in our new mosaics of navcam camera images created by the image processing team of Ken Kremer and Marco Di Lorenzo (above and below). Also featured at Alive Universe Images – here.
For about the past two months, the six wheeled robot has been driving around and exploring a geological contact zone named “Marias Pass” – an area on lower Mount Sharp, by examining the rocks and outcrops with her suite of state-of-the-art science instruments.
The goal is to provide geologic context for her long term expedition up the mountains sedimentary layers to study the habitability of the Red Planet over eons of time.
Data from Curiosity’s “laser-firing Chemistry & Camera (ChemCam) and Dynamic Albedo of Neutrons (DAN), show elevated amounts of silicon and hydrogen, respectively,” in certain local area rocks, according to the team.
Silica is a rock-forming compound containing silicon and oxygen, commonly found on Earth as quartz.
“High levels of silica could indicate ideal conditions for preserving ancient organic material, if present, so the science team wants to take a closer look.”
Therefore the team scouted targets suitable for in depth analysis and sample drilling and chose “Buckskin”.
“Buckskin” is located among some high-silica and hydrogen enriched targets at a bright outcrop named “Lion.”
An initial test bore operation was conducted first to confirm whether that it was indeed safe to drill into “Buckskin” and cause no harm to the rover before committing to the entire operation.
The bore hole is about 1.6 cm (0.63 inch) in diameter.
“This test will drill a small hole in the rock to help determine whether it is safe to go ahead with the full hole,” elaborated Ryan Anderson, planetary scientist at the USGS Astrogeology Science Center and an MSL science team member.
So it was only after the team received back new high resolution imagery last night from the arm-mounted MAHLI camera which confirmed the success of the mini-drill operation, that the “GO” was given for a full depth drill campaign. MAHLI is short for Mars Hand Lens Imager.
“We successfully completed a mini drilling test yesterday (shown in the MAHLI image). That means that today we’re going for the FULL drill hole” Edgar confirmed.
“GO for Drilling.”
So it’s a busy day ahead on the Red Planet, including lots of imaging along the way to document and confirm that the drilling operation proceeds safely and as planned.
“First we’ll acquire MAHLI images of the intended drill site, then we’ll drill, and then we’ll acquire more MAHLI images after drilling,” Edgar explains.
“The plan also includes Navcam imaging of the workspace, and Mastcam imaging of the target and drill bit. In addition to drilling, we’re getting CheMin ready to receive sample in an upcoming plan. Fingers crossed!” Surface observations with the arm-mounted Alpha Particle X-ray Spectrometer (APXS) instrument are also planned.
If all goes well, the robot will process and pulverize the samples for eventual delivery to the onboard pair of miniaturized chemistry labs located inside her belly – SAM and CheMin. Tiny samples will be fed to the inlet ports on the rover deck through the sieved filters.
Meanwhile the team is studying a nearby rock outcrop called “Ch-paa-qn” which means “shining peak” in the native Salish language of northern Montana.”
Anderson says the target is a bright patch on a nearby outcrop. Via active and passive observations with the mast-mounted ChemCam laser and Mastcam multispectral imager, the purpose is to determine if “Ch-paa-qn” is comprised of calcium sulfate like other white veins visible nearby, or perhaps it’s something else entirely.
Before arriving by the “Lion” outcrop last week, Curiosity was investigating another outcrop area nearby, the high-silica target dubbed “Elk” with the ChemCam instrument, while scouting around the “Marias Pass” area in search of tasty science targets for in-depth analysis.
Sometimes the data subsequently returned and analyzed is so extraordinary, that the team decides on a return trip to a spot previously departed. Such was the case with “Elk” and the rover was commanded to do a U-turn to acquire more precious data.
“One never knows what to expect on Mars, but the Elk target was interesting enough to go back and investigate,” said Roger Wiens, the principal investigator of the ChemCam instrument from the Los Alamos National Laboratory in New Mexico.
Soon, ChemCam will have fired on its 1,000th target. Overall the laser blaster has been fired more than 260,000 times since Curiosity landed inside the nearly 100 mile wide Gale Crater on Mars on Aug. 6, 2012, alongside Mount Sharp.
“ChemCam acts like eyes and ears of the rover for nearby objects,” said Wiens.
“Marias Pass” is a geological context zone where two rock types overlap – pale mudstone meets darker sandstone.
The rover spotted a very curious outcrop named “Missoula.”
“We found an outcrop named Missoula where the two rock types came together, but it was quite small and close to the ground. We used the robotic arm to capture a dog’s-eye view with the MAHLI camera, getting our nose right in there,” said Ashwin Vasavada, the mission’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California.
White mineral veins, possibly comprised of calcium sulfate, filled the fractures by depositing the mineral from running groundwater.
“Such clues help scientists understand the possible timing of geological events,” says the team.
Read more about Curiosity in an Italian language version of this story at Alive Universe Images – here.
As of today, Sol 1060, July 31, 2015, she has taken over 255,000 amazing images.
Mars, otherwise known as the “Red Planet”, is the fourth planet of our Solar System and the second smallest (after Mercury). Named after the Roman God of war, its nickname comes from its reddish appearance, which has to do with the amount of iron oxide prevalent on its surface. Every couple of years, when Mars is at opposition to Earth (i.e. when the planet is closest to us), it is most visible in the night sky.
Because of this, humans have been observing it for millennia, and its appearance in the heavens has played a large role in the mythology and astrological systems of many cultures. And in the modern era, it has been a veritable treasure trove of scientific discoveries, which have informed our understanding of our Solar System and its history.
Size, Mass and Orbit:
Mars has a radius of approximately 3,396 km at its equator, and 3,376 km at its polar regions – which is the equivalent of roughly 0.53 Earths. While it is roughly half the size of Earth, it’s mass – 6.4185 x 10²³ kg – is only 0.151 that of Earth’s. It’s axial tilt is very similar to Earth’s, being inclined 25.19° to its orbital plane (Earth’s axial tilt is just over 23°), which means Mars also experiences seasons.
At its greatest distance from the Sun (aphelion), Mars orbits at a distance of 1.666 AUs, or 249.2 million km. At perihelion, when it is closest to the Sun, it orbits at a distance of 1.3814 AUs, or 206.7 million km. At this distance, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a rotation of the Sun. In Martian days (aka. Sols, which are equal to one day and 40 Earth minutes), a Martian year is 668.5991 Sols.
Composition and Surface Features:
With a mean density of 3.93 g/cm³, Mars is less dense than Earth, and has about 15% of Earth’s volume and 11% of Earth’s mass. The red-orange appearance of the Martian surface is caused by iron oxide, more commonly known as hematite (or rust). The presence of other minerals in the surface dust allow for other common surface colors, including golden, brown, tan, green, and others.
As a terrestrial planet, Mars is rich in minerals containing silicon and oxygen, metals, and other elements that typically make up rocky planets. The soil is slightly alkaline and contains elements such as magnesium, sodium, potassium, and chlorine. Experiments performed on soil samples also show that it has a basic pH of 7.7.
Although liquid water cannot exist on Mars’ surface, owing to its thin atmosphere, large concentrations of ice water exist within the polar ice caps – Planum Boreum and Planum Australe. In addition, a permafrost mantle stretches from the pole to latitudes of about 60°, meaning that water exists beneath much of the Martian surface in the form of ice water. Radar data and soil samples have confirmed the presence of shallow subsurface water at the middle latitudes as well.
Like Earth, Mars is differentiated into a dense metallic core surrounded by a silicate mantle. This core is composed of iron sulfide, and thought to be twice as rich in lighter elements than Earth’s core. The average thickness of the crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi). Relative to the sizes of the two planets, Earth’s crust (averaging 40 km or 25 mi) is only one third as thick.
Current models of its interior imply that the core region measures between 1,700 – 1850 kilometers (1,056 – 1150 mi) in radius, consisting primarily of iron and nickel with about 16–17% sulfur. Due to its smaller size and mass, the force of gravity on the surface of Mars is only 37.6% of that on Earth. An object falling on Mars falls at 3.711 m/s², compared to 9.8 m/s² on Earth.
The surface of Mars is dry and dusty, with many similar geological features to Earth. It has mountain ranges and sandy plains, and even some of the largest sand dunes in the Solar System. It also has the largest mountain in the Solar System, the shield volcano Olympus Mons, and the longest, deepest chasm in the Solar System: Valles Marineris.
The surface of Mars has also been pounded by impact craters, many of which date back billions of years. These craters are so well preserved because of the slow rate of erosion that happens on Mars. Hellas Planitia, also called the Hellas impact basin, is the largest crater on Mars. Its circumference is approximately 2,300 kilometers, and it is nine kilometers deep.
Mars also has discernible gullies and channels on its surface, and many scientists believe that liquid water used to flow through them. By comparing them to similar features on Earth, it is believed these were were at least partially formed by water erosion. Some of these channels are quite large, reaching 2,000 kilometers in length and 100 kilometers in width.
Mars’ Moons:
Mars has two small satellites, Phobos and Deimos. These moons were discovered in 1877 by the astronomer Asaph Hall and were named after mythological characters. In keeping with the tradition of deriving names from classical mythology, Phobos and Deimos are the sons of Ares – the Greek god of war that inspired the Roman god Mars. Phobos represents fear while Deimos stands for terror or dread.
Phobos measures about 22 km (14 mi) in diameter, and orbits Mars at a distance of 9234.42 km when it is at periapsis (closest to Mars) and 9517.58 km when it is at apoapsis (farthest). At this distance, Phobos is below synchronous altitude, which means that it takes only 7 hours to orbit Mars and is gradually getting closer to the planet. Scientists estimate that in 10 to 50 million years, Phobos could crash into Mars’ surface or break up into a ring structure around the planet.
Meanwhile, Deimos measures about 12 km (7.5 mi) and orbits the planet at a distance of 23455.5 km (periapsis) and 23470.9 km (apoapsis). It has a longer orbital period, taking 1.26 days to complete a full rotation around the planet. Mars may have additional moons that are smaller than 50- 100 meters (160 to 330 ft) in diameter, and a dust ring is predicted between Phobos and Deimos.
Scientists believe that these two satellites were once asteroids that were captured by the planet’s gravity. The low albedo and the carboncaceous chondrite composition of both moons – which is similar to asteroids – supports this theory, and Phobos’ unstable orbit would seem to suggest a recent capture. However, both moons have circular orbits near the equator, which is unusual for captured bodies.
Another possibility is that the two moons formed from accredit material from Mars early in its history. However, if this were true, their compositions would be similar to Mars itself, rather than similar to asteroids. A third possibility is that a body impacted the Martian surface, who’s material was ejected into space and re-accreted to form the two moons, similar to what is believed to have formed the Earth’s Moon.
Atmosphere and Climate:
Planet Mars has a very thin atmosphere which is composed of 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates that measure 1.5 micrometers in diameter, which is what gives the Martian sky a tawny color when seen from the surface. Mars’ atmospheric pressure ranges from 0.4 – 0.87 kPa, which is equivalent to about 1% of Earth’s at sea level.
Because of its thin atmosphere, and its greater distance from the Sun, the surface temperature of Mars is much colder than what we experience here on Earth. The planet’s average temperature is -46 °C (-51 °F), with a low of -143 °C (-225.4 °F) during the winter at the poles, and a high of 35 °C (95 °F) during summer and midday at the equator.
The planet also experiences dust storms, which can turn into what resembles small tornadoes. Larger dust storms occur when the dust is blown into the atmosphere and heats up from the Sun. The warmer dust filled air rises and the winds get stronger, creating storms that can measure up to thousands of kilometers in width and last for months at a time. When they get this large, they can actually block most of the surface from view.
Trace amounts of methane have also been detected in the Martian atmosphere, with an estimated concentration of about 30 parts per billion (ppb). It occurs in extended plumes, and the profiles imply that the methane was released from specific regions – the first of which is located between Isidis and Utopia Planitia (30°N260°W) and the second in Arabia Terra (0°N310°W).
It is estimated that Mars must produce 270 tonnes of methane per year. Once released into the atmosphere, the methane can only exist for a limited period of time (0.6 – 4 years) before it is destroyed. Its presence despite this short lifetime indicates that an active source of the gas must be present.
Several possible sources have been suggested for the presence of this methane, ranging from volcanic activity, cometary impacts, and the presence of methanogenic microbial life forms beneath the surface. Methane could also be produced by a non-biological process called serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars.
The Curiosity rover has made several measurements for methane since its deployment to the Martian surface in August of 2012. The first measurements, which were made using its Tunable Laser Spectrometer (TLS), indicated that there were less than 5 ppb at its landing site (Bradbury Landing). A subsequent measurement performed on September 13th detected no discernible traces.
On December 16th, 2014, NASA reported that the Curiosity rover had detected a “tenfold spike”, likely localized, in the amount of methane in the Martian atmosphere. Samples measurements taken between late 2013 and early 2014 showed an increase of 7 ppb; whereas before and after that, readings averaged around one-tenth that level.
Ammonia was also tentatively detected on Mars by the Mars Express satellite, but with a relatively short lifetime. It is not clear what produced it, but volcanic activity has been suggested as a possible source.
Historical Observations:
Earth astronomers have a long history of observing the “Red Planet”, both with the naked eye and with instrumentation. The first recorded mentions of Mars as a wandering object in the night sky were made by Ancient Egyptian astronomers, who by 1534 BCE were familiar with the planet’s “retrograde motion”. In essence, they deduced that the planet, though it appeared to be a bright star, moved differently than the other stars, and that it would occasionally slow down and reverse course before returning to its original course.
By the time of the Neo-Babylonian Empire (626 BCE – 539 BCE), astronomers were making regular records of the position of the planets, systematic observations of their behavior and even arithmetic methods for predicted the positions of the planets. For Mars, this included detailed accounts of its orbital period and its passage through the zodiac.
By classical antiquity, the Greeks were making additional observations on Mars’ behavior that helped them to understand its position in the Solar System. In the 4th century BCE, Aristotle noted that Mars disappeared behind the Moon during an occultation, which indicated it was farther away than the Moon.
Ptolemy, a Greek-Egyptian astronomer of Alexandria (90 CE – ca. 168 CE), constructed a model of the universe in which he attempted to resolve the problems of the orbital motion of Mars and other bodies. In his multi-volume collection Almagest, he proposed that the motions of heavenly bodies were governed by “wheels within wheels”, which attempted to explain retrograde motion. This became the authoritative treatise on Western astronomy for the next fourteen centuries.
Literature from ancient China confirms that Mars was known by Chinese astronomers by at least the fourth century BCE. In the fifth century CE, the Indian astronomical text Surya Siddhanta estimated the diameter of Mars. In the East Asian cultures, Mars is traditionally referred to as the “fire star”, based on the Five elements.
Modern Observations:
The Ptolemaic model of the Solar System remained canon for western astronomers until the Scientific Revolution (16th to 18th century CE). Thanks to Copernicus’ heliocentric model, and Galileo’s use of the telescope, Mars proper position relative to Earth and the Sun began to become known. The invention of the telescope also allowed astronomers to measure the diurnal parallax of Mars and determine its distance.
This was first performed by Giovanni Domenico Cassini in 1672, but his measurements were hampered by the low quality of his instruments. During the 17th century, Tycho Brahe also employed the diurnal parallax method, and his observations were measured later by Johannes Kepler. During this time, Dutch astronomer Christiaan Huygens also drew the first map of Mars which included terrain features.
By the 19th century, the resolution of telescopes improved to the point that surface features on Mars could be identified. This led Italian astronomer Giovanni Schiaparelli to produce the first detailed map of Mars after viewing it at opposition on September 5th, 1877. These maps notably contained features he called canali – a series of long, straight lines on the surface of Mars – which he named after famous rivers on Earth. These were later revealed to be an optical illusion, but not before spawning a wave of interest in Mars’ “canals”.
In 1894, Percival Lowell – inspired by Schiaparelli’s map – founded an observatory which boasted two of the largest telescopes of the time – 30 and 45 cm (12 and 18 inch). Lowell published several books on Mars and life on the planet, which had a great influence on the public, and the canals were also observed by other astronomers, like Henri Joseph Perrotin and Louis Thollon of Nice.
Seasonal changes like the diminishing of the polar caps and the dark areas formed during Martian summer, in combination with the canals, led to speculation about life on Mars. The term “Martian” became synonymous with extra-terrestrial for quite some time, though telescopes never reached the resolution needed to provide any proof. Even in the 1960s, articles were published on Martian biology, putting aside explanations other than life for the seasonal changes on Mars.
Exploration of Mars:
With the advent of the space age, probes and landers began to be sent to Mars by the late 20th century. These have yielded a wealth of information on the geology, natural history, and even the habitability of the planet, and increased our knowledge of the planet immensely. And while modern missions to Mars have dispelled the notions of there being a Martian civilization, they have indicated that life may have existed there at one time.
Efforts to explore Mars began in earnest in the 1960s. Between 1960 and 1969, the Soviets launched nine unmanned spacecraft towards Mars, but all failed to reach the planet. In 1964, NASA began launching Mariner probes towards Mars. This began with Mariner 3 and Mariner 4, two unmanned probes that were designed to carry out the first flybys of Mars. The Mariner 3 mission failed during deployment, but Mariner 4 – which launched three weeks later – successfully made the 7½-month long voyage to Mars.
Mariner 4 captured the first close-up photographs of another planet (showing impact craters) and provided accurate data about the surface atmospheric pressure, and noted the absence of a Martian magnetic field and radiation belt. NASA continued the Mariner program with another pair of flyby probes – Mariner 6 and 7 – which reached the planet in 1969.
During the 1970s, the Soviets and the US competed to see who could place the first artificial satellite in orbit of Mars. The Soviet program (M-71) involved three spacecraft – Cosmos 419 (Mars 1971C), Mars 2 and Mars 3. The first, a heavy orbiter, failed during launch. The subsequent missions, Mars 2 and Mars 3, were combinations of an orbiter and a lander, and would be the first rovers to land on a body other than the Moon.
They were successfully launched in mid-May 1971 and reached Mars about seven months later. On November 27th, 1971, the lander of Mars 2 crash-landed due to an on-board computer malfunction and became the first man-made object to reach the surface of Mars. In December 2nd, 1971, the Mars 3 lander became the first spacecraft to achieve a soft landing, but its transmission was interrupted after 14.5 seconds.
Meanwhile, NASA continued with the Mariner program, and scheduled Mariner 8 and 9 for launch in 1971. Mariner 8 also suffered a technical failure during launch and crashed into the Atlantic Ocean. But the Mariner 9 mission managed to not only make it to Mars, but became the first spacecraft to successfully establish orbit around it. Along with Mars 2 and Mars 3, the mission coincided with a planet-wide dust storm. During this time, the Mariner 9 probe managed to rendezvous and take some photos of Phobos.
When the storm cleared sufficiently, Mariner 9 took photos that were the first to offer more detailed evidence that liquid water might have flowed on the surface at one time. Nix Olympica, which was one of only a few features that could be seen during the planetary duststorm, was also determined to be the highest mountain on any planet in the entire Solar System, leading to its reclassification as Olympus Mons.
In 1973, the Soviet Union sent four more probes to Mars: the Mars 4 and Mars 5 orbiters and the Mars 6 and Mars 7 fly-by/lander combinations. All missions except Mars 7 sent back data, with Mars 5 being most successful. Mars 5 transmitted 60 images before a loss of pressurization in the transmitter housing ended the mission.
By 1975, NASA launched Viking1 and 2 to Mars, which consisted of two orbiters and two landers. The primary scientific objectives of the lander mission were to search for biosignatures and observe the meteorologic, seismic and magnetic properties of Mars. The results of the biological experiments on board the Viking landers were inconclusive, but a reanalysis of the Viking data published in 2012 suggested signs of microbial life on Mars.
The Viking orbiters revealed further data that water once existed on Mars, indicating that large floods carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers. In addition, areas of branched streams in the southern hemisphere, suggest that surface once experienced rainfall.
Mars was not explored again until the 1990’s, at which time, NASA commenced the Mars Pathfinder mission – which consisted of a spacecraft that landed a base station with a roving probe (Sojourner) on the surface. The mission landed on Mars on July 4th, 1997, and provided a proof-of-concept for various technologies that was would be used by later missions, such as an airbag landing system and automated obstacle avoidance.
This was followed by the Mars Global Surveyor (MGS), a mapping satellite that reached Mars on September 12th, 1997, and began its mission on March 1999. From a low-altitude, nearly polar orbit, it observed Mars over the course of one complete Martian year (nearly two Earth years) and studied the entire Martian surface, atmosphere, and interior, returning more data about the planet than all previous Mars missions combined.
Among key scientific findings, the MGS took pictures of gullies and debris flows that suggest there may be current sources of liquid water, similar to an aquifer, at or near the surface of the planet. Magnetometer readings showed that the planet’s magnetic field is not globally generated in the planet’s core, but is localized in particular areas of the crust.
The spacecraft’s laser altimeter also gave scientists their first 3-D views of Mars’ north polar ice cap. On November 5th, 2006, MGS lost contact with Earth, and all efforts by NASA to restore communication ceased by January 28th, 2007.
In 2001, NASA’s Mars Odyssey orbiter arrived at Mars. Its mission was to use spectrometers and imagers to hunt for evidence of past or present water and volcanic activity on Mars. In 2002, it was announced that the probe had detected large amounts of hydrogen, indicating that there are vast deposits of water ice in the upper three meters of Mars’ soil within 60° latitude of the south pole.
On June 2, 2003, the European Space Agency (ESA) launched the Mars Express spacecraft, which consisted of the Mars Express Orbiter and the lander Beagle 2. The orbiter entered Martian orbit on December 25th, 2003, and Beagle 2 entered Mars’ atmosphere on the same day. Before the ESA lost contact with the probe, the Mars Express Orbiter confirmed the presence of water ice and carbon dioxide ice at the planet’s south pole, while NASA had previously confirmed their presence at the north pole of Mars.
In 2003, NASA also commenced the Mars Exploration Rover Mission (MER), an ongoing robotic space mission involving two rovers – Spirit and Opportunity – exploring the planet Mars. The mission’s scientific objective was to search for and characterize a wide range of rocks and soils that hold clues to past water activity on Mars.
TheMars Reconnaissance Orbiter (MRO) is a multipurpose spacecraft designed to conduct reconnaissance and exploration of Mars from orbit. The MRO launched on August 12th, 2005, and attained Martian orbit on March 10th, 2006. The MRO contains a host of scientific instruments designed to detect water, ice, and minerals on and below the surface.
Additionally, the MRO is paving the way for upcoming generations of spacecraft through daily monitoring of Martian weather and surface conditions, searching for future landing sites, and testing a new telecommunications system that will speed up communications between Earth and Mars.
The NASA Mars Science Laboratory (MSL) mission and its Curiosityrover landed on Mars in the Gale Crater (at a landing site named “Bradbury Landing”) on August 6th, 2012. The rover carries instruments designed to look for past or present conditions relevant to the habitability of Mars, and has made numerous discoveries about atmospheric and surface conditions on Mars, as well as the detection of organic particles.
NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) orbiter was launched on November 18th, 2013, and reached Mars on September 22nd, 2014. The purpose of the mission is to study the atmosphere of Mars and also serve as a communications relay satellite for robotic landers and rovers on the surface.
Most recently, the Indian Space Research Organisation (ISRO) launched the Mars Orbiter Mission (MOM, also called Mangalyaan) on November 5th, 2013. The orbiter successfully reached Mars on September 24th, 2014, and was the first spacecraft to achieve orbit on the first try. A technology demonstrator, who’s secondary purpose is to study the Martian atmosphere, MOM is India’s first mission to Mars, and has made the ISRO the fourth space agency to reach the planet.
Future missions to Mars include NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSIGHT) lander. This mission, which is planned for launch in 2016, involves placing a stationary lander equipped with a seismometer and heat transfer probe on the surface of Mars. The probe will then deploy these instruments into the ground to study the planets interior and get a better understanding of its early geological evolution.
The ESA and Roscosmos are also collaborating on a large mission to search for biosignatures of Martian life, known as Exobiology on Mars (or ExoMars). Consisting of an orbiter that will be launched in 2016, and a lander that will be deployed to the surface by 2018, the purpose of this mission will be to map the sources of methane and other gases on Mars that would indicate the presence of life, past and present.
The United Arab Emirates also has a plan to send an orbiter to Mars by 2020. Known as Mars Hope, the robotic space probe will be deployed in orbit around Mars for the sake of studying its atmosphere and climate. This spacecraft will be the first to be deployed by an Arab state in orbit of another planet, and is expected to involve collaboration from the University of Colorado, the University of California, Berkeley and Arizona State University, as well the French space agency (CNES).
Crewed Missions:
Numerous federal space agencies and private companies have plans to send astronauts to Mars within the not-too-distant future. For instance, NASA has confirmed that it plans to conduct a manned mission to Mars by 2030. In 2004, human exploration of Mars was identified as a long-term goal in the Vision for Space Exploration – a public document released by the Bush administration.
In 2010, President Barack Obama announced his administration’s space policy, which included increasing NASA funding by $6 billion over five years and completing the design of a new heavy-lift launch vehicle by 2015. He also predicted a U.S.-crewed orbital Mars mission by the mid-2030s, preceded by an asteroid mission by 2025.
The ESA also has plans to land humans on Mars between 2030 and 2035. This will be preceded by successively larger probes, starting with the launch of the ExoMars probe and a planned joint NASA-ESA Mars sample return mission.
In Robert Zubrin (founder of the Mars Society) proposed a low-cost human mission to NASA known as Mars Direct, which he expanded on in his 1996 book The Case for Mars. According to Zubrin, the plan calls for a new class of heavy-lift rockets (similar to the Saturn V) to send human explorers and payloads to the Red Planet. A modified proposal, known as “Mars to Stay”, involves a possible one-way trip, where the astronauts would become Mars’ first colonists.
Similarly, MarsOne, a Netherlands-based non-profit organization, hopes to establish a permanent colony on the planet beginning in 2027. The original concept included launching a robotic lander and orbiter as early as 2016 to be followed by a human crew of four in 2022. Subsequent crews of four will be sent every few years, and funding is expected to be provided in part by a reality TV program that will document the journey.
SpaceX and Tesla CEO Elon Musk has also announced plans to establish a colony on Mars. Intrinsic to this plan is the development of the Mars Colonial Transporter (MCT), a spaceflight system that would rely of reusable rocket engines, launch vehicles and space capsules to transport humans to Mars and return to Earth.
As of 2014, SpaceX has begun development of the large Raptor rocket engine for the Mars Colonial Transporter, and a successful test was announced in September of 2016. In January 2015, Musk said that he hoped to release details of the “completely new architecture” for the Mars transport system in late 2015.
In June 2016, Musk stated in the first unmanned flight of the MCT spacecraft would take place in 2022, followed by the first manned MCT Mars flight departing in 2024. In September 2016, during the 2016 International Astronautical Congress, Musk revealed further details of his plan, which included the design for an Interplanetary Transport System (ITS) – an upgraded version of the MCT.
Mars is the most studied planet in the Solar System after Earth. As of the penning of this article, there are 3 landers and rovers on the surface of Mars (Phoenix, Opportunity and Curiosity), and 5 functional spacecraft in orbit (Mars Odyssey, Mars Express, MRO, MOM, and MAVEN). And more spacecraft will be on their way soon.
These spacecraft have sent back incredibly detailed images of the surface of Mars, and helped discover that there was once liquid water in Mars’ ancient history. In addition, they have confirmed that Mars and Earth share many of the same characteristics – such as polar icecaps, seasonal variations, an atmosphere, and the presence of flowing water. They have also shown that organic life can and most likely did live on Mars at one time.
In short, humanity’s obsession with the Red Planet has not waned, and our efforts to explore its surface and understand its history are far from over. In the coming decades, we are likely to be sending additional robotic explorers, and human ones as well. And given time, the right scientific know-how, and whole lot of resources, Mars may even be suitable for habitation someday.
Like splitting double stars, hunting for the faint lesser known moons of the solar system offers a supreme challenge for the visual observer.
Sure, you’ve seen the Jovian moons do their dance, and Titan is old friend for many a star party patron as they check out the rings of Saturn… but have you ever spotted Triton or Amalthea?
Welcome to the challenging world of moon-spotting. Discovering these moons for yourself can be an unforgettable thrill.
One of the key challenges in spotting many of the fainter moons is the fact that they lie so close inside the glare of their respective host planet. For example, +11th magnitude Phobos wouldn’t be all that tough on its own, were it not for the fact that it always lies close to dazzling Mars. 10 magnitudes equals a 10,000-fold change in brightness, and the fact that most of these moons are swapped out is what makes them so tough to see. This is also why many of them weren’t discovered until later on.
But don’t despair. One thing you can use that’s relatively easy to construct is an occulting bar eyepiece. This will allow you to hide the dazzle of the planet behind the bar while scanning the suspect area to the side for the faint moon. Large aperture, steady skies, and well collimated optics are a must as well, and don’t be afraid to crank up the magnification in your quest. We mentioned using such a technique previously as a method to tease out the white dwarf star Sirius b in the years to come.
What follows is a comprehensive list of the well known ‘easy ones,’ along with some challenges.
We included a handy drill down of magnitudes, orbital periods and maximum separations for the moons of each planet right around opposition. For the more difficult moons, we also noted the circumstances of their discovery, just to give the reader some idea what it takes to see these fleeting worlds. Remember though, many of those old scopes used speculum metal mirrors which were vastly inferior to commercial optics available today. You may have a large Dobsonian scope available that rivals these scopes of yore!
Mars- The two tiny moons of Mars are a challenge, as it’s only possible to nab them visually near opposition, which occurs about once every 26 months. Mars next reaches opposition on May 22nd, 2016.
Phobos:
Magnitude: +11.3
Orbital period: 7 hours 39 minutes
Maximum separation: 16”
Deimos:
Magnitude: +12.3
Orbital period: 1 day 6 hours and 20 minutes
Maximum separation: 54”
The moons of Mars were discovered by American astronomer Asaph Hall during the favorable 1877 opposition of Mars using the 26-inch refracting telescope at the U.S. Naval Observatory.
Jupiter- Though the largest planet in our solar system also has the largest number of moons at 67, only the four bright Galilean moons are easily observable, although owners of large light buckets might just be able to tease out another two. Jupiter next reaches opposition March 8th, 2016.
Ganymede:
Magnitude: +4.6
Orbital period: 7.2 days
Maximum separation: 5’
Callisto
Magnitude: +5.7
Orbital period: 16.7 days
Maximum separation: 9’
Io
Magnitude: +5.0
Orbital period: 1.8 days
Maximum separation: 1’ 50”
Europa
Magnitude: +5.3
Orbital period: 3.6 days
Maximum separation: 3’
Amalthea
Magnitude: +14.3
Orbital period: 11 hours 57 minutes
Maximum separation: 33”
Himalia
Magnitude: +15
Orbital period: 250.2 days
Maximum separation: 52’
Note that Amalthea was the first of Jupiter’s moons discovered after the four Galilean moons. Amalthea was first spotted in 1892 by E. E. Barnard using the 36” refractor at the Lick Observatory. Himalia was also discovered at Lick by Charles Dillon Perrine in 1904.
Saturn- With a total number of moons at 62, six moons of Saturn are easily observable with a backyard telescope, though keen-eyed observers might just be able to tease out another two:
(Note: the listed separation from the moons of Saturn is from the limb of the disk, not the rings).
Titan
Magnitude: +8.5
Orbital period: 16 days
Maximum separation: 3’
Rhea
Magnitude: +10.0
Orbital period: 4.5 days
Maximum separation: 1’ 12”
Iapetus
Magnitude: (variable) +10.2 to +11.9
Orbital period: 79 days
Maximum separation: 9’
Enceladus
Magnitude: +12
Orbital period: 1.4 days
Maximum separation: 27″
Dione
Magnitude: +10.4
Orbital period: 2.7 days
Maximum separation: 46”
Tethys
Magnitude: +10.2
Orbital period: 1.9 days
Maximum separation: 35”
Mimas
Magnitude: +12.9
Orbital period: 0.9 days
Maximum separation: 18”
Hyperion
Magnitude: +14.1
Orbital period: 21.3 days
Maximum separation: 3’ 30”
Phoebe
Magnitude: +16.6
Orbital period: 541 days
Maximum separation: 27’
Hyperion was discovered by William Bond using the Harvard observatory’s 15” refractor in 1848, and Phoebe was the first moon discovered photographically by William Pickering in 1899.
Uranus- All of the moons of the ice giants are tough. Though Uranus has a total of 27 moons, only five of them might be spied using a backyard scope. Uranus next reaches opposition on October 12th, 2015.
Titania
Magnitude: +13.9
Orbital period:
Maximum separation: 28”
Oberon
Magnitude: +14.1
Orbital period: 8.7 days
Maximum separation: 40”
Umbriel
Magnitude: +15
Orbital period: 4.1 days
Maximum separation: 15”
Ariel
Magnitude: +14.3
Orbital period: 2.5 days
Maximum separation: 13”
Miranda
Magnitude: +16.5
Orbital period: 1.4 days
Maximum separation: 9”
The first two moons of Uranus, Titania and Oberon, were discovered by William Herschel in 1787 using his 49.5” telescope, the largest of its day.
Neptune- With a total number of moons numbering 14, two are within reach of the skilled amateur observer. Opposition for Neptune is coming right up on September 1st, 2015.
Triton
Magnitude: +13.5
Orbital period: 5.9 days
Maximum separation: 15”
Nereid
Magnitude: +18.7
Orbital period: 0.3 days
Maximum separation: 6’40”
Triton was discovered by William Lassell using a 24” reflector in 1846, just 17 days after the discovery of Neptune itself. Nereid wasn’t found until 1949 by Gerard Kuiper.
Pluto-Yes… it is possible to spy Charon from Earth… as amateur astronomers proved in 2008.
Charon
Magnitude: +16
Orbital period: 6.4 days
Maximum separation: 0.8”
In order to cross off some of the more difficult targets on the list, you’ll need to know exactly when these moons are at their greatest elongation. Sky and Telescope has some great apps in the case of Jupiter and Saturn… the PDS Rings node can also generate corkscrew charts of lesser known moons, and Starry Night has ‘em as well. In addition, we tend to publish cork screw charts for moons right around respective oppositions, and our ephemeris for Charon elongations though July 2015 is still active.
Good luck in crossing off some of these faint moons from your astronomical life list!
Hey, Mars, you’ve got company. Looks like there’s a second “red planet” in the Solar System — Pluto. Color images returned from NASA’s New Horizons spacecraft, now just 10 days from its encounter with the dwarf planet, show a distinctly ruddy surface with patchy markings that strongly resemble Mars’ appearance in a small telescope.
On Mars, iron oxide or rust colors the planet’s soil, while Pluto’s coloration is likely caused by hydrocarbon molecules called tholins that are formed when cosmic rays and solar ultraviolet light interact with methane in Pluto’s atmosphere and on its surface. Airborne tholins fall out of the atmosphere and coat the surface with a reddish gunk.
A particular color or wavelength of UV light called Lyman-alpha is most effective at stimulating the chemical reactions that build hydrocarbons at Pluto. Recent measurements with New Horizons’ Alice instrument reveal the diffuse glow of Lyman-alpha light all around the dwarf planet coming from all directions of space, not just the Sun.
Since one of the main sources of Lyman-alpha light besides the Sun are regions of vigorous star formation in young galaxies, Pluto’s cosmetic rouge may originate in events happening millions of light years away.
“Pluto’s reddish color has been known for decades, but New Horizons is now allowing us to correlate the color of different places on the surface with their geology and soon, with their compositions,” said New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado.
Tholins have been found on other bodies in the outer Solar System, including Titan and Triton, the largest moons of Saturn and Neptune, respectively, and made in laboratory experiments that simulate the atmospheres of those bodies.
As you study the photos and animation, you’ll notice that Pluto’s largest dark spot is redder than the most of the surface; you also can’ help but wonder what’s going on with those four evenly-spaced dark streaks in the equatorial zone. When I first saw them, my reaction was “no way!” They look so neatly lined up I assumed it was an image artifact, but after seeing the rotating movie, maybe not. It’s more likely that low resolution enhances the appearance of alignment.
But what are they? Located as they are on the Charon-facing side of Pluto, they may be related to long-ago tidal stresses induced by each body on the other as they slowly settled into their current tidally-locked embrace or something as current as seasonal change.
Voyager 2 photographed cyrovolcanos at Triton during its 1989 flyby of the Neptune system. Nitrogen geysers and plumes of gas and ice as high as 5 miles (8 km) were seen erupting from active volcanoes, leaving dark streaks on its icy surface.
Seasonal heating from the Sun is the most likely cause for Triton’s eruptions; Pluto’s dark streaks may have a similar origin.
Today, New Horizons lies just 7.4 million miles (11.9 million km) from its target. Sharpness and detail visible will rapidly improve in just a few days.
“Even at this resolution, Pluto looks like no other world in our Solar System,” said mission scientist Marc Buie of the Southwest Research Institute, Boulder in a recent press release.
We all know that Mars Needs Moms, but Dad rocks the Red Planet too! If you’re looking for a last-minute gift for Dad, the commercial space company Uwingu has a special Father’s Day promotion where you can name a crater on Mars after your dad (or any other special person in your life.) You’ll get a unique decorative Father’s Day certificate that you can download and print,or for an extra fee you can have the certificate professionally printed and framed.
Uwingu’s Mars Map Crater Naming Project at allows anyone to help name approximately 590,000 unnamed, scientifically cataloged craters on Mars. The company uses out-of-the-box idea to help address funding shortages for researchers, scientists, educators and students. Uwingu’s Mars map grandfathers in all the already named craters on Mars, but opens the remainder up for naming by people around the globe.
“This is an out-of-this-world way to honor dads across this planet,” said Dr. Alan Stern, Uwingu’s CEO. “Help your dad join our Dads on Mars club!”
Uwingu also announced that anyone purchasing the 50 largest craters named by Father’s Day will receive a 2-for-1 bonus: a gift certificate of equal value; allowing them to put additional crater names on the Mars map for free anytime in 2015.
Prices for naming craters depend on the size of the crater, and begin at $5. Half of Uwingu’s revenues go to fund the Uwingu Fund for space research and education grants.
As we’ve reported previously, Uwingu knows that the names likely won’t officially be approved by the IAU, but said they will be similar to the names given to features on Mars by the mission science teams (such as Mt. Sharp on Mars –the IAU-approved name is Aeolis Mons) or even like Pike’s Peak, a mountain in Colorado which was named by the public, in a way, as early settlers started calling it that, and it soon became the only name people recognized.
“Mars scientists and Apollo astronauts have named features on the Red Planet and the Moon without asking for the IAU’s permission,” Stern said. In the past, Stern has said that he realizes having people pay to suggest names for with no official standing may be controversial, and he’s willing to take the chance – and the heat – to try a innovative ways to provide funding in today’s climate of funding cuts.
Said Uwingu’s Ellen Butler, “I’m excited to name a crater on the Uwingu Mars map in honor of my own dad. It’ll be fun to share this with him on Father’s Day. I know he’ll love telling his friends that I named a crater for him!”
NASA’s two small MarCO CubeSats will be flying past Mars in 2016 just as NASA’s next Mars lander, InSight, is descending to land on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. Credits: NASA/JPL-Caltech See fly by and cubesat spacecraft graphics and photos below[/caption]
CubeSats are taking the next great leap for science – departing Earth and heading soon for the fourth rock from the Sun.
For the first time, two tiny CubeSat probes will launch into deep space in early 2016 on their first interplanetary expedition – aiming for the Red Planet as part of an experimental technology relay demonstration project aiding NASA’s next Mission to Mars; the InSight lander.
NASA announced the pair of briefcase-sized CubeSats, called Mars Cube One or MarCO, as a late and new addition to the InSight mission, that could substantially enhance communications options on future Mars missions. They were designed and built by NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California.
InSight, which stands for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is a stationary lander. It will join NASA’s surface science exploration fleet currently comprising of the Curiosity and Opportunity missions which by contrast are mobile rovers.
InSight is the first mission to understand the interior structure of the Red Planet. Its purpose is to elucidate the nature of the Martian core, measure heat flow and sense for “Marsquakes.”
Because of their small size – roughly 4 inches (10 centimeters) square) – and simplicity using off-the-shelf components, they are a favored platform for university students and others seeking low cost access to space – such as the Planetary Society’s recently successful Light Sail solar sailing cubesat demonstration launched in May. Six units are combined together to create MarCO.
Over the past few years many hundreds of cubesats have already been deployed in Earth orbit – including many dozens from the International Space Station(ISS) – but these will be the first going far beyond our Home Planet.
Data relayed by MarCO at 8 kbps in real time could reveal InSight’s fate on the Martian surface within minutes to mission controllers back on Earth, rather than waiting for a potentially prolonged period of agonizing nail-biting lasting an hour or more.
The two probes, known as MarCO-A and MarCO-B, will operate during InSight’s highly complex entry, descent and landing (EDL) operations as it descends through the thin Martian atmosphere. Their function is merely to quickly relay landing data. But the cubesats will have no impact on the ultimate success of the mission. They will intentionally sail by but not land on Mars.
“MarCO is an experimental capability that has been added to the InSight mission, but is not needed for mission success,” said Jim Green, director of NASA’s planetary science division at the agency’s headquarters in Washington, in a statement.
The MarCO Cubesats will serve as a test bed for a revolutionary communications mode that seeks to quickly relay data back to Earth about the status of InSight – in real time – as it plummets down to the Red Planet for the “Seven Minutes of Terror” that hopefully climaxes with a soft landing.
The MarCO duo will fly by past Mars at a planned distance and altitude of about 3,500 kilometers as InSight descends towards the surface during EDL operations. They will rapidly retransmit signals coming from the lander in real time, directly back to NASA’s huge Deep Space Network (DSN) receiving dish antennas back on Earth.
For this flight, six cubesats will be joined together to provide the additional capability required for the journey to Mars and to accomplish their communications task.
The six-unit MarCO CubeSat has a stowed size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters) and weighs 14 kilograms.
The solar powered probes will be outfitted with UHF and X-band communications gear as well as propulsion, guidance and more.
The overall cost to design, build, launch and operate MarCO-A and MarCO-B is approximately $13 million, a NASA spokesperson told Universe Today.
InSight and MarCO are slated to blastoff together on March 4, 2016 atop a United Launch Alliance Atlas V rocket from Vandenberg Air Force Base, California.
After launch, both MarCO CubeSats will separate from the Atlas V booster and travel along their own trajectories to the Red Planet.
“MarCO will fly independently to Mars,” says Green.
They will be navigated independently from InSight. They will all reach Mars at approximately the same time for InSight’s landing slated for Sept. 28, 2016.
MarCO’s two solar panels and two radio antennas will unfurl after being released from the Atlas booster. The high-gain, X-band antenna is a flat panel engineered to direct radio waves the way a parabolic dish antenna does,” according to a NASA description.
The softball-size radio “provides both UHF (receive only) and X-band (receive and transmit) functions capable of immediately relaying information received over UHF.”
During EDL, InSight will transmit landing data via UHF radio to the MarCO cubesats sailing past Mars as well as to NASA’s Mars Reconnaissance Orbiter (MRO) soaring overhead.
MarCO will assist InSight by receiving the lander information transmitted in the UHF radio band and then immediately forward EDL information to Earth using the X-band radio. By contrast, MRO cannot simultaneously receive information over one band while transmitting on another, thus delaying confirmation of a successful landing possibly by an hour or more.
“Ultimately, if the MarCO demonstration mission succeeds, it could allow for a “bring-your-own” communications relay option for use by future Mars missions in the critical few minutes between Martian atmospheric entry and touchdown,” say NASA officials.
It’s also very beneficial and critical to the success of future missions to have a stream of data following the progress of past missions so that lessons can be learned and applied, whatever the outcome.
“By verifying CubeSats are a viable technology for interplanetary missions, and feasible on a short development timeline, this technology demonstration could lead to many other applications to explore and study our solar system,” says NASA.
InSight will smash into the Martian atmosphere at high speeds of approximately 13,000 mph in September 2016 and then decelerate within a few minutes for landing via a heat shield, retro rocket and parachute assisted touchdown on the plains at flat-lying terrain at “Elysium Planitia,” some four degrees north of Mars’ equator, and a bit north of the Curiosity rover.
As I reported in recently here, InSight has now been assembled into its flight configuration and begun a comprehensive series of rigorous environmental stress tests that will pave the path to launch in 2016 on a mission to unlock the riddles of the Martian core.
The countdown clock is ticking relentlessly towards liftoff in less than nine months time in March 2016.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.