The Moon from Earth As You’ve Never Seen it Before

The Morteus region on the Moon, taken from the suburbs of Paris, France. Credit: Thierry Legault. Used by permission.

Think this is an orbital view of the Moon? Guess again. Astrophotographer Thierry Legault took this image from his backyard in the suburbs of Paris, France! He’s taken a series of images of the Moon the past few nights that will blow your mind when you consider they were taken from Earth, within the confines of the metropolis of Paris (largest city in France, 5th largest in the EU, 20th largest in the world). Thierry used a Celestron C14 EdgeHD (356mm) and Skynyx2.2 camera. You definitely want to click on these images for the larger versions on Thierry’s website, and he suggests using a full-HD screen in subdued surroundings.

Additionally, Thierry also recently took images of Mercury and Uranus that include incredible detail.

Plato, Mons Pico and Montes Teneriffe as seen on Sept 8th, 2010, from the suburbs of Paris, France. Credit: Thierry Legault. Used by permission.

The clarity and detail are just tremendous. See all of Thierry’s recent lunar images at this link. He has a collection of twelve different images of various regions on the Moon and all are stunning.

Below are his images of Mercury and Uranus. In the image of Mercury, surface details are visible, and the cloud belts are even visible on the images of Uranus:

Incredibly detailed view of Mercury on August 23, 2012, as seen from Blancourt, France. Credit: Thierry Legault. Used by permission.

Uranus, as seen on September 9, 2012 from Blancourt, France. Credit: Thierry Legault. Used by permission.

Thanks, as always, to Thierry Legault for sharing his images and allowing us to post them. Check out his website: http://legault.perso.sfr.fr/ for more wonderful images and information about how he does his amazing astrophotography.

Mohawk Guy Provides Update on Curiosity Rover

JPL’s Bobak Ferdowsi — famous for the star-spangled Mohawk hairdo he sported on Curiosity’s landing night — provides an update on what the newest Mars rover has been up to (checking out instruments) and how next week should include big moments like the first test drive and firing up that laser.

In addition to great hair, Ferdowsi is a Flight Director for the Curiosity rover team.

Ferdowsi in JPL’s Mission Control during Curiosity’s landing.

“The Hobbit” Author Gets a Crater on Mercury

Here’s a little something to please fans of space, art and fantasy alike (and those who enjoy all three): on August 6 the International Astronomical Union approved names for 9 craters on Mercury, one of which is named for J.R.R. Tolkien, revered author of The Hobbit and The Lord of the Rings (among other seminal fantasy works.)

The crater Tolkien is approximately 30 miles (48 km) in diameter. All 9 newly-named craters are located in Mercury’s north polar region and exhibit radar evidence of water ice hidden in their shadowy pocketses.

IAU procedure for craters on Mercury has them named after “deceased artists, musicians, painters, and authors who have made outstanding or fundamental contributions to their field and have been recognized as art historically significant figures for more than 50 years.” Find out who all 9 new craters are named for after the jump:

Egonu, for Uzo Egonu (1931-1996), a Nigerian-born painter who at 13 was sent to England to study art, first at a private school in Norfolk and later at the Camberwell School of Arts and Crafts. Exile, alienation, and the pain of displaced peoples were recurrent themes in his work.

Gaudí­, after Antoni Gaudí­ (1852-1926), a Spanish architect whose work concentrated largely on the Catalan capital of Barcelona. He was very skilled with ceramics, stained glass, wrought-iron forging, and carpentry and integrated these crafts into his architecture.

Kandinsky, for Wassily Kandinsky (1866-1944), a Russian painter and art theorist credited with painting the first purely abstract works.

Petronius, for Titus Petronius (c. AD 27-66), a Roman courtier during the reign of Nero. He is generally believed to be the author of the Satyricon, a satirical novel believed to have been written during the Neronian era.

Prokofiev, for Sergei Prokofiev (1891-1953), a Russian composer, pianist, and conductor who is considered one of the major composers of the 20th century. His best-known works include the ballet Romeo and Juliet — from which “Dance of the Knights” is taken — and Peter and the Wolf.

Tolkien, for John Ronald Reuel (J. R. R.) Tolkien (1892-1973), an English writer, poet, philologist, and university professor, best known as the author of the classic fantasy novels The Hobbit and The Lord of the Rings.

Tryggvadóttir, for Nina Tryggvadóttir (1913-1968), one of Iceland’s most important abstract expressionist artists and one of very few Icelandic female artists of her generation. She primarily worked in painting, but she also created collages, stained glass work, and mosaics.

Qiu Ying, for Shifu Qiu Ying (1494-1552), a Chinese painter who specialized in the gongbi brush technique, a careful realist method in Chinese painting. He is regarded as one of the Four Great Masters of the Ming Dynasty.

Yoshikawa, for Eiji Yoshikawa (1892-1962), a Japanese historical novelist best known for his revisions of older classics including The Tale of the Heike, Tale of Genji, Outlaws of the Marsh, and Romance of the Three Kingdoms.

“These designations expand the opportunities to recognize the contributions to the arts by the most creative individuals from many cultures and eras. The names of those individuals are now linked in perpetuity to the innermost planet.”

– Sean Solomon, MESSENGER Principal Investigator

The craters were imaged by NASA’s MESSENGER spacecraft, currently in extended mission around Mercury. Learn more about the preciousss MESSENGER mission here. (Gollum! Gollum!)

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington 

A Glimpse of Old Cape Kennedy

I’m a child of the shuttle era, but I grew up reading the tales of Mercury, Gemini and Apollo. That heady time in the 1960s was so foreign to a teenager growing up in the age of personal computers and Internet access: people glued to television sets watching space shots. Newspapers carrying pages upon pages of space content, rather than small mentions.

My favourite book symbolizing what this era was like – at least, from the starry-eyed optimist’s point of view – was This Is Cape Canaveral, a children’s book first published in 1963 and subsequently republished under the names This Is Cape Kennedy and This Is The Way To The Moon.

Writer and illustrator Miroslav Sasek portrays the crowds, era and missile-obsessed businesses with a taste of humour and a keen eye for detail. It’s attention that his audience demanded: “Detail is very important to children,” he said in a 1969 interview. “If I paint 53 windows instead of 54 in a building, a deluge of letters pours in upon me!”

I cracked open my dog-eared copy the other day to play a mini where-are-they-now game with some of the mentioned landmarks and people:

The times change in 50 years, but the good thing is there is no lack of chronicles to tell us what it was like at the time.

Lead image caption: In This Is Cape Canaveral, Miroslav Sasek wasn’t afraid to poke fun at the excitement of the early days of the space program.

Elizabeth Howell (M.Sc. Space Studies ’12) is a contributing editor for SpaceRef and award-winning space freelance journalist living in Ottawa, Canada. Her work has appeared in publications such as SPACE.com, Air & Space Smithsonian, Physics Today, the Globe and Mail, the Canadian Broadcasting Corp.,  CTV and the Ottawa Business Journal.

Mercury’s Many Colors

Although composited from expanded wavelengths of light, this wide-angle image from NASA’s MESSENGER spacecraft shows the amazing variation of colors and tones to be found on Mercury’s Sun-scoured surface.


This scene lies between Mercury’s Moody and Amaral craters, spanning an area of about 1200 km (745 miles). The patch of dark blue Low Reflectance Material (LRM) in the upper left of the image and the bright rayed crater on the right make this a diverse view of Mercury’s surface. Note the curious small, dark crater just below the bright rayed crater on the right.

Dark LRM material is thought to indicate the presence of a mineral called ilmenite, which is composed of iron and titanium and has been revealed through volcanic, cratering and erosion processes.

More Mercury images: Postcards from the (Inner) Edge

Did you know that until MESSENGER arrived in 2008 half of Mercury had never been seen? And that although Mercury is the closest planet to the Sun there may still be water ice on its surface? Learn more about these and other fascinating facts about Mercury here.

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

 

Postcards From The (Inner) Edge

As the world turns its gaze outward in anticipation of the arrival of Mars Science Laboratory — with its hair-raising “seven minutes of terror” landing — let’s take a moment to look back inward, where MESSENGER is still faithfully orbiting the first rock from the Sun, Mercury, and sending back images that could only have been imagined just a few years ago.

The image above shows the graben-gouged terrain around Balanchine crater, within Mercury’s vast Caloris Basin impact crater. Named for the co-founder of the New York City Ballet, Balanchine crater is 41 km (25.5 miles) in diameter and filled with the curious erosion features known as hollows. Graben — basically sunken troughs in the surface — are the result of extensional forces that have pulled sections of the planet’s upper crust apart.

This image shows the peak-ring structure located within the much larger crater Rustaveli, which is 180 km (112 miles) in diameter. One of the more recently-named craters (the IAU convention for new features on Mercury has them titled after renowned artists, writers and composers from history) Rustaveli is named for a 12th-century Georgian poet who wrote the epic “The Knight in the Panther’s Skin”. The crater that now bears his namesake is located on Mercury’s northern hemisphere.

These two craters — also located within Caloris Basin — don’t yet have names but are no less interesting. Their overlapping positions works like an optical illusion, making the newer,sharper-edged crater on the right seem to almost float above the surface. The false-color of the image highlights the difference in surface composition of the two craters, which are both about 40 km (24 miles) wide. (The Caloris Basin in which they reside, however, is one of the largest known impact sites in our solar system, measuring at 1550 km — 963 miles — across!)

Now we zoom out for a wider view of our solar system’s second-densest planet (Earth is the first) and take a look at an image that’s night and day — literally! This is Mercury’s terminator, the twilit dividing line between night and day. More than just making a pretty picture, data on this transition is valuable to scientists as some atmospheric phenomena can only be observed at the terminator, such as the interaction between surface dust and charged particles from the Sun (which, at less than half the distance to the Sun than we are, Mercury is constantly bathed in.)

And now to zoom back in, we get a good look at an unnamed central-peaked crater about 85 km (52 miles) across in an oblique view  that highlights the hollows and depressions within its floor. Acquired as part of what’s called a “targeted observation”, high-resolution images like this (79 meters/pixel) allow scientists to closely investigate specific features — but sadly there’s just not enough mission time to image all of Mercury at this level of detail.

On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit Mercury. The mission has provided the first data from Mercury since Mariner 10, over 30 years ago. After over 1,000 orbits, 98 percent of Mercury is now imaged in detail, allowing us to know more about our solar system’s innermost world than ever before.

Keep up with MESSENGER updates (and the latest images) on the mission website here.

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Weekly SkyWatcher’s Forecast: June 18-24, 2012

NGC 3981 - Credit: Palomar Observatory, Courtesy of Caltech

Greetings, fellow SkyWatchers! Let’s begin the week with some awesome galactic studies and enjoy a meteor shower during Summer Solstice! We’ll be studying variable stars, the planet Mars, Saturn, the Moon and Mercury, too! There’s always a bit of astronomy history and some unusual things to learn about. When you’re ready, just meet me in the back yard…

Monday, June 18 – With dark skies on our side, we’ll spend the next few days concentrating on a very specific region of the night sky. Legend tells us the constellation of Crater is the cup of the gods – cup befitting the god of the skies, Apollo. Who holds this cup, dressed in black? It’s the Raven, Corvus. The tale is a sad one – a story of a creature sent to fetch water for his master, only to tarry too long waiting on a fig to ripen. When he realized his mistake, the sorry Raven returned to Apollo with his cup and brought along the serpent Hydra in his claws as well. Angry, Apollo tossed them into the sky for all eternity and it is in the south they stay until this day.

For the next few days, it will be our pleasure to study the Cup and the Raven. The galaxies I have chosen are done particularly for those of us who still star hop. I will start with a “marker” star that should be easily visible unaided on a night capable of supporting this kind of study. The field stars are quite recognizable in the finder and this is an area that takes some work. Because these galaxies approach magnitude 13, they are best suited to the larger telescope.

Now, let’s go between map and sky and identify both Zeta and Eta Crater and form a triangle. Our mark is directly south of Eta the same distance as between the two stars. At low power, the 12.7 magnitude NGC 3981 (Right Ascension: 11 : 56.1 – Declination: -19 : 54) sits inside a stretched triangle of stars. Upon magnification, an elongated, near edge-on spiral structure with a bright nucleus appears. Patience and aversion makes this “stand up” galaxy appear to have a vague fading at the frontiers with faint extensions. A moment of clarity is all it takes to see tiny star caught at the edge.

Tuesday, June 19 – New Moon! Tonight’s first study object, 12.7 magnitude NGC 3956 (Right Ascension: 11 : 54.0 – Declination: -20 : 34) is about a degree due south of NGC 3981. When first viewed, it appears as edge-on structure at low power. Upon study it takes on the form of a highly inclined spiral. A beautiful multiple star, and a difficult double star also resides with the NGC 3956 – appearing almost to triangulate with it. Aversion brings up a very bright core region which over the course of time and study appears to extend away from the center, giving this very sweet galaxy more structure than can be called from it with one observation.

Our next target is a little more than two degrees further south of our last study. The 12.8 magnitude NGC 3955 (Right Ascension: 11 : 54.0 – Declination: -23 : 10) is a very even, elongated spiral structure requiring a minimum of aversion once the mind and eye “see” its position. Not particularly an impressive galaxy, the NGC 3955 does, however, have a star caught at the edge as well. After several viewings, the best structure I can pull from this one is a slight concentration toward the core.

Now we’ll study an interacting pair and all that is required is that you find 31 Corvii, an unaided eye star west of Gamma and Epsilon Corvii. Now we’re ready to nudge the scope about one degree north. The 11th magnitude NGC 4038/39 (Right Ascension: 12 : 01.9 – Declination: -18 : 52) is a tight, but superior pair of interacting galaxies. Often referred to as either the “Ringtail” or the “Antenna”, this pair deeply captured the public’s imagination when photographed by the Hubble. (Unfortunately, we don’t have the Hubble, but what we have is set of optics and the patience to find them.) At low power the pair presents two very stellar core regions surrounded by a curiously shaped nebulosity. Now, drop the power on it and practice patience – because it’s worth it! When that perfect moment of clarity arrives, we have crackling structure. Unusual, clumpy, odd arms appear at strong aversion. Behind all this is a galactic “sheen” that hints at all the beauty seen in the Hubble photographs. It’s a tight little fellow, but worth every moment it takes to find it.

Return to 31 Corvii and head one half degree northwest to discover 11.6 magnitude NGC 4027 (Right Ascension: 11 : 59.5 – Declination: -19 : 16). Relatively large, and faint at low power, this one also deserves both magnification and attention. Why? Because it rocks! It has a wonderful coma shape with a single, unmistakable bold arm. The bright nucleus seems to almost curl along with this arm shape and during aversion a single stellar point appears at its tip. This one is a real treat!

Wednesday, June 20 – Today marks the official date of 2012 Summer Solstice!

With no Moon to contend with in the predawn hours, we welcome the “shooting stars” as we pass through another portion of the Ophiuchid meteor stream. The radiant for this pass will be nearer Sagittarius and the fall rate varies from 8 to 20, but it can sometimes produce unexpectedly more.

Tonight let’s look to the sky again and fixate on Eta Crater – our study lay one half degree southeast. The 12.8 magnitude NGC 4033 (Right Ascension: 12 : 00.6 – Declination: -17 : 51) is a tough call even for a large scope. Appearing elliptical at low power, it does take on some stretch at magnification. It is smallish, even and quite unremarkable. It requires good aversion and a bit of patience to find. Good luck!

The last of our studies resides by a star, one degree west of Beta Corvii. In order to “see” anything even remotely called structure in NGC 4462 (Right Ascension: 12 : 29.3 – Declination: -23 : 10), this one is a high power only galaxy that is best when the accompanying star is kept out of the field as much as possible. It holds a definite stellar nucleus and a concentration that pulls away from it making it almost appear barred. On an exceptional night with a large scope, wide aversion and moments of clarity show what may be three to four glints inside the structure. Ultra tiny pinholes in another universe? Or perhaps an unimaginably huge, bright globular clusters? While attention is focused on trying to draw out these points, you’ll notice this galaxy’s structure much more clearly. Another true beauty and fitting way to end this particular study field!

Thursday, June 21 – Keep an eye out for the exiting planet Mars! It’s been on the move and has now crossed the border of Virgo and returned to Leo. Have you noticed it quickly changing in both apparent brightness and size? It won’t be long until it’s gone! And speaking of planets on the move, have you spotted Mercury yet? You can find the swift little planet low on the western horizon just after sunset. Look for it just to the south of Castor and Pollux!

For challenging larger telescope studies, return to eastern edge of Mare Crisium and Promontorium Agarum to identify shallow crater Condorcet to its east. Look along the shore of the mare for a mountain to the south known as Mons Usov. Just to its north Luna 24 landed and directly to its west are the remains of Luna 15. We’ll study more about them in the future. Can you spot the tiny dark well of crater Fahrenheit nearby? Continue with your telescope north of Mare Crisium for even more challenging features such as northeast limb studies Mare Smythii and Mare Marginis. Between them you will see the long oval crater Jansky – bordered by Jansky A at the very outer edge.

While you’re out tonight, take a look at the skies for a circlet of seven stars that reside about halfway between orange Arcturus and brilliant blue/white Vega. This quiet constellation is named Corona Borealis – or the “Northern Crown.” Just northwest of its brightest star is a huge concentration of over 400 galaxies that reside over a billion light-years away from us. This area is so small from our point of view that we could cover it with our thumbnail held at arm’s length!

For variable star fans, let’s explore Corona Borealis and focus our attention on S – located just west of Theta – the westernmost star in the constellation’s arc formation. At magnitude 5.3, this long-term variable takes almost a year to go through its changes; usually far outshining the 7th magnitude star to its northeast – but will drop to a barely visible magnitude 14 at minimum. Compare it to the eclipsing binary U Coronae Borealis about a degree northwest. In slightly over three days this Algol-type will range by a full magnitude as its companions draw together.

Friday, June 22 – Today celebrates the founding of the Royal Greenwich Observatory in 1675. That’s 332 years of astronomy! Also on this date in history, in 1978, James Christy of the US Naval Observatory in Flagstaff Arizona discovered Pluto’s satellite Charon.

If you’d like to practice some unaided eye astronomy, then look no further than the western skyline as the Sun sets. At twilight you’ll first notice the very slender crescent Moon – but don’t delay your observations as you can spot Mercury to the west! The inner planet will set very fast, so you’ll need an open horizon. But that’s not all… the speedy little dude is lined up perfectly with Castor and Pollux! With the foursome nearly “in a row” this will make a very cool apparition to remind friends and family to watch for!

Now, grab your favorite optics for a selenographic treat tonight return to the area just north of Mare Crisium area to observe spectacular crater Cleomides. This two million year old crater is separated from Crisium by some 60 kilometers of mountainous terrain. Telescopically, Cleomides is a true delight at high power. To Cleomides’ east, begin by identifying Delmotte, and to the northwest, Trailes and Debes. About twice Clemoides’ width northwest, you will see a sharply well-defined Class I crater Geminus. Named for the Greek astronomer and mathematician Geminos, this 86 kilometer wide crater shows a smooth floor and displays a long, low dune across its middle.

When you’re finished, point your binoculars or telescopes back towards Corona Borealis and about three fingerwidths northwest of Alpha for variable star R (Ra 15. 48.6 Dec +28 09). This star is a total enigma. Discovered in 1795, most of the time R carries a magnitude near 6, but can drop to magnitude 14 in a matter of weeks – only to unexpectedly brighten again! It is believed that R emits a carbon cloud which blocks its light. When studied at minima, the light curve resembles a “reverse nova,” and has a peculiar spectrum. It is very possible this ancient Population II star has used all of its hydrogen fuel and is now fusing helium to carbon. It’s so odd that science can’t even directly determine its distance!

Saturday, June 23 – If you missed yesterday’s apparition of Mercury, then try again tonight. While the small planet might be dim, just look for the brighter pairing of Castor and Pollux above the western horizon at twilight. Can’t find it? Then try this. When you look at this famous pair of stars, judge the distance between the two. Now, apply that same distance and angle to the left (southern) star, Pollux, and you’ve found Mercury! Need more? Then check out the Moon and you’ll see Regulus is about a fistwidth to the east/southeast and Mars is a little more than two handspans to the southeast. Still more? Then continue on from Mars southeast about about another two handspans and you’ll see the pairing of Spica and Saturn!

Using your telescope tonight on the Moon will call up previous study craters, Atlas and Hercules to the lunar north. If you walk along the terminator to the due west of Atlas and Hercules, you’ll see the punctuation of 40 kilometer wide Burg just emerging from the shadows. While it doesn’t appear to be a grand crater just yet, it has a redeeming feature – it’s deep – real deep. If Burg were filled with water here on Earth, it would require a deep submergence vehicle like ALVIN to reach its 3680 meter floor! This class II crater stands nearly alone on an expanse of lunarscape known as Lacus Mortis. If the terminator has advanced enough at your time of viewing, you may be able to see this walled-plain’s western boundary peeking out of the shadows.

While we’re out, let’s have a look at Delta Serpens. To the eye and binoculars, 4th magnitude Delta is a widely separated visual double star… But power up in the telescope to have a look at a wonderfully difficult binary. Divided by no more than 4 arc seconds, 210 light-year distant Delta and its 5th magnitude companion could be as old as 800 million years and on the verge of becoming evolved giants. Separated by about 9 times the distance of Pluto from our Sun, the white primary is a Delta Scuti-type variable which changes subtly in less than four hours. Although it takes the pair 3200 years to orbit each other, you’ll find Delta Serpens to be an excellent challenge for your optics.

Sunday, June 24 – On this day in 1881, Sir William Huggins made the first photographic spectrum of a comet (1881 III) and discovered cyanogen (CN) emission at violet wavelengths. Unfortunately, his discovery caused public panic around 29 years later when Earth passed through the tail of Halley’s Comet. What a shame the public didn’t realize that cyanogens are also released organically! More than fearing what is in a comet’s tail, they should have been thinking about what might happen should a comet strike. Tonight look at the wasted Southern Highland area of the Moon with new eyes… Many of these craters you see were caused by impacts – some as large as the nucleus of Halley itself.

Now let’s pick up a binocular curiosity located on the northeast shore of Mare Serenitatis. Re-identify the bright ring of Posidonius, which contains several equally bright points both around and within it – and look at Mare Crisium and get a feel for its size. A little more than one Crisium’s length west of Posidonius you’ll meet Aristotle and Eudoxus. Drop a similar length south and you will be at the tiny, bright crater Linne on the expanse of Mare Serenitatis. So what’s so cool about this little white dot? With only binoculars you are resolving a crater that is one mile wide, in a seven mile wide patch of bright ejecta – from close to 400,000 kilometers away! While you were there, did you notice how much Proclus has changed tonight? It is now a bright circle and beginning to show bright lunar rays…

Before we head for deep sky, be sure to at least take a look at Saturn and Mars. Right now the Ring King has reached its greatest westward position and will begin its tour back to the east. Now, check out Mars’ position to the west and measure with your hands roughly how far apart they are. At this point they are separated by about two handspans. Check again in a few weeks to see planetary motion displayed right before your eyes!

Now let’s turn binoculars or telescopes towards magnitude 2.7 Alpha Librae – the second brightest star in the celestial “Scales.” Its proper name is Zuben El Genubi, and even as “Star Wars” as that sounds, the “Southern Claw” is actually quite close to home at a distance of only 65 light-years. No matter what size optics you are using, you’ll easily see Alpha’s 5th magnitude companion widely spaced and sharing the same proper motion. Alpha itself is a spectroscopic binary which was verified during an occultation event, and its inseparable companion is only a half magnitude dimmer according to the light curves. Enjoy this easy pair tonight!

Until next week? Ask for the Moon… But keep on reaching for the stars!

Mickey Mouse on Mercury?

This collection of craters, shaped not unlike the iconic head of a certain cartoon mouse, was imaged by NASA’s MESSENGER spacecraft on June 3, 2012.

All together now: C-R-A, T-E-R… M-O-U-S-Eeeeee…

Acquired as part of MESSENGER’s extended mission to map Mercury’s surface in higher detail, the image above isn’t map-projected; that is, it’s not aligned with north as up. In reality the large crater that makes up Mickey’s “head” is north of the two “ears”.

Still, this is one big mouse head — the large crater in the center has a diameter of approximately 105 km (65 miles)!

Read more about this and see many other images of the first rock from the Sun on the MESSENGER mission site here.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

50 Years Ago Today: The Flight of Aurora 7

Scott Carpenter with John Glenn just before the launch of Aurora 7. Credit: NASA

Fifty years ago today, May 24, 1962 astronaut Scott Carpenter launched in his Aurora 7 capsule. This was the fourth manned mission and the second orbital flight of the Mercury program. This video celebrates the Aurora 7 flight, which successfully made three Earth orbits. But a targeting mishap during reentry took the spacecraft about 400 km (250 miles) off course, delaying recovery of Carpenter and the capsule. Carpenter was picked up after nearly 3 hours in the water, and the Mercury capsule was not retrieved until about 6 hours later.

[/caption]

Spacecraft Captures Mercury-Jupiter Conjunction

Mercury (top) and Jupiter by the LASCO C3 instrument on the SOHO spacecraft. Credit: NASA/SOHO

[/caption]

Here’s a great shot from the Solar and Heliospheric Observatory (SOHO) spacecraft of Mercury (top planet) and Jupiter snuggling up together, along with the Pleiades cluster, all close to Sun, as seen from SOHO’s LASCO C3 instrument (Large Angle and Spectrometric Coronagraph). SOHO has been in space since 1995, and is a workhorse of solar observing, giving us insights into the workings of the Sun, comets and other bodies in the Solar System. Check out the SOHO website for more great images.

Hat tip to @Sungrazercomets on Twitter.