Messier 83 – the Southern Pinwheel Galaxy

The beautiful spiral galaxy Messier 83 is located in the southern constellation Hydra. Credit: ESO

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the Southern Pinwheel Galaxy – also known as Messier 83!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the Southern Pinwheel Galaxy (aka. Messier 83), a barred spiral galaxy located 15.21 million light years from Earth in the southern constellation Hydra. With a spatial diameter of about 55,000 light years, or roughly half the size of the Milky Way, M83 is one of the nearest and brightest barred spirals in the sky.

Continue reading “Messier 83 – the Southern Pinwheel Galaxy”

Messier 82 – the Cigar Galaxy

Hubble image of the Cigar Galaxy (Messier 82). Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI) and P. Puxley (National Science Foundation)

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the Cigar Galaxy – also known as Messier 82!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the starbust galaxy known as Messier 82, which is also called the “Cigar Galaxy” because of its distinctive shape. Located about 12 million light-years away in the constellation Ursa Major, this galaxy’s starburst action is thought to have been triggered by interactions with the neighboring galaxy M81 (aka. Bode’s Galaxy).

Continue reading “Messier 82 – the Cigar Galaxy”

Messier 81 – the Bode Galaxy

Image of Bode's Galaxy, taken by the Hubble Space Telescope. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the Bode’s Galaxy – also known as Messier 81!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is the galaxy known as Messier 81 (aka. Bode’s Galaxy), a spiral galaxy located about 12 million light-years from our Solar System. Measuring about 90,000 light-years in diameter (half the size of the Milky Way), this galaxy’s proximity, large size, and active galactic nuclear (AGN) makes its a favorite among professional and amateur astronomers alike.

Continue reading “Messier 81 – the Bode Galaxy”

Messier 80 – the NGC 6093 Globular Cluster

The globular cluster Messier 80. Credit: NASA/Hubble Heritage Team/STScI/ AURA

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 80!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 80, a globular star cluster located about 32,600 light years from Earth in the constellation Scorpius. This cluster is one of the most densely populated in our galaxy and is located about halfway between the bright stars Antares, Alpha Scorpii, Akrab and Beta Scorpii – making it relatively easy to find.

Continue reading “Messier 80 – the NGC 6093 Globular Cluster”

Messier 79 – the NGC 1904 Globular Cluster

Hubble image of Messier 79. Credits: NASA, ESA, STScI, F. Ferraro (Universita di Bologna) and S. Djorgovski (California Institute of Technology)

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 79!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 79 (aka. NGC 1904), a globular cluster in the constellation Lepus. Located about 42,000 light years from Earth, and 60,000 light years from the Galactic Center, this cluster is believed to not be native to the Milky Way itself. One possibility is that it arrived in our galaxy as part of the Canis Major Dwarf Galaxy, which is currently the closest galaxy to our own (though this remains the subject of debate).

Continue reading “Messier 79 – the NGC 1904 Globular Cluster”

Messier 78 – the NGC 2068 Reflection Nebula

This image of the reflection nebula Messier 78 was captured using the Wide Field Imager camera on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This colour picture was created from many monochrome exposures taken through blue, yellow/green and red filters, supplemented by exposures through a filter that isolates light from glowing hydrogen gas. The total exposure times were 9, 9, 17.5 and 15.5 minutes per filter, respectively. Credit: ESO/Igor Chekalin

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the bright reflection nebula known as Messier 78!

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

Continue reading “Messier 78 – the NGC 2068 Reflection Nebula”

Messier 73 – the NGC 6994 Star Cluster

M73 location. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the star cluster known as Messier 73.

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 73, a four star asterism located approximately 2,500 light-years from Earth. It is visible in the southern part of the Aquarius constellation, near the border of Capricornus and just southeast of Messier 72. Given that Aquarius and Capricornus are relatively faint constellations, this object is one of the more challenging Messier objects to find in the night sky. Continue reading “Messier 73 – the NGC 6994 Star Cluster”

Messier 72 – the NGC 6981 Globular Cluster

Messier 72 and Messier 73. Credit: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the globular cluster known as Messier 72.

During the 18th century, famed French astronomer Charles Messier noticed the presence of several “nebulous objects”  while surveying the night sky. Originally mistaking these objects for comets, he began to catalog them so that others would not make the same mistake. Today, the resulting list (known as the Messier Catalog) includes over 100 objects and is one of the most influential catalogs of Deep Space Objects.

One of these objects is Messier 72, a globular cluster about 54,570 light years away in the direction of the Aquarius constellation. Originally discovered by French astronomer Pierre Méchain a few years prior, Messier would go on to include this star cluster in his catalog. Located in close proximity to Messier 73, this globular cluster is one of the smaller and fainter Messier objects in the night sky. Continue reading “Messier 72 – the NGC 6981 Globular Cluster”

See The Finest Sights Before You Die With “Wonders of the Night Sky”

Credit: Bob King
Framed by stars reflected by water, a kayaker leans back to take in the grandeur of the night sky. The photo appears in my new book in the chapter titled “Stars on Water.” Credit: Bob King

After months parked in front of a computer, I’m thrilled to announce the publication of my new book. The full title is — get ready for this — Wonders of the Night Sky You Must See Before You Die: The Guide to Extraordinary Curiosities of Our Universe. In a nutshell, it’s a bucket list of cosmic things I think everyone should see sometime in their life. 

I couldn’t live without the sky. The concerns of Earth absorb so much of our lives that the sky provides an essential relief valve. It’s a cosmos-sized wilderness that invites both deep exploration and reflection. Galileo would kill to come back for one more clear night if he could.

Cover of Wonders of the Night Sky. 57 different sights are featured.

To me, the stars are irresistible, but my sense is that many people don’t look up as much as they’d like. We forget. Get busy. Bad weather intervenes. So I thought hard about the essential “must-sees” for any watcher of the skies. Some are obvious, like a total solar eclipse or Saturn through a telescope, but others are just as interesting — if sometimes off the beaten path.

For instance, we always hear about asteroids in the news. What does a real one look like from your own backyard? I give directions and a map for seeing the brightest of them, Vesta. And if you’ve ever looked up at the Big Dipper and wondered how to find the rest of the Great Bear, I’ll get you there. I love red stars, so you’re going to find out where the reddest one resides and how to see it yourself. There’s also a lunar Top 10 for small telescope users and chapters on the awesome Cygnus Star Cloud and how to see a supernova.

You can see most of the sky wonders described in the book from the northern hemisphere, but I included several essential southern sights like the Southern Cross.

The 57 different sights are a mix of naked-eye objects plus ones you’ll need an ordinary pair of binoculars or small telescope to see. At the end of each chapter, I provide directions on how and when to find each wonder. Because we live in an online world with so many wonderful tools available for skywatchers, I make extensive use of mobile phone apps that allow anyone to stay in touch with nearly every aspect of the night sky.

For the things that need a telescope, the resources section has suggestions and websites where you can purchase a nice but inexpensive instrument. Of course, you may not want to buy a telescope. That’s OK. I’m certain you’ll still enjoy reading about each of these amazing sights to learn more about what’s been up there all your life.

Northern spectacles like the Perseus Double Cluster can’t be missed.

While most of the nighttime sights are visible from your home or a suitable dark sky site, you’ll have to travel to see others. Who doesn’t like to get out of the house once in a while? If you travel north or south, new places mean new stars and constellations. I included chapters on choice southern treats like Alpha Centauri, the Southern Cross and the Magellanic Clouds, the closest and brightest galaxies to our own Milky Way.

One of my favorite parts of the book is the epilogue, where I share a lesson my dog taught me about the present moment and cosmic time. I like to joke that if nothing else, the ending’s worth the price of the book.

The author with his 10-inch Dobsonian reflector. Credit: Linda Hanson

The staff at Page Street Publishing did a wonderful job with the layout and design, so “Wonders” is beautiful to look at. Everyone who’s flipped through it likes the feel, and several people have even commented on how good it smells!  And for those who understandably complained that the typeface in my first book, Night Sky with the Naked Eye, made it difficult to read, I’ve got good news for you. The new book’s type is bigger and easy on the eyes.

“Wonders” is 224 pages long, printed in full color and the same size as my previous book. Unlike the few but longer chapters of the first book, the new one has many shorter chapters, and you can dip in anywhere. I think you’ll love it.

The publication date is April 24, but you can pre-order it right now at Amazon, BN and Indiebound. I want to thank Fraser Cain here at Universe Today for letting me tell you a little about my book, and I look forward to the opportunity to share my night-sky favorites with all of you.

Messier 66 – the NGC 3627 Intermediate Spiral Galaxy

The Leo Triplet, featuring Messier 65, Messier 66 and NGC 3628. Image: Wikisky

Welcome back to Messier Monday! Today, we continue in our tribute to our dear friend, Tammy Plotner, by looking at the intermediate spiral galaxy known as Messier 66.

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects he initially mistook for comets. In time, he would come to compile a list of approximately 100 of these objects, hoping to prevent other astronomers from making the same mistake. This list – known as the Messier Catalog – would go on to become one of the most influential catalogs of Deep Sky Objects.

One of these objects is the intermediate elliptical galaxy known as Messier 66 (NGC 3627). Located about 36 million light-years from Earth in the direction of the Leo constellation, this galaxy measures 95,000 light-years in diameter. It is also the brightest and largest member of the Leo Triplet of galaxies and is well-known for its bright star clusters, dust lanes, and associated supernovae.

Description:

Enjoying life some 35 million light years from the Milky Way, the group known as the “Leo Trio” is home to bright galaxy Messier 66 – the easternmost of the two M objects. In the telescope or binoculars, you’ll find this barred spiral galaxy far more visible and much easier to see details within its knotted arms and bulging core.

Hubble image of the intermediate spiral galaxy Messier 66. Credits: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration/Davide De Martin/Robert Gendler

Because of interaction with its neighboring galaxies, M66 shows signs of a extremely high central mass concentration as well as a resolved noncorotating clump of H I material apparently removed from one of the spiral arms. Even one of its spiral arms got it noted in Halton Arp’s collection of Peculiar Galaxies! So exactly what did it collide with?As   Xiaolei Zhang (et al) indicated in a 1993 study:

“The combined CO and H I data provide new information, both on the history of the past encounter of NGC 3627 with its companion galaxy NGC 3628 and on the subsequent dynamical evolution of NGC 3627 as a result of this tidal interaction. In particular, the morphological and kinematic information indicates that the gravitational torque experienced by NGC 3627 during the close encounter triggered a sequence of dynamical processes, including the formation of prominent spiral structures, the central concentration of both the stellar and gas mass, the formation of two widely separated and outwardly located inner Lindblad resonances, and the formation of a gaseous bar inside the inner resonance. These processes in coordination allow the continuous and efficient radial mass accretion across the entire galactic disk. The observational result in the current work provides a detailed picture of a nearby interacting galaxy which is very likely in the process of evolving into a nuclear active galaxy. It also suggests one of the possible mechanisms for the formation of successive instabilities in postinteraction galaxies, which could very efficiently channel the interstellar medium into the center of the galaxy to fuel nuclear starburst and Seyfert activities.”

Ah, yes! Star forming regions… And what better way to look deeper than through the eyes of the Spitzer Space Telescope? As R. Kennicutt (University of Arizona) and the SINGS Team observed:

“M66’s blue core and bar-like structure illustrates a concentration of older stars. While the bar seems devoid of star formation, the bar ends are bright red and actively forming stars. A barred spiral offers an exquisite laboratory for star formation because it contains many different environments with varying levels of star-formation activity, e.g., nucleus, rings, bar, the bar ends and spiral arms. The SINGS image is a four-channel false-color composite, where blue indicates emission at 3.6 microns, green corresponds to 4.5 microns, and red to 5.8 and 8.0 microns. The contribution from starlight (measured at 3.6 microns) in this picture has been subtracted from the 5.8 and 8 micron images to enhance the visibility of the dust features.”

Colour composite image of the spiral galaxy M66 (or NGC 3627) obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively). Credit: ESO

Messier 66 has also been deeply studied for evidence of forming super star clusters, too. As David Meier indicated:

“Super star clusters are thought to be precursors of globular clusters and are some of the most extreme star formation regions in the universe. They tend to occur in actively starbursting galaxies or near the cores of less active galaxies. Radio super star clusters cannot be seen in optical light because of extreme extinction, but they shine brightly in infrared and radio observations. We can be certain that there are many massive O stars in these regions because massive stars are required to provide the UV radiation that ionizes the gas and creates a thermally bright HII regions. Not many natal SSCs are currently known, so detection is an important science goal in its own right. In particular, very few SSCs are known in galactic disks. We need more detections to be able to make statistical statements about SSCs and fill in the mass range of forming star clusters. With more detections, we will be able to investigate the effects of other environments (e.g. bars, bubbles, and galactic interaction) on SSCs, which could potentially be followed up in the far future with the Square Kilometer Array to discover their effects on individual forming massive stars.”

But there’s still more. Try magnetic properties in M66’s spiral patterns. As M. Soida (et al) indicated in their 2001 study:

“By observing the interacting galaxy NGC 3627 in radio polarization we try to answer the question; to which degree does the magnetic field follow the galactic gas flow. We obtained total power and polarized intensity maps at 8.46 GHz and 4.85 GHz using the VLA in its compact D-configuration. In order to overcome the zero-spacing problems, the interferometric data were combined with single-dish measurements obtained with the Effelsberg 100-m radio telescope. The observed magnetic field structure in NGC 3627 suggests that two field components are superposed. One component smoothly fills the interarm space and shows up also in the outermost disk regions, the other component follows a symmetric S-shaped structure. In the western disk the latter component is well aligned with an optical dust lane, following a bend which is possibly caused by external interactions. However, in the SE disk the magnetic field crosses a heavy dust lane segment, apparently being insensitive to strong density-wave effects. We suggest that the magnetic field is decoupled from the gas by high turbulent diffusion, in agreement with the large Hi line width in this region. We discuss in detail the possible influence of compression effects and non-axisymmetric gas flows on the general magnetic field asymmetries in NGC 3627. On the basis of the Faraday rotation distribution we also suggest the existence of a large ionized halo around this galaxy.”

History of Observation:

Both M65 and M66 were discovered on the same night – March 1, 1780 – by Charles Messier, who described M66 as, “Nebula discovered in Leo; its light is very faint and it is very close to the preceding: They both appear in the same field in the refractor. The comet of 1773 and 1774 has passed between these two nebulae on November 1 to 2, 1773. M. Messier didn’t see them at that time, no doubt, because of the light of the comet.”

Both galaxies would be observed and cataloged by the Herschel family and further expounded upon by Admiral Smyth:

“A large elongated nebula, with a bright nucleus, on the Lion’s haunch, trending np [north preceding, NW] and sf [south following, SE]; this beautiful specimen of perspective lies just 3deg south-east of Theta Leonis. It is preceded at about 73s by another of a similar shape, which is Messier’s No. 65, and both are in the field at the same time, under a moderate power, together with several stars. They were pointed out by Mechain to Messier in 1780, and they appeared faint and hazy to him. The above is their appearance in my instrument.

“These inconceivably vast creations are followed, exactly on the same parallel, ar Delta AR=174s, by another elliptical nebula of even a more stupendous character as to apparent dimensions. It was discovered by H. [John Herschel], in sweeping, and is No. 875 in his Catalogue of 1830 [actually, probably an erroneous position for re-observed M66]. The two preceding of these singular objects were examined by Sir William Herschel, and his son [JH] also; and the latter says, “The general form of elongated nebulae is elliptic, and their condensation towards the centre is almost invariably such as would arise from the superposition of luminous elliptic strata, increasing in density towards the centre. In many cases the increase of density is obviously attended with a diminution of ellipticity, or a nearer approach to the globular form in the central than in the exterior strata.” He then supposes the general constitution of those nebulae to be that of oblate spheroidal masses of every degree of flatness from the sphere to the disk, and of every variety in respect of the law of their density, and ellipticity towards the centre. This must appear startling and paradoxical to those who imagine that the forms of these systems are maintained by forces identical with those which determine the form of a fluid mass in rotation; because, if the nebulae be only clusters of discrete stars, as in the greater number of cases there is every reason to believe them to be, no pressure can propagate through them. Consequently, since no general rotation of such a system as one mass can be supposed, Sir John suggests a scheme which he shows is not, under certain conditions, inconsistent with the law of gravitation. “It must rather be conceived,” he tells us, ” as a quiescent form, comprising within its limits an indefinite magnitude of individual constituents, which, for aught we can tell, may be moving one among the other, each animated by its own inherent projectile force, and deflected into an orbit more or less complicated, by the influence of that law of internal gravitation which may result from the compounded attractions of all its parts.”

Messier 66 location. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 66:

Even though you might think by its apparent visual magnitude that M66 wouldn’t be visible in small binoculars, you’d be wrong. Surprisingly enough, thanks to its large size and high surface brightness, this particular galaxy is very easy to spot directly between Iota and Theta Leonis. In even 5X30 binoculars under good conditions you’ll easy see both it and M65 as two distinct gray ovals.

A small telescope will begin to bring out structure in both of these bright and wonderful galaxies, but to get a hint at the “Trio” you’ll need at least 6″ in aperture and a good dark night. If you don’t spot them right away in binoculars, don’t be disappointed – this means you probably don’t have good sky conditions and try again on a more transparent night. The pair is well suited to modestly moonlit nights with larger telescopes.

May you equally be attracted to this galactic pair!

And here are the quick facts on M66 to help you get started:

Object Name: Messier 66
Alternative Designations: M66, NGC 3627, (a member of the) Leo Trio, Leo Triplet
Object Type: Type Sb Spiral Galaxy
Constellation: Leo
Right Ascension: 11 : 20.2 (h:m)
Declination: +12 : 59 (deg:m)
Distance: 35000 (kly)
Visual Brightness: 8.9 (mag)
Apparent Dimension: 8×2.5 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources: