Weekly SkyWatcher’s Forecast: October 15-21, 2012

Cassiopeia A in Visible Light Courtesy of the Hubble Space Telescope

Greetings, fellow SkyWatchers! Whoops! (she blushes) I got so lost this weekend in researching Comet ISON that I almost forgot to post the forecast! Ah, well… As they say, better late than never, eh? If you do nothing else this week, be sure to catch the close apparition of Mercury and the “Earthshine Moon” on Wednesday and stay up late Saturday night to watch the Orionid Meteor Shower! In case I forget, just meet me in the back yard…

Monday, October 15 –Today in 1963 marks the first detection of an interstellar molecule. This discovery was made by Sander Weinreb (with Barrett, Meeks, and Henry) on the MIT Millstone Hill 84-foot dish. The discovery was made possible by new correlation receiver technology, and picked up a hydroxyl molecule in an absorption band. By using the radio galaxy Cas A as a background continuum source, the detection occurred at 1667.46 MHz and again at 1665.34 MHz. By the dawn of 2000, nearly 200 different interstellar molecules had been identified and many of these are classified as organic.

Tonight is New Moon! Let’s see what’s up there in the region of Cas A using visible light. The nearest bright star to Cas A is Beta Cassiopeiae – the bright star westward of the “W.” To locate the region of Cas A, go about three finger-widths due west of Beta and follow the subtle curve of three 5th magnitude stars. Cas A lies less than one degree south-southwest of the second star in the sequence of three. This star is a complex 5th magnitude multiple star system associated with variable star AR Cas.

Through binoculars, two stars of the AR system are easily resolved – the 4.9 magnitude primary is seen to be led across the sky by a 7.1 magnitude secondary (component C) which is a very tight double itself. Its 8.9 magnitude partner is resolvable in mid-sized scopes. Large aperture scopes may also be able to distinguish a 9.3 magnitude, second (B) component from the primary. Smaller scopes are back in the running again when attempting three 11th magnitude stars – none of which are close to the primary. Intermediate scopes can also hope to pick out a 12.9 magnitude H component northwest of C. 8.9 magnitude F also has a 9.1 magnitude near twin to the east-northeast. If you can see them all you should probably wrap an observatory building around your telescope – if one isn’t there already!

If you like to follow brightness changes in variables – AR Cas is not a good choice. This eclipsing type variable only fluctuates by a tenth of a magnitude over a period of 6 earth days.

Tuesday, October 16 – Let’s begin our evening by having a look at a radio source as we visit a pulsar located almost mid-way between Theta and Beta Capricorni – PSR2045+16.

While pulsars aren’t truly visible objects, there is still something undeniably cool about locating the field in which a rotating neutron star is sending out staccato pulses of radio waves anywhere between .001 and 4 seconds apart. If you have bright star 19 in the binocular field, then you know you’re in the right area for many radio sources, including many nearby quasars… Just imagine the possibilities!

Now let’s drop south-southeast of Beta Capricorni to have a look at a pair of doubles – Rho and Pi.

Northernmost Pi is a multiple system slightly less than 100 light-years away, with each discernable member also being a spectroscopic double. Separated by about an eighth of a light-year, look for a 5th magnitude yellow/white giant with a very close 9th magnitude companion. Further south is Pi, a triple star system which has a traditional name – Okul. Located around 670 light-years away, look for a bright blue/white 5th magnitude primary that is also a spectroscopic double – and its much easier C component, which is around magnitude 8.

Wednesday, October 17 – For naked-eye observers, enjoy the beautiful “Earthshine” Moon and the close apparition of Mercury!

While you’re out, be sure to gaze upon one of the finest of stars, Vega. Facing West at just after sundown, Vega is bright enough to shine even in the city and will appear just slightly below the zenith. The name Vega means “Falling Eagle” and it is the fifth brightest star in the sky. Enjoyed in either telescopes or binoculars, Vega has a wonderful bluish appearance and a lovely halo of spectra. This magnificent star holds a place in ancient legend and blossomed in our imaginations even more recently as it became the “star” of the movie “Contact”. As the western-most point of the “Southern Triangle”, Vega holds a special appeal for those born in the year 1985. Why? Because Vega is 27 light years away, the light you see from it tonight left the year you were born!

Now point those binoculars towards the northwestern corner of Capricornus and have a look a spectacular Alpha!

Although the Alpha 1 and 2 pairing is strictly a visual binary, that won’t stop you from enjoying their slightly yellow and orange colors. Collectively they are named Al Giedi, and the brighter of the pair is Alpha 2 at about 100 light-years distant; while Alpha 1 is around five times further away. Now power up with a telescope and you’ll find that both stars are also visual doubles! While the companion stars to both are around the same magnitude, you’ll find that Alpha 2 is separated by three times as much distance. Be sure to mark your observation lists and enjoy!

Thursday, October 18 – Today in 1959, Soviet Luna 3 began returning the first photographs of the Moon’s far side. Also today – but in 1967 – the Soviets again made history as Venera 4 became the first spacecraft to probe Venus’ atmosphere.

Have you checked out Mars lately? Mars is now leaving the constellation Scorpius and entering Ophiuchus. At more than 2 AU away from Earth, Mars has become quite dim, and its minimal apparent visual brightness is +1.24 magnitude. Can you still spot a few of its more prominent features?

For a true telescope challenge, we’ll have to go out on a limb – the southeastern lunar limb – to have a look at an unusual crater. Named for the French agrochemist and botanist Jean-Baptiste Boussingault, this elliptical-appearing crater actually spans a handsome 71 kilometers. What makes Boussingault so unusual is that it is home to its own large interior crater – A. This double-ring formation gives it a unique stepped, concentric look that’s worth your time!

When we’re done? Let’s go have a look at Gamma Aquilae just for the heck of it. Just northwest of bright Altair, Gamma has the very cool name of Tarazed and is believed to be over 300 light-years away. This K3 type giant will show just a slightly yellow coloration – but what really makes this one special is the low power field!

Friday, October 19 – Our lunar mission for tonight is a revisit on a crater named for historian and theologian Denis Pétau – Petavius! Located almost centrally along the terminator in the southeast quadrant, a lot will depend tonight on your viewing time and the age the Moon itself. Perhaps when you look, you’ll see 177 kilometer diameter Petavius cut in half by the terminator. If so, this is a great time to take a high magnification look at the small range of mountain peaks contained in its center, as well as a deep rima which runs for 80 kilometers across its otherwise fairly smooth surface. To the east lies a long furrow in the landscape. This deep runnel is Palitzsch and its Valles. While the primary crater which forms this deep gash is only 41 kilometers wide, the valley itself stretches for 110 kilometers. Look for crater Haas on Petavius’ southern edge with Snellius to the southwest and Wrottesley along its northwest wall.

Now, let’s go have a look at the northeastern corner of Capricornus as we learn about Delta…

Its proper name is Deneb Algedi and this nearly 3rd magnitude star is a stunning blue/ white. Curiously enough, it’s a rather close star – only about 50 light-years from Earth. Hovering so close to it that we cannot even correctly assess its spectral type is a binary companion whose eclipsing orbit causes Delta to be a very slight variable – with a period of just about one day. In its own way, Delta is rather historic… For it was only 4 degrees north of this star that Uranus was first sighted by Galle in 1846!

Saturday, October 20 – Tonight, let’s check out a lunar map and go hunting! First let’s start with a look at the Mare Fecunditatus region: (1)Taruntius, (2) Secchi, (3) Messier and Messier A, (4) Lubbock, (5) Guttenberg, (6) Montes Pyrenees, (7) Goclenius, (8) Magelhaens, (9) Columbo, (10) Webb, (11) Langrenus, (12) Lohse, (13) Lame, (14) Vendelinus, (15) the Luna 16 landing site

Mare Fecunditatus Region Photographic Map – Image Credit – Greg Konkel

And here is a closer look at the area around Atlas and Hercules: (1) Mare Humboldtianum, (2) Endymion, (3) Atlas, (4) Hercules, (5) Chevalier, (6) Shuckburgh, (7) Hooke, (8) Cepheus, (9) Franklin, (10) Berzelius, (11) Maury, (12) Lacus Somniorum, (13) Daniel, (14) Grove, (15) Williams, (16) Mason, (17) Plana, (18) Burg, (19) Lacus Mortis, (20) Baily, (21) Atlas E, (22) Keldysh, (23) Mare Frigoris, (24) Democritus, (25) Gartner, (26) Schwabe, (27) Thales, (28) Strabo, (29) de la Rue, (30) Hayn.


Atlas and Hercules Region Photographic Map – Image Credit – Greg Konkel

Have fun marking off lunar challenge craters from your list!

After having looked at the Moon, take the time out to view a bright southern star – Fomalhaut (RA 22 57 39 Dec -29 37 20). Also known as “The Lonely One,” Alpha Piscis Austrini seems to sit in a rather empty area in the southern skies, some 23 light-years away. At magnitude 1, this main sequence A3 giant is the southernmost visible star of its type for northern hemisphere viewers, and is the 18th brightest star in the sky. The Lonely One is about twice the diameter of our own Sun, but 14 times more luminous! Just a little visual aid is all that it takes to reveal its optical companion…

Now we are slipping into the stream of Comet Halley and into one of the finest meteor showers of the year. If skies are clear tonight, this would be the perfect chance to begin your observations of the Orionid meteor shower. But, wait for the Moon to set!

Sunday, October 21 – Be sure to be outdoors before dawn to enjoy one of the year’s most reliable meteor showers. The offspring of Comet Halley will grace the early morning hours as they return once again as the Orionid meteor shower. This dependable shower produces an average of 10-20 meteors per hour at maximum and the best activity begins before local midnight on the 20th, and reaches its best as Orion stands high to the south at about two hours before local dawn on the 21st. With the Moon nearly out of the morning picture, this is gonna’ be great!

Although Comet Halley has long since departed our Solar System, the debris left from its trail still remain scattered in Earth’s orbital path around the Sun, allowing us to predict when this meteor shower will occur. We first enter the “stream” at the beginning of October and do not leave it until the beginning of November, making your chances of “catching a falling star” even greater! These meteors are very fast, and although they are faint, it is still possible to see an occasional fireball that leaves a persistent trail.

For best success, try to get away from city lights. Facing south-southeast, simply relax and enjoy the stars of the winter Milky Way. The radiant, or apparent point of origin, for this shower will be near the red giant Alpha Orionis (Betelguese), but meteors may occur from any point in the sky. You will make your meteor watching experience much more comfortable if you take along a lawn chair, a blanket and a thermos of your favorite beverage.

Clouded out? Don’t despair. You don’t always need your eyes or perfect weather to meteor watch. By tuning an FM radio to the lowest frequency possible that does not receive a clear signal, you can practice radio meteor listening! An outdoor FM antenna pointed at the zenith and connected to your receiver will increase your chances, but it’s not necessary. Simply turn up the static and listen. Those hums, whistles, beeps, bongs, and occasional snatches of signals are our own radio signals being reflected off the meteor’s ion trail! Pretty cool, huh?

Por amour du ciel… ~Tammy

Weekly SkyWatcher’s Forecast: October 8-14, 2012

Messier 73 - Credit: Palomar Observatory, courtesy of Caltech

Greetings, fellow SkyWatchers! With early evening dark skies, this is a perfect opportunity to take on some more serious studies. We’ll start off BIG… and work down to the really small. (Think Hickson Compact Groups.) There’s even a meteor shower this week! Now, get out your telescopes and get ready, cuz’ I’m waitin’ in the backyard and lookin’ for the “Double Dark”…

Monday, October 8 – Today marks the birthday of Ejnar Hertzsprung. Born 1873, Hertzsprung was a Danish astronomer who first proved the existence of giant and dwarf stars in the early 1900s. His discoveries included the relationship between color and luminosity, which wasn’t truly recognized until it was recovered by Henry Russell. Now it is a familiar part of all our studies as the Hertzsprung-Russell diagram. His use of absolute magnitudes will come into play tonight as we have a look at the age-old mystery of M73.

Located about three fingerwidths north-northwest of Theta Capricorni (RA 58.9 Dec -12 38), this 9th magnitude open cluster consisting of four stars was discovered by Charles Messier on October 4, 1780. He described it as a “Cluster of three or four small stars, which resembles a nebula at first glance…” Hotly debated as to whether or not the grouping is a genuine cluster or simply an asterism, it was also included in J. Herschel’s catalog (GC 4617) and given the NGC 6994 designation by Dreyer. In 1931 Collinder cataloged M73 as Cr 426, with an estimated distance of 12,000 light-years. Still, the debate about its authenticity as a physically related group continued.

At least two stars show the same proper motion, leading scientists to believe M73 may be the remnant of a much older and now dispersed cluster – or simply two related stars. Of the 140 stars investigated in the region, 24 may be real members, including those in Messier’s original observation. Thanks to the work of Hertzsprung and Russell, these candidates fall within the color-magnitude diagram of a 2 to 3 billion year old cluster with Messier’s suspect four being evolved giants. The most recent data indicates M73 may simply be an asterism – sharing no common proper motion, but until more studies are undertaken you can enjoy this unusual Messier in even a small telescope!

Tuesday, October 9 – Tonight is the peak of the Draconid meteor shower whose radiant is near the westering constellation of Hercules. This particular shower can be quite impressive when comet Giacobini-Zinner passes near Earth. When this happens, the fall rate jumps to 200 per hour and has even been known to reach 1000. So what am I going to tell you about this year? Comet Giacobini-Zinner reached perihelion on July 2nd of 2005, passing with 8 million kilometers of Earth, but has now greatly distanced itself from our solar system. Chances are the Draconids will only produce around 3 to 5 per hour, but no one knows for sure!

While we’re out, let’s take the time to have a peek at M72, just about a degree and a half west (RA 20 53.5 Dec -12 32) of last night’s target M73.

Originally found by Mechain on the night of August 29-30, 1780, this class IX globular cluster is one of the faintest and most remote of the Messiers, and Charles didn’t catalog it until over a month after its discovery. At around magnitude 9, this 53,000 light-year distant globular will be not much more than a faint round smudge in smaller aperture, but will take on a modicum of resolution in larger telescopes. Well beyond the galactic center and heading toward us at 255 kilometers per second, M72 is home to 42 variables and the average magnitude of its members is around 15. While mid-sized scopes will pick up a graininess in the texture of this globular, notice how evenly the light is distributed, with little evidence of a core region. Be sure to write down your observations!

Wednesday, October 10 – Today in 1846, William Lassell was busy at his scope as he made a new discovery – Neptune’s moon Triton! Although our everyday equipment can’t “see” Triton, we can still have a look at Neptune which is also hanging out in tonight’s study constellation of Capricornus. Try checking astronomy periodicals or many great on-line sites for accurate locator charts.

Tonight let’s head to the eastern portion of Capricornus and start by identifying Zeta about a fistwidth southwest of the eastern corner star – Delta. Now look southeast about 2 fingerwidths and identify 5th magnitude star 41. About one half degree west is our target we’ll be revisiting this evening, M30 (Right Ascension: 21 : 40.4 – Declination: -23 : 11).

At near magnitude 8, this class V globular cluster is well suited to even binoculars and becomes spectacular in a telescope. Originally discovered by Messier in August 1764 and resolved by William Herschel in 1783, some of M30?s most attractive features are the branches of stars which seem to radiate from its concentrated core region. Estimated to be around 26,000 light-years away, you’ll find it fairly well resolved in large aperture, but take time to really look. The dense central region may have already undergone core collapse – yet as close as these stars are, very few have collided to form x-ray binaries. For the smaller scope, notice how well M30?s red giants resolve and be sure to mark your notes!

Thursday, October 11 – Tonight is time for a telescopic challenge – a compact galaxy group. You’ll find it less than half a degree southeast of stellar pair 4 and 5 Aquarii (RA 20 52 26.00 Dec -05 46 19.1).

Known as Hickson 88, this grouping of four faint spiral galaxies is estimated to be around 240 million light-years away and is by no means an easy object – yet the galactic cores can just be glimpsed with mid-sized scopes from a very dark site. Requiring around 12.5? to study, you’ll find the brightest of these to be northernmost NGC 6978 and NGC 6977. While little detail can be seen in the average large backyard scope, NGC 6978 shows some evidence of being a barred spiral, while NGC 6977 shows the even appearance of a face-on. Further south, NGC 6976 is much smaller and considerably fainter. It is usually caught while averting and studying the neighborhood. The southernmost galaxy is NGC 6975, whose slender, edge-on appearance makes it much harder to catch.

Although these four galaxies seem to be in close proximity to one another, no current data suggests any interaction between them. While such a faint galaxy grouping is not for everyone, it’s a challenge worthy of seasoned astronomer with a large scope! Enjoy…

Friday, October 12 – Today in 1891, the Astronomical Society of France was established. Exactly one year later in 1892, astronomy great E. E. Barnard was hard at work using the new tool of photography and became the first to discover a comet – 1892 V – in this way!

Not only did Barnard use photography for comets, but his main interest of study was details within the Milky Way. Tonight let us take out binoculars or a telescope at the widest possible field of view and have a look at two such regions in the westering Aquila – The “Double Dark Nebula.”

Just northeast of Altair is bright star Gamma Aquilae, and about a fingerwidth west is a pair of Barnard discoveries: B142 and B143 – two glorious absences of stars known as interstellar dust clouds. B143 is no more than a half degree in size and will simply look like a blank area shaped like a horseshoe, with its extensions point toward the west. Just south is B142, an elongated comma shape, which seems to underline its companion.

Located anywhere from 1000 to 3000 light-years away, these non-luminous clouds of gas and dust are a very fine example of Barnard’s passion. Do not be upset if you don’t see them on your first attempt – for the chances are if you are seeing “nothing,” you are looking in the right place!

Saturday, October 13 – Today marks the founding of the British Interplanetary Society in 1933. “From imagination to reality,” the BIS is the world’s oldest established organization devoted solely to supporting and promoting the exploration of space and astronautics.

Tonight we’ll do them proud as we go back for another look at the mighty M2. You’ll find it located about three fingerwidths north-northeast of Beta Aquarii (RA 33.5 Dec 00 49).

At slightly dimmer than 6th magnitude, this outstanding globular cluster is just inside that region where it can’t quite be viewed unaided, but even the smallest of binoculars will pick it out of a relatively starless field with ease. Holding a Class II designation, it was first discovered by Maraldi on September 11, 1746 and rediscovered independently by Messier exactly 14 years later. At a distance of roughly 37,500 light-years, it is estimated to contain in the neighborhood of 150,000 stars.

Even a small telescope will reveal M2’s rich and concentrated core region and slight ellipticity. Not bad for a 13 billion year old group of stars! As aperture increases, some of the brightest stars will begin to resolve, and in larger telescopes it will approach total resolution. You might well note a dark area in the northeastern section, and several more located throughout the splendid field. Feast your eyes on one of the finest in the skies!

Sunday, October 14 – Before we leave Cygnus for the year, try your luck with IC 5070 (Right Ascension: 20 : 50.8 – Declination: +44 : 21), also known as the “Pelican Nebula.” You’ll find it just about a degree southeast of Deneb and surrounding the binary star 56 Cygni.

Located around 2000 light-years away, the Pelican is an extension of the elusive North American Nebula, NGC 7000. Given its great expanse and faintness, catching the Pelican does require clean skies, but it can be spotted best with large binoculars. As part of this huge star forming region, look for the obscuring dark dust cloud Lynds 935 to help you distinguish the nebula’s edges. Although it is every bit as close as the Orion Nebula, this star hatchery isn’t quite as easy!

Now let’s give deep sky a rest as we travel to the northwest corner of Capricornus and have a look just south of Alpha at beautiful Beta.

Named Dabih, this lovely white 3rd magnitude star has a very easily to split 6th magnitude companion which will appear slightly blue. Over 100 times brighter than our own Sun, the primary star is also a spectroscopic triple – one whose unseen companions orbit in a little over 8 days and 1374 days. Oddly enough the B star is also a very tight binary as well – yet the two major stars of this system are separated by about a trillion miles! If you have a large aperture telescope – power up. According to T. W. Webb, a 13th magnitude unrelated double is also found in between the two brighter stars. No matter if you chose binoculars or a telescope, I’m sure you’ll find the 150 light-year trip worth your time to add to your doubles list!

Until next week? Wishing you clear skies!

Weekly SkyWatcher’s Forecast: August 27-September 2, 2012

Greetings, fellow SkyWatchers! If you only get your telescope or binoculars out once in a Blue Moon, then get them out this week when a Blue Moon actually happens! However, if you can’t wait, then let’s explore some great lunar features, bright star clusters and great double stars. When you’re ready to learn some history, mystery and more, then just step on inside…

Monday, August 27 – Tonight the waxing Moon’s most notable features will be the vast area of craters dominating the south-central portion near and along the terminator. Now emerging is Ptolemaeus – just north-northeast of Albategnius. This large round crater is a mountain walled plain filled with lava flow. With the exception of interior crater Ptolemaeus A, binoculars will see it as very smooth. Telescopes, however, can reveal faint mottling in the surface of the crater’s interior, along with a single elongated craterlet to the northeast. Despite its apparent uniformity, close inspection has revealed as many as 195 interior craterlets within Ptolemaeus! Look for a variety of interior ridges and shallow depressions.

With the Moon low to the southwest, we have a chance to go northeast to Cepheus for a new study – NGC 7160 (Right Ascension: 21 : 53.7 (hours : minutes) Declination: +62 : 36). At magnitude 6.1, this small open cluster is easily identified in scopes and may be seen as a faint starfield in binoculars. You’ll find it about a finger-width north of Nu Cephei.

Tuesday, August 28 – In 1789 on this day, Sir William Herschel discovered Saturn’s moon Enceladus.

On the lunar surface tonight, we’ll start by following the southward descent of large crater rings Ptolemaeus, Alphonsus, and Arzachel to a smaller, bright one southwest named Thebit. We’re going to have a look at Hell…

Just west of Thebit and its prominent A crater to the northwest, you see the Straight Wall – Rupes Recta – appearing as a thin, white line. Continue south until you see large, eroded crater Deslandres. On its western shore, is a bright ring that marks the boundary of Hell. While this might seem like an unusual name for a crater, it was named for an astronomer – and clergyman!

Once you’ve been to Hell, let’s go to the heavens for NGC 7235 (Right Ascension: 22 : 12.6 – Declination: +57 : 17). Locate the star crowded area of Epsilon Cephei which will also include this 7.7 magnitude open cluster in the same low power field. Give it a try. Look for a small, rectangular assortment of 10th magnitude and fainter stars, including a beautiful ruby red, west-northwest of Epsilon.

Wednesday, August 29 – Due south of mighty Copernicus on the eastern edge of Mare Cognitum, you will see a ruined pair of flattened craters. They are Bonpland and Parry – with Frau Mauro just above them. The smallest and brightest of these ancient twins is the eastern Parry. Have a look at its south wall where a huge section is entirely lost. It was near this location that Ranger 7 ended its successful flight in 1964. Just south of Parry is another example of a well-worn Class V crater. See if you can distinguish the ruins of Guericke. Not much is left save for a slight U-shape to its battered walls. These are some of the oldest visible features on the Moon!

If you’d like to head for something very young, have a look at 6.8 magnitude open cluster NGC 6811 (Right Ascension: 19 : 37.3 – Declination: +46 : 23) in Cygnus. This mid-sized, unusually dense open cluster is found less than finger-width north-northwest of Delta – the westernmost star of the Northern Cross. Like most open clusters, the age of NGC 6811 is measured in millions, rather than billions, of years. Visible in binoculars on most nights, telescopes should show a half dozen or so broadly-spaced resolvable stars overlaying a fainter field. Be sure to return again on a moonless night, and have another look a disparate double Delta!

Thursday, August 30 – Today celebrates the Yohkoh Mission, launched in 1991. It was a joint effort of both Japan and the United States to monitor solar flares and the corona. While its initial mission was quite successful, on December 14, 2001 the signal was lost during a total eclipse. Unable to reposition the satellite back towards the Sun, the batteries discharged and Yohkoh became inoperable.

While the graceful Gassendi will try to steal the lunar show tonight, let’s have a go at Foucault instead. To find it, head north to Sinus Iridum and locate Bianchini in the Juras Mountains. Just northeast, and near the shore of south-eastern Mare Frigoris, look for a bright little ring.

Physicist Jean Foucault played an instrumental role in the creation of today’s parabolic mirrors. His “Foucault knife edge test” made it possible for opticians to test mirror curves for optical excellence during the final phases of shaping before metallization. Thanks to Foucault’s insight, we can turn our telescopes on such difficult double stars as Beta Delphini and resolve its 0.6 arc-second distant 5.0 magnitude companion. A challenge for smaller scopes is MU Cygni. This 4.5 and 6.0 magnitude pair should be resolvable in any scope that passed Foucault’s test!

Tonight let’s view a double star, Eta Lyra. Just on the edge of unaided visibility, you will find it around three finger-widths due east of Vega. This wide, disparate pair of 4.5 and 8.0 magnitude stars should be resolvable in just about any scope, but is beyond the reach of binoculars.

Friday, August 31 – Tonight we will begin entering the stream of the Andromedid meteor shower, which peaks off and on for the next couple of months. For those of you in the northern hemisphere, look for the lazy “W” of Cassiopeia to the northeast. This is the radiant – or relative point of origin – for this meteor stream. At times, this shower has been known to be spectacular, but let’s stick with an accepted fall rate of around 20 per hour. These are the offspring of Beila’s Comet, one that split apart leaving radically different streams – much like 73/P Schwassman-Wachmann did last year. These meteors have a reputation for red fireballs with spectacular trains, so watch for them in the weeks ahead.

It’s Blue Moon! That doesn’t mean the Moon is going to be colored any differently – it just means it’s the second full Moon within a month.

Think having all this Moon around is the pits? Then let’s venture to Zeta Sagittarii and have a look at Ascella – “The Armpit of the Centaur.” While you’ll find Zeta easily as the southern star in the handle of the teapot formation, what you won’t find is an easy double. With almost identical magnitudes, Ascella is one of the most difficult of all binaries. Discovered by W. C. Winlock in 1867, the components of this pair orbit each other very quickly – in just a little more than 21 years. While they are about 140 light-years away, this gravitationally bound pair waltz no further apart than our own Sun and Uranus!

Too difficult? Then have a look at Nu Sagittarii – Ain al Rami, or the “Eye of the Archer.” It’s one of the earliest known double stars and was recorded by Ptolemy. While Nu 1 and Nu 2 are actually not physically related to one another, they are an easy split in binoculars. Eastern Nu 2 is a K type spectral giant that is around 270 light-years from our solar system. But take a very close look at the western Nu 1 – while it appears almost as bright, this one is 1850 light-years away! As a bonus, power up in the telescope, because this is one very tight triple star system!

Saturday, September 1 – On this day 1859, solar physicist Richard Carrington (who originally assigned sunspot rotation numbers) observed the first solar flare ever recorded. Naturally enough, an intense aurora followed the next day. 120 years later in 1979, Pioneer 11 made history as it flew by Saturn.

While the Moon essentially appears to be full throughout the night, take the time to compare the western and eastern limbs. To the west, you will see the smooth arc no longer displays high contrast features. To the east you should see a broken edge now in sunset. Watch in the days ahead as many of your favorite craters begin to reveal themselves in a “different light.”

Tonight let’s visit Alya. One of the fainter stars to receive a proper name, Theta Serpens Caput is located around a hand span due east of Beta Ophiuchi. Thankfully, resolving this wide, matched magnitude pair is easier than finding it. If you have high power, self-stabilizing binoculars, this one could be real fun!

Sunday, September 2 – It won’t be long until the Moon lights the skies, so let’s have a look at disparate double Kappa Pegasi. It’s the westernmost star of northern Pegasus and is around a hand span due south of Sadr – the central star of the Northern Cross. At magnitude 4.3, look for a faint companion leading the orange-yellow primary across the sky. This one could be tough for small scopes – so make a challenge of it!

Now let’s have a look at Beta and Gamma Lyrae – the lower two stars in the “Harp.” Beta is actually a quick change variable dropping to less than half the brightness of Gamma every 12 days, but for a few days the two stars appear to be of near equal brightness. Beta is a very unusual eclipsing spectroscopic binary. Its unseen companion may be a “collapsar.”
Before you call it a night, head a finger-width north of Omicron Andromedae for 15 Lacertae. Just on the edge of unaided visibility, this carbon star is also a disparate double. The 5.2 magnitude variable primary will appear more red at its faintest, but its 11.0 magnitude companion is the faintest of all!

But don’t put the telescope away just yet. If you can locate the Moon, you can locate Uranus! Just take a look about 3 degrees away to lunar south to catch the slightly greenish orb of the outer planet.

Until next week, ask for the Moon… But keep on reaching for the stars!

Ptolemaeus Crater Image Credit: Damian Peach

Weekly SkyWatcher’s Forecast: August 20-26, 2012

Crater Petavius - Credit: Damian Peach

Greetings, fellow SkyWatchers! It’s going to be a great week to catch up on your lunar studies, but be sure to mark your calendar for Tuesday’s splendid conjunction! There will be bright stars and clusters to study, so enjoy these temperate nights while they last! Whenever you’re ready to learn more about the history, mystery and majesty of what’s out there, meet me in the back yard…

Monday, August 20 – Tonight the Moon sets by skydark, but if you’re looking for a lunar challenge, return to crater Petavius about one-third the way up from the southern cusp just after sunset. This ancient crater is a wonderland of detail when lying on the terminator. Look for its rugged walls interrupted by crater Wrottesley to the northwest and elongated Palitzsch southeast. If conditions are stable, power up to look for a massive, multi-peaked central mountain region, along with a deep scar – Rima Petavius – cutting diagonally across the wavelike floor.

When the Moon has set, look for the southern Crown – Corona Australis. Its hidden jewel is 7.3 magnitude, 28,000 light-year distant globular cluster NGC 6723 (Right Ascension: 18 : 59.6 – Declination: -36 : 38). Discovered on June 3, 1826 by James Dunlop of New South Wales, Australia, NGC 6723 can be best found by heading less than 7 degrees due south of Zeta Sagittarii. This mid-sized cluster gives a surprising view, but if you’re more north, best catch it at its highest.

Now, relax! Tonight is the peak of the Kappa Cygnid meteor shower. Although the Moon will interfere early in the evening, wait until it has set and watch the area near Deneb. Discovered in the late 1800?s, the Kappa Cygnids are often overlooked because the grander, more prolific Perseids tend to get more attention. Although the stream has been verified, peak dates and fall rates vary from year to year. The average fall rate is usually no more than 5 per hour, but it is not uncommon to see 12 or more per hour with many fireballs. The stream’s duration is around 15 days. Clear skies!

Tuesday, August 21 – Deep Blue Celestial Scenery Alert! Don’t goof around tonight. Find yourself an open western horizon and be outside at sky dark for the awe inspiring combination of the Moon, Spica, Mars and Saturn. The powerful blue/white star will be located just northeast of the lunar edge while Mars resides to the east/southeast and Saturn reigns above them all. This will be a very photographic opportunity, so be sure to take advantage of this splendid conjunction. Tell your family and friends!

Although we have traveled this road before, let’s go further south than last night’s lunar study and have another look at Furnerius. Shallower and less impressive than Petavius, Furnerius will fade to obscurity as the Moon waxes. This flooded old crater has no central peak, but a much younger crater has punched a hole in its lava-filled floor. Look for the long “crack” extending from Furnerius’ north shore to crater rim. Perhaps it was caused by the impact? Sharp-eyed observers with good conditions and high power will also spot a multitude of small craters within and along Furnerius’ walls. For binocular viewers, try spotting crater Stevinus to the north and Fraunhofer to the south.

Now let’s go have a look at a star buried in one of the spiral arms of our own galaxy – W Sagittarii…

Located less than a fingerwidth north of Gamma, the tip of the “teapot spout,” W is a Cepheid variable that’s worth keeping an eye on. While its brightness only varies by less than a magnitude, it does so in less than 8 days! Normally holding close to a magnitude 4, nearby field stars will help you correctly assess when minimum and maximum occur. While it’s difficult for a beginner to see such changes, watch it over a period of time. At maximum, it will be only slightly fainter than Gamma to the south. At minimum, it will be only slightly brighter than the stars to its northeast and southwest.

While you watch W go through its changes – think on this: not only is W a Cepheid variable (a standard for distance measurements), but it is also one that periodically changes its shape. Not enough? Then think twice… Because W is also a Cepheid binary. Still not enough? Then you might like to know that recent research points toward W having a third companion as well!

Wednesday, August 22 – On the lunar surface tonight, head to the eastern shore of Mare Nectaris to catch an easily noticed broken black line. This is the western flank of the Pyrenees Mountains which stretch close to 350 kilometers north to south. The black line you see is a good example of a lunar scarp, a feature more like a cliff than a true mountain range. This scarp ends to the north in crater Guttenberg. Just south of Guttenberg, you will find high contrast Santbech.

Although it will be tough to locate with the unaided eye thanks to the Moon, let’s take a closer look at one of the most unsung stars in this region of sky – Eta Sagittarii. This M-class giant star will show a wonderful color contrast to binoculars or scopes, being slightly more orange than the surrounding field. Located 149 light-years away, this irregular variable star is a source of infrared radiation and is a little larger than our own Sun – yet 585 times brighter. At around 3 billion years old, Eta has either expended its helium core or just begun to use it to fuse carbon and oxygen – creating an unstable star capable of changing its luminosity by about 4%. But have a closer look… For Eta is also a binary system with an 8th magnitude companion!

Thursday, August 23 – Do you remember a few days ago in history when Lunar Orbiter 1 was launched? Well, on this day in history it made headlines as it sent back the very first photo of Earth seen from space!

On the lunar surface tonight, we’ll return to identify Metius, Fabricus and Janssen to the south. Southwest of this trio you will see a sharply defined small crater known as Vlacq. Power up to resolve its small central mountain peak. Angling off to the west and extending westward is multiple crater Hommel. Look especially for Hommel A and Hommel C which fit nicely and precisely within the borders of the older crater. Note how many individual craters make up its borders. Just north of Hommel is Pitiscus and to its south is Nearch.

Now let’s have a look at the brightest star in the “Archer” – Epsilon Sagittarii. Known as Kaus Australis, or the “Southern Bow,” Epsilon holds a respectable magnitude 1.8 and is located around 120 light-years from Earth. This sparkling blue/white star is 250 times brighter than our own Sun. While a major challenge would be to spot Epsilon’s 14th magnitude companion star located about 32? away, even the smallest of telescopes and most binoculars can try for the 7th magnitude visual companion widely spaced to the north-northwest.

Friday, August 24 – Today in 1966 from an Earth-orbiting platform, the Luna 11 mission was launched on a three day trip. After successfully achieving orbit, the mission went on to study many things, including lunar composition and nearby meteoroid streams.

Tonight’s prominent lunar features are also Astronomical League challenges. Look southwest of previous study Theophilus for the huge form of Maurolycus. Its cratered floor may be either partially lit or fully disclosed depending on your observing time. Note especially Maurolycus’ multiple central mountains. North of Maurolycus you will see the well-eroded remains of Gemma Frisius. Its broken walls will show well under current illumination. Finally look carefully for crater Goodacre which has destroyed Gemma Frisius’ northern wall.

The Moon is now becoming the “highlight” of the night sky. Try using “higher power” to diminish some of its glare. While southwestern Sagittarius is also high, why not observe some of its other globular clusters?

Center the scope on Epsilon and sweep less than 3 degrees north-northeast to find small 7.7 magnitude globular M69 (Right Ascension: 18 : 31.4 – Declination: -32 : 21). M69 gives an appearance similar to that of other compact clusters – such as M28 and M80. Small and moderately bright, it appears coarsely textured through smaller instruments and requires larger scopes to bring out its brightest 14th magnitude members. This cluster sits near a blue 7th magnitude star which complicates seeing M69 through binoculars and finderscopes.

Now head a little more than a degree southeast, then north of a pair of 6th magnitude stars to locate NGC 6652 (Right Ascension: 18 : 35.8 – Declination: -32 : 59) – a very small 9th magnitude globular. Go less than 2 degrees northeast to find brighter (8.1 magnitude), larger M70 (Right Ascension: 18 : 43.2 – Declination: -32 : 18). Notice how more of M70?s light is concentrated in its core than M69. Continuing a little more than 3 degrees in the direction of Zeta we encounter M54 (Right Ascension: 18 : 55.1 – Declination: -30 : 29). Through a modest scope, this 7.7 magnitude globular is small, very blue, and intensely concentrated at the core. Larger amateur instruments will only bring out a few 15th magnitude members out of this globular’s faintly glowing form.

Charles Messier discovered M69 and M70 on August 31, 1780 from Paris while trying to confirm a discovery made by Lacaille using a half-inch spyglass in South Africa. These two globulars lie within 2,000 light-years of each other and less than 30,000 light-years from Earth. Due to unusual richness in metal content – for astronomers, “metals” are any elements other than hydrogen and helium – M69 may be a relatively young cluster. At some 90,000 light-years, M54 is the most distant Messier globular cluster – and may not be a globular at all – but the core of a dwarf galaxy beyond the bounds of the Milky Way! In fact M54 is intrinsically larger (300 light-years in diameter) and brighter (magnitude 10.1) than any other globular within the Milky Way itself.

Saturday, August 25 – Tonight the waxing Moon’s most notable features will be the vast area of craters dominating the south-central portion near and along the terminator. Now emerging is Ptolemaeus – just north-northeast of Albategnius. This large round crater is a mountain walled plain filled with lava flow. With the exception of interior crater Ptolemaeus A, binoculars will see it as very smooth. Telescopes however can reveal faint mottling in the surface of the crater’s interior, along with a single elongated craterlet to the northeast. Despite its apparent uniformity, close inspection has revealed as many as 195 interior craterlets within Ptolemaeus! Look for a variety of interior ridges and shallow depressions.

With the moonlight causing studies to be mildly hampered, our main feature for tonight will definitely improve once the Moon sets – so while we’re waiting, let’s drop by open cluster M29 (Right Ascension: 20 : 23.9 – Declination: +38 : 32) less than 2 degrees south-southeast of Gamma Cygni. At lower power, or through small scopes, its handful of brightest members makes this 6.6 magnitude open cluster look more like an asterism than a real group. Lacking any sense of a core, higher power and larger scopes will bring out another dozen or so stars. Those with binoculars will enjoy seeing a few of M29?s brightest stars against a vague nebulosity.

Now let’s see what the “I” can “C”… Less than 2 degrees southwest of M29 (just south of 5th magnitude P Cygni) lies another open cluster of similar brightness and size to M29 – IC 4996 (Right Ascension: 20 – : 16.5 – Declination: +37 : 38). How do these two compare? The less conspicuous IC 4996 lies in a richer Milky Way field and consists of fewer and more compact bright stars. Smaller scopes see this one as a patch of nebulosity.

Now for M55 (Right Ascension: 19 : 40.0 – Declination: -30 : 58). Found in the far reaches of eastern Sagittarius, and west-southwest of Zeta, M55 is one of the coarsest globulars known. At magnitude 7.0, M55 can be seen as a large pale ghost of luminosity in binoculars or finderscopes. This is one very open globular cluster! A multitude of fine, easily resolved stars spread oblately over the mid-power field. Long exposure photos show this to be a true globular glowing with the combined light of almost 100,000 suns.

Tonight is also the peak of the Northern Iota Aquarid meteor shower. While the Moon will totally interfere most of the evening, you still might catch a bright streak!

Sunday, August 26 – The most outstanding feature tonight on the Moon will be a southern crater near the terminator – Maurolycus. Depending on your viewing time, the terminator may be running through it. These shadows will multiply its contrast many times over and display its vivid formations. As true lunar challenge, Maurolycus will definitely catch your eye with its black interior and western crest stretched over the terminator’s darkness. Too many southern craters to be sure? Don’t worry. Maurolycus dominates them all tonight. Look for its double southern wall and multiple crater strikes along its edges. Maurolycus is found about two Crisium lengths southwest of Theophilus and in tonight’s light will appear especially fine. But look just north of Maurolycus to pick out the battered remains of Class III crater Gemma Frisius, another lunar challenge. Spanning 56 miles and descending 17,100 feet below the Moon’s surface, you’ll find its walls broken, yet enough of its northern boundary remains to clearly reveal the impact that created Goodacre. Look for the shadows which blend Goodacre and Gemma Frisius together.

On this date in 1981, Voyager 2 made a fly-by of Saturn. Eight years later in 1989, Voyager 2 flew by Neptune on this date. Why don’t we make a “date” tonight to have a look at this distant blue world? You’ll find it on the ecliptic plane. While large binoculars can pick up Neptune’s very tiny blue orb, you’ll need a telescope tonight to spot it through the lunar glare.

Until next week? Wishing you clear skies!

Astrophotos: The 2012 Perseid Meteor Shower from Around the World

Caption: Perseid Meteors with Lunar & Planetary Conjunction on August 12, 2012. Credit: John Chumack.

Here’s some great views of the Perseid Meteor Shower from Universe Today readers around the world. Over the weekend was the peak of the annual meteor shower that never seems to disappoint! We start with one of our “regulars,” John Chumack from his observatory in Yellow Springs, Ohio, USA. But there were also many other objects in John’s field of view, including the waning crescent Moon, Venus, and Orion rising over the observatory dome, the Pleaides, Hyades, and Jupiter, too. John used a odified Canon Rebel Xsi & 17mm lens at F4, ISO 400, and a 20 second exposure. See more of John’s wonderful astrophotos at his Flickr page or at his website, Galactic Images.

More beautiful shots below:

Caption: The Perseids on August 13, 2012. Credit: M. Rasid Tugral from Ankara, Turkey

M. Rasid Tugral from Ankara, Turkey sent in this great image from August 13. Tugral is an accomplished astrophotographer and teaches at the Middle East Technical University in the Department of Physics.

By Patrick Cullis (pcully on Flickr) in Colorado, USA, taken on August 12, 2012 using a Canon EOS 5D Mark II.

Caption: Perseids on August 9, 2012. Credit: Nu Am (tazacanitu).

Another great shot from August 9, 2012 by Nu Am (tzacanitu on Flickr) “Out of the camera raw, re-dimensioned to 25% and saved as jpg. Canon 50D + Tamron SP AF 17-50mm f/2.8 XR Di II LD IF @17mm, tripod, ISO 400, 30seconds, f/4.”

Caption: 2012 Perseids on August 12, 2012. Credit: Kevin Jung.

A lovely capture of two Perseid meteors in one shot by Kevin Jung(Kevin’s Stuff on Flickr). “Two Perseid meteors show up in a 30 second image shot during the night of August 11/morning of August 12,” Kevin wrote from Lowell, Michigan, USA. He used a Canon EOS 40D. “Since there were some meteors in all parts of the sky, I just pointed my camera to the north with Perseus just to the right of the frame,” Kevin explained. “I used the intervelometer and took 30 second shots automatically. It was lucky that the skies cleared in time to see anything. We had clouds all day, and then weather system was slow to move out of the area. The started to break up around 10pm, but it was until after midnight when the skies cleared up (with the exception of a few areas).”

Thanks to everyone who shared their images!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Easiest Guide Ever to Watching the Perseid Meteor Shower

Caption: A bright fireball meteor on August 1, 2012. Credit: John Chumack.

This will probably be the most simple and easiest guide to viewing the Perseids and other meteor showers you may possibly ever read. The reason why it is so simple is when you are outside you want to concentrate on looking for meteors and not worrying about technical details, which are unnecessary for the casual observer.

First, a LITTLE about the Perseids: The Perseid meteor shower is an annual event occurring every August. They are tiny particles of dust and debris from the tail of a comet (109P/Swift-Tuttle) which planet Earth encounters every year in its orbit around the Sun. When these particles collide with the Earth’s atmosphere, they burn up causing bright flashes and streaks in the night sky. These are known as shooting stars or meteors.

Credit: NASA

To see Perseids (shooting stars/meteors) we only need to do a few simple things.

  1. Plan when you want to look for meteors: Check timings and set aside a good hour or more for observing (away from bright lights if possible). Meteors seldom appear immediately so give yourself a good hour or more to see as many as possible. Late evening and after midnight is a good time for meteor hunting. One of the best time to look, however, is during the dark hours immediately before dawn. There are some good guides with timings, etc. on www.meteorwatch.org, NASA, or Universe Today’s weekly SkyWatcher’s Forecast
  2. Get comfortable: Dress warmly as even in August it can get chilly at night. Find yourself a good garden chair, deck chair, trampoline or place on the ground you can lay a sleeping bag or blanket, as the idea is for you to keep your gaze on the sky for as long as possible. Lying down on the ground or sitting on a reclining garden chair will make this much easier for you. Take with you food and drink to make the evening even more enjoyable.
  3. Where to look: A lot of guides will tell you to look in certain directions at certain times and be far too technical, this is totally unnecessary. All you need to do is look up and fill your gaze with sky for as long as possible (blink and you miss it). Meteors/shooting stars from meteor showers tend to appear randomly all over the sky, they will however originate from a point called the radiant which gives the meteor shower its name the Perseids radiant/point of origin is in the constellation of Perseus, hence the name. You don’t need to look in any particular direction, just look up.
  4. How to look: You do not need a telescope, binoculars or any other viewing aid; you only need your eyes.
  5. What to expect: Don’t expect to see the heavens raining down with fire. Expect to see one or more bright flashes/ streaks of light (meteors/shooting stars) every few minutes. The Perseids can deliver fifty to a hundred meteors per hour at their peak, which is just after the night of the 11th and 12th August through to the 13th and 14th August, be patient and you will see some. Occasionally you may be lucky to see an incredibly bright meteor known as a fireball, these are a real treat. Also, as an added bonus this year, Jupiter, Venus, and the crescent Moon are gathering together in the night sky just as the Perseid meteor shower reaches its peak.

Enjoy yourself and keep looking up, the more you look up the more you will see. When you look away that’s when you miss the best meteor of the evening.

For further information and to join in with the worldwide #meteorwatch on twitter follow @virtualastro and visit meteorwatch.org

Good luck!

Weekly SkyWatcher’s Forecast: August 6-12, 2012

Globular Cluster M15 from Hubble - Credit: ESA, Hubble, NASA

Greetings, fellow SkyWatchers! While you start your observing week out by watching the Mars Curiosity Landing, be sure to step outside and view the Aquarid meteor shower, too! It’s going to be a grand week for globular cluster studies and breezing along the Milky Way. Whenever you’re ready to learn some more history, mystery and just plain fun things about the night sky, then meet me in the back yard.

Monday, August 6 – Today in 2001 the Galileo spacecraft made its flyby of Jupiter’s moon – Io -sending back incredible images of the surface. For southern hemisphere observers, be on watch as the Iota Aquarid meteor shower peaks on this Universal date.

Tonight our studies of globular clusters continues as we look deeper into structure. As a rule, globular clusters normally contain a large number of variable stars, and most are usually the RR Lyrae type such as in earlier study M54. At one time they were known as “cluster variables,” with their number differing from one globular to another. Many globulars also contain vast numbers of white dwarfs. Some have neutron stars which are detected as pulsars, but out of all 151, only four have planetary nebulae in them.

Now, let us head toward the emerging constellation of Pegasus and the magnitude 6.5, class IV M15 (Right Ascension: 21 : 30.0 – Declination: +12 : 10). Easily located with even small binoculars about four degrees northwest of Enif, this magnificent globular cluster is a true delight in a telescope. Amongst the globulars, M15 ranks third in variable star population with 112 identified. As one of the densest of clusters, it is surprising that it is considered to be only class III. Its deeply concentrated core is easily apparent, and has begun the process of core collapse. The central core itself is very small compared to the cluster’s true size and almost half M15?s mass is contained within it. Although it has been studied by the Hubble, we still do not know if this density is caused by the cluster stars’ mutual gravity, or if it might disguise a supermassive object similar to those in galactic nuclei.

M15 was the first globular cluster in which a planetary nebula, known as Pease 1, could be identified. Larger aperture scopes can easily see it at high power. Surprisingly, M15 also is home to 9 known pulsars, which are neutron stars left behind from previous supernovae during the cluster’s evolution, and one of these is a double neutron star. While total resolution is impossible, a handful of bright stars can be picked out against that magnificent core region and wonderful chains and streams of members await your investigation tonight!

Tuesday, August 7 – On this date in 1959, Explorer 6 became the first satellite to transmit photographs of the Earth from its orbit.

Tonight, let’s return again to look at two giant globular clusters roughly equal in size, but not equal in class. To judge them fairly, you must use the same eyepiece. Start first by re-locating previous study M4. This is a class IX globular cluster. Notice the powder-like qualities. It might be heavily populated, but it is not dense. Now return to previous study M13. This is a class V globular cluster. Most telescopes will make out at least some resolution and a distinct core region. It is the level of condensation that determines the class. It is no different from judging magnitudes and simply takes practice.

Try your hand at M55 (Right Ascension:19 : 40.0 – Declination: -30 : 58) along the bottom of the Sagittarius “teapot” – it’s a class XI. Although it is a full magnitude brighter than class I M75, which we looked at earlier in the week, can you tell the difference in concentration? For those with GoTo systems, take a quick hop through Ophiuchus and look at the difference between NGC 6356 (class II) and NGC 6426 (class IX). If you want to try one that they can’t even classify? Look no further than M71 (Right Ascension: 19 : 53.8 – Declination: +18 : 47) in Sagitta. It’s all a wonderful game and the most fun comes from learning!

In the meantime, don’t forget all those other wonderful globular clusters such as 47 Tucanae, Omega Centauri, M56, M92, M28 and a host of others!

Wednesday, August 8 – Today in 2001, the Genesis Solar Particle Sample Return mission was launched. In September of 2004, it crash landed in the Utah desert with its precious payload. Although some of the specimens were contaminated, some did survive the mishap. So what is “star stuff?” Mostly highly charged particles generated from a star’s upper atmosphere and flowing out in a state of matter known as plasma…

Tonight let’s study one of the grandest of all solar winds as we seek out an area about three fingerwidths above the Sagittarius “teapot’s spout” as we have a look at magnificent M8 (Right Ascension: 18 : 03.8 – Declination: -24 : 23), the “Lagoon Nebula.”

Visible to the unaided eye as a hazy spot in the Milky Way, fantastic in binoculars, and an area truly worth study in any size scope, this 5200 light-year area of emission, reflection and dark nebulae has a rich history. Its involved star cluster – NGC 6530 – was first discovered by Flamsteed around 1680, and the nebula by Le Gentil in 1747. Cataloged by Lacaille as III.14 about 12 years before Messier listed it as number 8, its brightest region was recorded by John Herschel and the dark nebulae were discovered by Barnard.

Tremendous areas of starbirth are taking place in this region; while young, hot stars excite the gases in a are known as the “Hourglass,” around Herschel star 36 and 9 Sagittarius. Look closely around cluster NGC 6530 for Barnard dark nebulae B89 and B296 at the nebula’s southern edge. No matter how long you chose to swim in the “Lagoon” you will sure find more and more things to delight both the mind and the eye!

Thursday, August 9 – Today in 1976, the Luna 24 mission was launched on a return mission of its own – not to retrieve solar winds samples, but lunar soil! Remember this mission as we take a look at its landing site in the weeks ahead.

Tonight we’ll return to the nebula hunt as we head about a fingerwidth north and just slightly west of M8 for the “Trifid”…

M20 (Right Ascension: 18 : 02.3 – Declination: -23 : 02) was discovered by Messier on June 5, 1764, and much to his credit, he described it as a cluster of stars encased in nebulosity. This is truly a wonderful observation since the Trifid could not have been easy given his equipment. Some 20 years later William Herschel (although he usually avoided repeating Messier objects) found M20 of enough interest to assign separate designations to parts of this nebula – IV.41, V.10, V.11, V.12. The word “Trifid” was used to describe its beauty by John Herschel.

While M20 is a very tough call in binoculars, it is not impossible with good conditions to see the light of an area that left its home nearly a millennium ago. Even smaller scopes will pick up this round, hazy patch of both emission and reflection, but you will need aversion to see the dark nebula which divides it. This was cataloged by Barnard as B85. Larger telescopes will find the Trifid as one of the very few objects that actually appears much in the eyepiece as it does in photographs – with each lobe containing beautiful details, rifts and folds best seen at lower powers. Look for its cruciform star cluster and its fueling multiple system while you enjoy this triple treat tonight!

Friday, August 10 – Today in 1966 Lunar Orbiter 1 was successfully launched on its mission to survey the Moon. In the weeks ahead, we’ll take a look at what this mission sent back!

Tonight we’ll look at another star forming region as we head about a palm’s width north of the lid star (Lambda) in the Sagittarius teapot as we seek out “Omega”…

Easily viewed in binoculars of any size and outstanding in every telescope, the 5000 light-year distant Omega Nebula was first discovered by Philippe Loys de Cheseaux in 1745-46 and later (1764) cataloged by Messier as object 17. This beautiful emission nebula is the product of hot gases excited by the radiation of newly born stars. As part of a vast region of interstellar matter, many of its embedded stars don’t show in photographs, but reveal themselves beautifully to the eye of the telescope. As you look at its unique shape, you realize that many of these areas are obscured by dark dust, and this same dust is often illuminated by the stars themselves.

Often known as the “Swan,” M17 (Right Ascension: 18 : 20.8 – Declination: -16 : 11) will appear as a huge, glowing check mark or ghostly “2? in the sky – but power up if you use a larger telescope and look for a long, bright streak across its northern edge, with extensions to both the east and north. While the illuminating stars are truly hidden, you will see many glittering points in the structure itself and at least 35 of them are true members of this region spanning about 40 light-years that could contain up to 800 solar masses. It is awesome…

Saturday, August 11 – On this date in 1877, Asaph Hall of the U.S. Naval Observatory was very busy. This night would be the first time he would see Mars’ outer satellite Deimos! Six nights later, he observed Phobos, giving Mars its grand total of two moons.

Tonight after midnight is the peak of the Perseid meteor shower, and this year there’s not so much Moon to contend with! Now let’s sit back and talk about the Perseids while we watch…

The Perseids are undoubtedly the most famous of all meteor showers and never fail to provide an impressive display. Their activity appears in Chinese history as far back as 36 AD. In 1839, Eduard Heis was the first observer to give an hourly count, and discovered their maximum rate was around 160 per hour at that time. He, and other observers, continued their studies in subsequent years to find that this number varied.

Giovanni Schiaparelli was the first to relate the orbit of the Perseids to periodic comet Swift-Tuttle (1862 III). The fall rates have both risen and fallen over the years as the Perseid stream was studied more deeply, and many complex variations were discovered. There are actually four individual streams derived from the comet’s 120 year orbital period which peak on slightly different nights, but tonight through tomorrow morning at dawn is our accepted peak.

Meteors from this shower enter Earth’s atmosphere at a speed of 60 km/sec (134,000 miles per hour), from the general direction of the border between the constellations Perseus and Cassiopeia. While they can be seen anywhere in the sky, if you extend their paths backward, all the true members of the stream will point back to this region of the sky. For best success, position yourself so you are generally facing northeast and get comfortable. If you are clouded out, don’t worry. The Perseids will be around for a few more days yet, so continue to keep watch!

And speaking of watching… If you’re out late, be sure to watch for a Jupiter/Moon conjunction. What an inspiring bit of sky scenery to watch them rise together! For lucky viewers in the Indonesia area, this is an occultation event, so please be sure to check resources for times and locations in your area.

Sunday, August 12 – Did you mark your calendar to be up before dawn to view the Perseid meteor shower? Good!

Tonight while dark skies are on our side, we’ll fly with the “Eagle” as we hop another fingerwidth north of M17 and head for one of the most famous areas of starbirth – IC 4703.

While the open cluster NGC 6611 was first discovered by Cheseaux in 1745-6, it was Charles Messier who cataloged the object as M16 and he was the first to note the nebula IC 4703 (Right Ascension: 18 : 18.9 – Declination: -13 : 47), more commonly known as the “Eagle.” At 7000 light-years distant, this roughly 7th magnitude cluster and nebula can be spotted in binoculars, but at best it is a hint. As part of the same giant cloud of gas and dust as neighboring M17, the Eagle is also a place of starbirth illuminated by these hot, high energy stellar youngsters which are only about five and a half million years old.

In small to mid-sized telescopes, the cluster of around 20 brighter stars comes alive with a faint nebulosity that tends to be brighter in three areas. For larger telescopes, low power is essential. With good conditions, it is very possible to see areas of dark obscuration and the wonderful “notch” where the Pillars of Creation lie. Immortalized by the Hubble Space telescope, you won’t see them as grand or colorful as it did, but what a thrill to know they are there!

Until next week? Clear skies!

Weekly SkyWatcher’s Forecast: July 30 – August 5, 2012

Greetings, fellow SkyWatchers! It’s big. It’s bright. There’s no escaping it. This week the Moon will be our major point of study, but don’t rule out some bright globular clusters and interesting stars! There’s plenty of history and science to explore, too. Whenever you’re ready, just meet me in the back yard…

Monday, July 30 – Today’s history celebrates the 2001 flyby of the Moon by the Wilkinson Microwave Anisotropy Probe (WMAP) on its way to Lagrange Point 2 to study the cosmic microwave background radiation.

Now that we’re back at Sinus Iridum on the lunar surface, we’ll hop across Mare Frigoris and northeast of the punctuation of Harpalus for a grand old crater – J. Herschel. Although it looks small because it is seen on the curve, this wonderful old walled plain named for John Herschel contains some very tiny details. Its southeastern rim forms the edge of Mare Frigoris and the small (24 km) Horrebow dots its southwest edge. The crater walls are so eroded with time that not much remains of the original structure. Look for many very small telescopic impact craters which dot J. Herschel’s uneven basin and exterior edges. Power up! If you can spot the small central crater C, you are resolving a feature only 12 kilometers wide from some 385,000 kilometers away! Formed in the Pre-Nectarian period, this walled plain could be as much as 4 billion years old…

Now, relax and enjoy the peak of the Capricornid meteor shower. Although it is hard for the casual observer to distinguish these meteors from the Delta Aquarids, no one minds. Again, face southeast and enjoy! The fall rate for this shower is around 10 to 35 per hour, but unlike the Aquarids, this stream produces those great “fireballs” known as bolides. Enjoy…

Tuesday, July 31 – Tonight on the Moon, look south of Mare Humorum is darker Paulus Epidemiarum eastward and paler Lacus Excellentiae westward. To their south you will see a complex cojoined series of craters we’ll take a closer look at – Hainzel and Mee. Hainzel was named for Tycho Brahe’s assistant and measures about 70 kilometers in length and sports several various interior wall structures. Power up and look. Hainzel’s once high walls were obliterated on the north-east by the strike that caused Hainzel C and to the north by impact which caused the formation of Hainzel A. To its basic south is eroded Mee – named for a Scottish astronomer. While Crater Mee doesn’t appear to be much more than simple scenery, it spans 172 kilometers and is far older than Hainzel. While you can spot it easily in binoculars, close telescope inspection shows how the crater is completely deformed by Hainzel. Its once high walls have collapsed to the northwest and its floor is destroyed. Can you spot small impact crater Mee E on the northern edge?

Now, let’s take the opportunity to look at two multiple star systems – Nu and Xi Scorpii.

Starting with Nu about a fingerwidth east and slightly north of bright Beta, we find a handsome duo of stars in a field of nebulosity that will challenge telescopic observers much the way that Epsilon Lyrae does. With any small telescope, the observer will easily see the widely separated A and C stars. Add just a little power and take your time… The C star has a D companion to the southwest! For larger telescopes, take a very close look at the primary star. Can you separate the B companion to the south?

Now let’s hop to Xi about four fingerwidths north of Beta.

Discovered by Sir William Herschel in 1782, this 80 light-year distant system poses a nice challenge for mid-sized scopes. The yellow-hued A and B pair share a very eccentric orbit about the same distance as Uranus is from our Sun. During the 2007 observing year they should be fairly well spaced, and the slightly fainter secondary should appear to the north. Look a good distance away for the 7th magnitude orange C component and south for yet another closely-matched double of 7th and 8th magnitude – the D and E stars.

For the larger scope, this multiple star system does display a little bit of color. Most will see the A and B components as yellow/white, the C star as slightly orange, and the D/E pair as slightly tinged with blue. Be sure to mark your observations for this is one of the finest!

Wednesday, August 1 – Today is the birthdate of Maria Mitchell. Born in 1818, Mitchell became the first woman to be elected as an astronomer to the American Academy of Arts and Sciences. She later rocketed to worldwide fame when she discovered a bright comet in 1847.

For larger telescopes, let’s try a challenging lunar study worthy of your observing skills. Due west of Hansteen you will find a small crater known as Sirsalis near the terminator. It will appear as a small, dark ellipse with a bright west wall along with its twin, Sirsalis B. The feature you will be looking for is the Sirsalis Rille – the longest lunar “wrinkle” presently known. Stretching northeast of Sirsalis and ex-tending 459 kilometers south to the bright rays of Byrgius, this major “crack” in the lunar surface shows several branchings – like a long dry river bed. Geologically forming in the Imbrian period, chances are the Sirsalis Rille is lunar graben. Thanks to Lunar Orbiter images, the evidence points to shifting tectonic plates as the source of this incredible feature.

Tonight, let’s continue our exploration of globular clusters. These gravitationally bound concentrations of stars contain anywhere from ten thousand to one million members and attain sizes of up to 200 light-years in diameter. At one time, these fantastic members of our galactic halo were believed to be round nebulae. Perhaps the very first to be discovered was M22 in by Abraham Ihle in 1665. This particular globular is easily seen in even small binoculars and can be located just slightly more than two degrees northeast of the “teapot’s lid,” Lambda Sagittarii.

Ranking third amongst the 151 known globular clusters in total light, M22 (Right Ascension: 18 : 36.4 – Declination: -23 : 54) is probably the nearest of these incredible systems to our Earth with an approximate distance of 9600 light-years, and it is also one of the nearest globulars to the galactic plane. Since it resides less than a degree from the ecliptic, it often shares the same eyepiece field with a planet. At magnitude 6, the class VII M22 will begin to show individual stars to even modest instruments and will burst into stunning resolution for larger aperture. About a degree west-northwest, mid-sized telescopes and larger binoculars will capture smaller 8th magnitude NGC 6642. At class V, this particular globular will show more concentration toward the core region than M22. Enjoy them both!

Thursday, August 2 – Tonight we’ll fly right by the Full Buck Moon as we continue our studies to have a look at Mu 1 and Mu 2 Scorpii about two fingerwidths north of Zeta.

Very close to the same magnitude and spectral type, the twin Mu stars are easy to separate visually and most definitely worth a look in telescopes or binoculars. They are considered an actual physical pair because they share the exact same distance and proper motion, but they are separated by less than one light-year.

Hanging out in space some 520 light-years away, western Mu 1 is a spectroscopic binary – the very first discovered to have double lines. This Beta Lyrae-type star has an orbiting companion that eclipses it around every day and a half, yet causes no significant visual drop in magnitude – even though the orbiting companion is only 10 million kilometers away from it! While that sounds like plenty of distance, when the two pass, their surfaces would nearly touch each other!

Friday, August 3 – Tonight let’s race ahead of the rising Moon as we continue our studies with one of the globulars nearest to the galactic center – M14 (Right Ascension: 17 : 37.6 – Declination: -03 : 15). Located about sixteen degrees (less than a handspan) south of Alpha Ophiuchi, this ninth magnitude, class VIII cluster can be spotted with larger binoculars, but will only be fully appreciated with the telescope.

When studied spectroscopically, globular clusters are found to be much lower in heavy element abundance than stars such as own Sun. These earlier generation stars (Population II) began their formation during the birth of our galaxy, making globular clusters the oldest of formations that we can study. In comparison, the disk stars have evolved many times, going through cycles of starbirth and supernovae, which in turn enrich the heavy element concentration in star forming clouds and may cause their collapse. Of course, as you may have guessed, M14 breaks the rules. It contains an unusually high number of variable stars – in excess of 70 – with many of them known to be the W Virginis type. In 1938, a nova appeared in M14, but it was undiscovered until 1964 when Amelia Wehlau of the University of Ontario was surveying the photographic plates taken by Helen Sawyer Hogg. The nova was revealed on eight of these plates taken on consecutive nights, and showed itself as a 16th magnitude star – and was believed to be at one time almost 5 times brighter than the cluster members. Unlike 80 years earlier with T Scorpii in M80, actual photographic evidence of the event existed. In 1991, the eyes of the Hubble were turned its way, but neither the suspect star nor traces of a nebulous remnant were discovered. Then six years later, a carbon star was discovered in M14.

To a small telescope, M14 will offer little to no resolution and will appear almost like an elliptical galaxy, lacking in any central condensation. Larger scopes will show hints of resolution, with a gradual fading towards the cluster’s slightly oblate edges. A true beauty!

Saturday, August 4 – As we explore globular clusters, we simply assume them all to be part of the Milky Way galaxy, but that might not always be the case. We know they are basically concentrated around the galactic center, but there may be four of them that actually belong to another galaxy. Tonight we’ll look at one such cluster being drawn into the Milky Way’s halo. Set your sights just about one and a half degrees west-southwest of Zeta Sagittarii for M54 (Right Ascension: 18 : 55.1 – Declination: -30 : 29).

At around magnitude 7.6, M54 is definitely bright enough to be spotted in binoculars, but its rich class III concentration is more notable in a telescope. Despite its brightness and deeply concentrated core, M54 isn’t exactly easy to resolve. At one time we thought it to be around 65,000 light-years distant, and rich in variables – with 82 known RR Lyrae types. We knew it was receding, but when the Sagittarius Dwarf Elliptical Galaxy was discovered in 1994, it was noted that M54 was receding at almost precisely the same speed! When more accurate distances were measured, we found M54 to coincide with the SagDEG distance of 80-90,000 light-years, and M54?s distance is now calculated to be 87,400 light-years. No wonder it’s hard to resolve – it’s outside our galaxy!

As we know, most globular clusters congregate around the galactic center in the Ophiuchus/Sagittarius region. Tonight let’s explore what creates a globular cluster’s form… We’ll start with the “head of the class,” M75 (Right Ascension: 20 : 06.1 – Declination: -21 : 55).

Orbiting the galactic center for billions of years, globular clusters endured a wide variety of disturbances. Their component stars escape when accelerated by mutual encounters and the tidal force of our own Milky Way pulls them apart when they are near periapsis, that is, closest to the galactic center. Even close encounters with other masses, such as other clusters and nebulae, can affect them! At the same time, their stellar members are also evolving and this loss of gas can contribute to mass loss and deflation of these magnificent clusters. Although this happens far less quickly than in open clusters, our observable globular friends may only be the survivors of a once larger population, whose stars have been spread throughout the halo. This destruction process is never-ending, and it is believed that globular clusters will cease to exist in about 10 billion years.

Although it will be later evening when M75 appears on the Sagittarius/Capricornus border, you will find the journey of about 8 degrees southwest of Beta Capricorni worth the wait. At magnitude 8, it can be glimpsed as a small round patch in binoculars, but a telescope is needed to see its true glory. Residing around 67,500 light-years from our solar system, M75 is one of the more remote of Messier’s globular clusters. Since it is so far from the galactic center – possibly 100,000 light-years distant – M75 has survived almost intact for billions of years to remain one of the few Class I globular clusters. Although resolution is possible in very large scopes, note that this globular cluster is one of the most concentrated in the sky, with only the outlying stars resolvable to most instruments.

Sunday, August 5 – Today we celebrate the birthday of Neil Armstrong, the first human to walk on the Moon. Congratulations! Also on this date in 1864, Giovanni Donati made the very first spectroscopic observations of a comet (Tempel, 1864 II). His observations of three absorption lines led to what we now know as the Swan bands, from a form of the carbon radical C2.

Our study continues tonight as we move away from the galactic center in search of a remote globular cluster that can be viewed by most telescopes. As we have learned, radial velocity measurements show us the majority of globulars are involved in highly eccentric elliptical orbits, which take them far outside the plane of the Milky Way. These orbits form a sort of spherical “halo” which tends to be more concentrated toward our galactic center. Reaching out several thousands of light-years, this halo is actually larger than the disk of our own galaxy. Since globular clusters aren’t involved in our galaxy’s disk rotation, they may possess very high relative velocities. Tonight let’s head toward the constellation of Aquila and look at one such globular – NGC 7006 (Right Ascension: 21 : 01.5 – Declination: +16 : 11).

Located about half a fist’s width east of Gamma Aquilae, NGC 7006 is speeding towards us at a velocity of around 345 kilometers per second. At 150,000 light-years from the center of our galaxy, this particular globular could very well be an extra-galactic object. At magnitude 11.5, it’s not for the faint of heart, but can be spotted in scopes as small as 150mm, and requires larger aperture to look like anything more than a suggestion. Given its tremendous distance from the galactic center, it’s not hard to realize this is a class I – although it is quite faint. Even the largest of amateur scopes will find it unresolvable!

Until next week? May all your skies by clear and steady…

Lead image caption: Crater J. Herschel – Credit: Damian Peach

Weekly SkyWatcher’s Forecast: July 23-29, 2012

IC 4665 - Credit: Palomar Observatory, courtesy of Caltech

Greetings, fellow SkyWatchers! Are you ready for a week filled with alternative astronomical observing studies? If so, you’ll enjoy looking at some unusual stars and star clusters. If you want to keep things cool, then come along as we mine for lunar ice. Feeling a bit more lazy? Then kick back and enjoy the Delta Aquarid meteor shower or just step out after sunset and enjoy a splendid conjunction! It’s all here… Just head outside!

Monday, July 23 – Tonight we’ll launch our imaginations as we view the area around Mare Crisium and have a look at this month’s lunar challenge – Macrobius. You’ll find it just northwest of the Crisium shore. Spanning 64 kilometers in diameter, this Class I impact crater drops to a depth of nearly 3600 meters – about the same as many of our earthly mines. Its central peak rises up 1100 meters, and may be visible as a small speck inside the crater’s interior. Be sure to mark your lunar challenges and look for other features you may have missed before!

Now, relax and let’s talk until the Moon sets…

As we know most stars begin life in stellar nurseries and end life either alone or in very small groups as doubles or multiple stars. Tonight we can have a look at a group of young stars beginning their stellar evolution and end with an old solitary elder preparing to move on to an even “higher realm.” Open cluster IC 4665 (Right Ascension: 17 : 46.3 – Declination: +05 : 43) is easily detected with just about any optical aid about a finger-width north-northeast of Beta Ophiuchi. Discovered by Philippe Loys de Cheseaux in the mid-1700s, this 1400 light-year distant cluster consists of about 30 mixed magnitude stars all less than 40 million years of age. Despite its early discovery, the cluster did not achieve broad enough recognition for Dreyer to include it in the late 19th century New General Catalog and it was later added as a supplement to the NGC in the Index Catalog of 1908. Be sure to use low power to so see all of this large group.

About three finger-widths north-northeast of IC 4665 is a study that did make Dreyer’s catalogue – NGC 6572 (Right Ascension: 18 : 12.1 – Declination: +06 : 51). This 9th magnitude planetary is very small – but intense. Like the “Cat’s Eye” in Draco, and NGC 6210 in Hercules, this planetary can take a lot of magnification. Those with large scopes should look for a small, round, blue inner core encased is a faint shell. A challenge to find? You bet. Worth the work? Sometimes working for something makes it all the more fun!

Tuesday, July 24 – As our observing evening begins, be sure to look for one of the finest conjunctions of the year! Hovering around the waxing crescent Moon like bees drawn to a hive, you’ll find Mars to the upper right and Spica to the upper left (northwest and northeast respectively). To Spica’s upper right, you’ll find Saturn joining the show, too! This is a very “photogenic” opportunity…

With plenty of Moon to explore tonight, why don’t we try locating an area where many lunar exploration missions made their mark? Binoculars will easily reveal the fully disclosed areas of Mare Serenitatis and Mare Tranquillitatis, and it is where these two vast lava plains converge that we will set our sights. Telescopically, you will see a bright “peninsula” westward of where the two conjoin which extends toward the east. Just off that look for bright and small crater Pliny. It is near this rather inconspicuous feature that the remains Ranger 6 lie forever preserved where it crashed on February 2, 1964.

Unfortunately, technical errors occurred and it was never able to transmit lunar pictures. Not so Ranger 8! On a very successful mission to the same relative area, this time we received 7137 “postcards from the Moon” in the last 23 minutes before hard landing. On the “softer” side, Surveyor 5 also touched down near this area safely after two days of malfunctions on September 10, 1967. Incredibly enough, the tiny Surveyor 5 endured temperatures of up to 283 degrees F, but was able to spectrographically analyze the area’s soil… And by the way, it also managed to televise an incredible 18,006 frames of “home movies” from its distant lunar locale.

Wednesday, July 25 – Today in 1971, Apollo 15 was launched on its way towards the Moon, and we’ll continue our celebration of space exploration and walk on the Moon where the first man set foot. For SkyWatchers, the dark round area you see on the northeastern limb is Mare Crisium and the dark area below that is Mare Fecunditatis. Now look mid-way on the terminator for the dark area that is Mare Tranquillitatis. At its southwest edge, history was made.

In binoculars, trace along the terminator where the Caucasus Mountains stand – and then south for the Apennines and the Haemus Mountains. As you continue towards the center of the Moon, you will see where the shore of Mare Serenitatis curves east, and also the bright ring of Pliny. Continue south along the terminator until you spot the small, bright ring of Dionysius along the edge of Mare Tranquillitatis. Just to the southwest, you may be able to see the soft rings of Sabine and Ritter. It is near here where the base section of the Apollo 11 landing module – Eagle – lies forever enshrined in “magnificent desolation.”

For telescope users, the time is now to power up! See if you can spot small craters Armstrong, Aldrin and Collins just east. Even if you cannot, the Apollo 11 landing area is about the same distance as Sabine and Ritter are wide to the east-southeast. Even if you don’t have the opportunity to see it tonight, take the time during the next couple of days to point it out to your children, grandchildren, or even just a friend… The Moon is a spectacular world and we’ve been there!
Tonight let’s have a look with our eyes first at Delta Ophiuchi. Known as Yed Prior (“The Hand”), look for its optical double Epsilon to the southeast: Yed Posterior. Now have a look in binoculars or a telescope at absolute minimum power for another undiscovered gem…

Delta Ophiuchi is 170 light-years from us, while Epsilon is 108 – but look at the magnificent field they share. Stars of every spectral type are in an area of sky which could easily be covered by a small coin held at arm’s length. Enjoy this fantastic field – from the hot, blue youngsters to the old red giants!

Thursday, July 26 – Long before the Sun sets, look for the Moon to appear in the still-blue sky. As it darkens, watch for shadows on the surface. Have you ever wondered if there was any place on the lunar surface that hasn’t seen the sunlight? Then let’s go searching for one tonight…

Our first order of business will be to identify crater Albategnius. Directly in the center of the Moon is a dark floored area known as Sinus Medii. South of it will be two conspicuously large craters – Hipparchus to the north and ancient Albategnius to the south. Trace along the terminator toward the south until you have almost reached its point (cusp) and you will see a black oval. This normal looking crater with the brilliant west wall is equally ancient crater Curtius. Because of its high southern latitude, we shall never see the interior of this crater – and neither has the Sun! It is believed that the inner walls are quite steep and that Curtius’ interior has never been illuminated since its formation billions of years ago. Because it has remained dark, we can speculate that there may be “lunar ice” pocketed inside its many cracks and rilles that date back to the Moon’s formation!

Because our Moon has no atmosphere, the entire surface is exposed to the vacuum of space. When sunlit, the surface reaches up to 385 K, so any exposed “ice” would vaporize and be lost because the Moon’s gravity cannot hold it. The only way for “ice” to exist would be in a permanently shadowed area. Near Curtius is the Moon’s south pole, and the Clementine spacecraft’s imaging showed around 15,000 square kilometers in which such conditions could exist. So where did this “ice” come from? The lunar surface never ceases to be pelted by meteorites – most of which contain water ice. As we know, many craters were formed by just such impacts. Once hidden from the sunlight, this “ice” could remain for millions of years!

Friday, July 27 – Tonight let’s skip the Moon and take a look at an astounding system called 36 Ophiuchi, located about a thumb’s width southeast of Theta. Situated in space less than 20 light-years from Earth, even small telescopes can split this pair of 5th magnitude K type giants very similar to our own Sun, and larger telescopes can also pick up the C component as well. 36 Ophiuchi B is also known as system 544…because it has what could very likely be a planet in a habitable zone!

Now we’ll have a look at a beautifully contrasting pair of stars – Zeta 1 and 2 Scorpii. You’ll find them a little less than a handspan south-southeast of Antares and at the western corner of the J of the constellation’s shape.

Although the two Zetas aren’t a true physical pair, they are nonetheless interesting. The easternmost, orange sub-giant Zeta 2 appears far brighter for a reason… It’s much closer at only 155 light-years away. But, focus your attention on western Zeta 1. It’s a blue supergiant that’s around 5700 light-years away and shines with the light of 100,000 suns and exceeds even Rigel in sheer power! The colorful pair is easily visible as two separate stars to the unaided eye, but a real delight in binoculars or a low power telescope field. Check them out tonight!

Saturday, July 28 – Tonight let’s continue our studies of the lunar poles by returning to previous study crater Plato. North of Plato you will see a long horizontal area with a gray floor – Mare Frigoris. North of it you will note a double crater. This elongated diamond-shape is Goldschmidt and the crater which cuts across its western border is Anaxagoras. The lunar north pole isn’t far from Goldschmidt, and since Anaxagoras is just about one degree outside of the Moon’s theoretical “arctic circle” the lunar sun will never go high enough to clear the southernmost rim.

On March 5, 1998, NASA announced that Lunar Prospector’s neutron spectrometer data showed that water ice had been discovered at both lunar poles. The first results showed the ice was mixed in with lunar regolith (soil, rocks and dust), but long term data confirmed near pure pockets hidden beneath about 40 cm of surface material – with the results being strongest in the northern polar region. It is estimated there may be as much as 6 trillion kg (6.6 billion tons) of this valuable resource! If this still doesn’t get your motor running, then realize that without it, we could never establish a manned lunar base because of the tremendous expense involved in transporting our most basic human need – water.

The presence of lunar water could also mean a source of oxygen, another vital material we need to survive! And for returning home or voyaging further, these same deposits could provide hydrogen which could be used as rocket fuel. So as you view Anaxagoras tonight, realize that you may be viewing one of mankind’s future “homes” on a distant world!

Now grab a comfortable seat because the Delta Aquarid meteor shower reaches its peak tonight. It is not considered a prolific shower, and the average fall rate is about 25 per hour – but who wouldn’t want to take a chance on observing a meteor about every 4 to 5 minutes? These travelers are considered to be quite slow, with speeds around 24 kilometers per second and are known to leave yellow trails. One of the most endearing qualities of this annual shower is its broad stream of around 20 days before and 20 days after peak. This will allow it to continue for at least another week and overlap the beginning stages of the famous Perseids.

The Delta Aquarid stream is a complicated one, and a mystery not quite yet solved. It is possible that gravity split the stream from a single comet into two parts, and each may very well be a separate stream. One thing we know for certain is they will seem to emanate from the area around Capricornus and Aquarius, so you will have best luck facing southeast and getting away from city lights. Although the Moon will interfere, just relax and enjoy a warm summer night. It’s time to catch a “falling star!”

Sunday, July 29 – Tonight let’s take an entirely different view of the Moon as we do a little “mountain climbing!” The most outstanding feature on the Moon will be the emerging Copernicus, but since we’ve delved into the deepest areas of the lunar surface, why not climb to some of its peaks?

Using Copernicus as our guide, to the north and northwest of this ancient crater lie the Carpathian Mountains, ringing the southern edge of Mare Imbrium. As you can see, they begin well east of the terminator, but look into the shadow! Extending some 40 kilometers beyond the line of daylight, you will continue to see bright peaks – some of which reach 2072 meters high! When the area is fully revealed tomorrow, you will see the Carpathian Mountains eventually disappear into the lava flow that once formed them. Continuing onward to Plato, which sits on the northern shore of Imbrium, we will look for the singular peak of Pico. It is between Plato and Mons Pico that you will find the scattered peaks of the Teneriffe Mountains. It is possible that these are the remnants of much taller summits of a once stronger range, but only around 1890 meters still survives above the surface.

Time to power up! Lather, rinse and repeat until you know these by heart… To the west of the Teneriffes, and very near the terminator, you will see a narrow series of hills cutting through the region west-southwest of Plato. This is known as the Straight Range – Montes Recti – and some of its peaks reach up to 2072 meters. Although this doesn’t sound particularly impressive, that’s over twice as tall as the Vosges Mountains in central Europe and on the average very comparable to the Appalachian Mountains in the eastern United States. Not bad!

Now head about a palm’s width east of our previous study star – Zeta Scorpii – for lovely Theta. Named Sargas, this 1.8 magnitude star resides around 650 light-years distant in a very impressive field of stars for binoculars or a small telescope. While all of these are only optical companions, the field itself is worth a look – and worth remembering for the future.

About three fingerwidths north is true double Lambda Scorpii, also known as Shaula (The Sting). As the brightest known star in its class, 1.6 magnitude Lambda is a spectroscopic binary which is also a variable of the Beta Canis Majoris type, changing ever so slightly in little more than 5 hours. Although we can’t see the companion star, nearby is yet another that will make learning this starhop “marker” worth your time.

Until next week? Ask for the Moon, but keep on reaching for the stars!

Weekly SkyWatcher’s Forecast: June 25 – July 1, 2012

Crater Julius Caesar - Credit: Wes Higgins

Greetings, fellow SkyWatchers! What a great week to enjoy lunar features! We’ll celebrate many famous birthdays – including Charles Messier – and take on challenging double stars. If you’re in the mood to just kick back in a lawn chair and enjoy, then check out the June Draconid meteor shower. (sssssh… it may have been responsible for the Tunguska Blast!) Still more? Then keep an eye on the western horizon, because Mercury is about to become a “guest star” in the Beehive Cluster! When ever you’re ready, just meet me in the back yard…

Monday, June 25 – Today celebrates the birth of Hermann Oberth – who has often been considered the father of modern rocketry. Born in Transylvania in 1894, Oberth was a visionary who was convinced space travel would one day be possible. Inspired by the works of Jules Verne, Oberth studied rockets and wrote many books devoted to the possibility of achieving spaceflight. He was the first to conceive of rocket “stages” – allowing vehicles to expend their fuel and lose dead weight. But tonight you won’t need one of Oberth’s rockets to travel to the Moon, as take on another challenge as we look mid-way along the terminator at the west shore of Mare Tranquillitatis for crater Julius Caesar.

This is also a ruined crater, but it met its demise not through lava flow – but from a cataclysmic event. The crater is 88 kilometers long and 73 kilometers wide. Although its west wall still stands over 1200 meters high, look carefully at the east and south walls. At one time, something plowed its way across the lunar surface, breaking down Julius Caesar’s walls and leaving them to stand no higher than 600 meters at the tallest. While visiting the “Tranquil Sea”, look for the unusually shaped crater Hypatia. Can you spot its rima on the southern shore of Tranquillitatis? Perhaps the bright pockmark of Moltke on its north edge will help. Hypatia sits on the northern shore of a rugged area known as Sinus Asperitatis. Do you see Alfraganus on the terminator? Follow the terrain to Theophilus and look west for Ibyn-Rushd with crater Kant to the northwest and the beautiful peak of Mons Penck to its east.

Tuesday, June 26 – On this day in 1949, asteroid Icarus was discovered on a 48-inch Schmidt plate made nine months after that telescope went into operation, and just prior to the beginning of the multi-year National Geographic-Palomar Sky Survey. The asteroid was found to have a highly eccentric orbit and a perihelion distance of just 27 million kilometers, closer to the Sun than Mercury, giving it its unusual name. It was just 6.4 million kilometers from Earth at the time of discovery, and variations in its orbital parameters have been used to determine Mercury’s mass and test Einstein’s theory of general relativity.

But, today is even more special because it is the birthday of none other than Charles Messier, the famed French comet hunter. Born in 1730, Messier is best known for cataloging the 100 or so bright nebulae and star clusters that we now refer to as the Messier objects. The catalog was intended to keep both Messier and others from confusing these stationary objects with possible new comets.

] If you missed your chance last night to see the incredible Alpine Valley, it’s now fully disclosed in the sunlight. Viewable through binoculars as a thin, dark line, telescopic observers at highest powers will enjoy a wealth of details in this area, such as a crack running inside its boundaries. It’s a wonderful lunar observing challenge and a guide to our next lunar feature – Cassini and Cassini A. Where the valley joins the lunar Alps, follow the range south into Mare Imbrium. Along the way you will see the protruding bright peaks of Mons Blanc, Promontorium DeVille, and at the very end, Promontorium Agassiz ending in the smooth sands. Southeast of Agassiz you will spot Cassini. The major crater spans 57 kilometers and reaches a floor depth of 1240 meters. The challenge is to also spot the central crater A, which is only 17 kilometers wide, yet drops down another 2830 meters below the surface. This shallow crater holds another challenge within – Cassini A. But look carefully, can you spot the B crater on Cassini’s inner southwestern rim? Or the very small M crater just outside the northern edge?

For more advanced lunar observers, head a bit further south to the Haemus Mountains to look for the bright punctuation of a small crater on the southwest shore of Mare Serenitatis. Increase your magnification and look for a curious feature with an even more curious name… Rima Sulpicius Gallus. It is nothing more than a lunar wrinkle which accompanies the crater of the same name – a long-gone Roman counselor. Can you trace its 90 kilometer length?

Now see how many Messier objects that you can capture and wish Charles a happy birthday!

Wednesday, June 27 – Let’s begin our lunar studies tonight with a little “mountain climbing!” Using Copernicus as our guide, to the north and northwest of this ancient crater lie the Carpathian Mountains ringing the southern edge of Mare Imbrium. As you can see, they begin well east of the terminator, but look into the shadow! Extending some 40 kilometers beyond the line of daylight, you will continue to see bright peaks – some of which reach a height of 2072 meters. When the area is fully revealed tomorrow, you will see the Carpathian Mountains disappear into the lava flow that once formed them.

Let’s try looking just south of Sinus Medii and identifying these features: (1) Flammarion, (2) Herschel, (3) Ptolemaeus, (4) Alphonsus, (5) Davy, (6) Alpetragius, (7) Arzachel, (8) Thebit, (9) Purbach, (10) Lacaille, (11) Blanchinus, (12) Delaunay, (13) Faye, (14) Donati, (15) Airy, (16) Argelander, (17) Vogel, (18) Parrot, (19) Klein, (20) Albategnius, (21) Muller, (22) Halley, (23) Horrocks, (24) Hipparchus, (25) Sinus Medii

When skies are dark, it’s time to have a look at the 250 light-year distant silicon star Iota Librae. This is a real challenge for binoculars – but not because the components are so close. In Iota’s case, the near 5th magnitude primary simply overshadows its 9th magnitude companion! In 1782, Sir William Herschel measured them and determined them to be a true physical pair. Yet, in 1940 Librae A was determined to have an equal magnitude companion only .2 arc seconds away…. And the secondary was proved to have a companion of its own that echoes the primary. A four star system!

While you’re out, keep watch for a handful of meteors originating near the constellation of Corvus. The Corvid meteor shower is not well documented, but you might spot as many as ten per hour.

Thursday, June 28 – Tonight on the lunar surface, use crater Copernicus as a guide and look north-northwest to survey the Carpathian Mountains. The Carpathians ring the southern edge of Mare Imbrium beginning well east of the terminator. But let’s look on the dark side. Extending some 40 km beyond into the Moon’s own shadow, you can continue to see bright peaks – some reaching 2000 meters high! Tomorrow, when this area is fully revealed, you will see the Carpathians begin to disappear into the lava flow forming them. Continuing northward to Plato – on the northern shore of Mare Imbrium – re-identify the singular peak of Pico. Between Plato and Mons Pico you will find the many scattered peaks of the Teneriffe Mountains. It is possible that these are the remnants of much taller summits of a once precipitous range. Now the peaks rise less than 2000 meters above the surface.

Time to power up! West of the Teneriffes, and very near the terminator, you will see a narrow line of mountains, very similar in size to the Alpine Valley. This is known as the Straight Range or the Montes Recti. To binoculars or small scopes at low power, this isolated strip of mountains will appear as a white line drawn across the grey mare. It is believed this feature may be all that is left of a crater wall from the Imbrium impact. It runs for a distance of around 90 kilometers, and is approximately 15 kilometers wide. Some of its peaks reach as high as 2072 meters! Although this doesn’t sound particularly impressive, that’s over twice as tall as the Vosges Mountains in west-central Europe, and on the average very comparable to the Appalachian Mountains in the eastern United States.

When you’re finished with your lunar observations, tonight let’s try a challenging double star – Upsilon Librae. This beautiful red star is right at the limit for a small telescope, but quite worthy as the pair is a widely disparate double. Look for the 11.5 magnitude companion to the south in a very nice field of stars!

Friday, June 29 – Today we celebrate the birthday of George Ellery Hale, who was born in 1868. Hale was the founding father of the Mt. Wilson Observatory. Although he had no education beyond his baccalaureate in physics, he became the leading astronomer of his day. He invented the spectroheliograph, coined the word astrophysics, and founded the Astrophysical Journal and Yerkes Observatory. At the time, Mt. Wilson dominated the world of astronomy, confirming what galaxies were and verifying the expanding universe cosmology, making Mt. Wilson one of the most productive facilities ever built. When Hale went on to found Palomar Observatory, the 5-meter (200?) telescope was named for him and dedicated on June 3, 1948. It continues to be the largest telescope in the continental United States.

It’s time to head deeper toward the lunar south as we take a close look at the dark, heart-shaped region Palus Epidemiarum. Caught on its southern edge is the largely eroded Campanus with well defined Cichus to the east and Ramsden to the west. Power up in your telescope and look carefully at its smooth floors. If conditions are favorable, you will catch Rima Hesiodus cutting across its northern boundary and the crisscross pattern of Rima Ramsden in the western lobe. Can you make out a small, deep puncture mark to the northeast? It might be small, but it has a name – Marth.
Now let’s go deep south and have look at an area which once held something almost half a bright as tonight’s Moon and over four times brighter than Venus. Only one thing could light up the skies like that – a supernova. According to historical records from Europe, China, Egypt, Arabia and Japan, 1001 years ago the very first supernova event was noted. Appearing in the constellation of Lupus, it was at first believed to be a comet by the Egyptians, yet the Arabs saw it as an illuminating “star.”

Located less than a fingerwidth northeast of Beta Lupus (RA 15 02 48.40 Dec -41 54 42.0) and a half degree east of Kappa Centaurus, no visible trace is left of a once grand event that spanned five months of observation beginning in May, and lasting until it dropped below the horizon in September, 1006. It is believed all the force created from the event was converted to energy and very little mass remains. In the area, a 17th magnitude star shows a tiny gas ring and radio source 1459-41 remains our best candidate for pinpointing this incredible event.

Saturday, June 30 – We start our observing evening with the beautiful Moon as we return first to the ancient and graceful landmark crater Gassendi standing at the north edge of Mare Humorum. The mare itself is around the size of the state of Arkansas and is one of the oldest of the circular maria on the visible surface. As you view the bright ring of Gassendi, look for evidence of the massive impact which may have formed Humorum. It is believed the original crater may have been in excess of 462 kilometers in diameter, indenting the lunar surface almost twice over. Over time, similar smaller strikes formed the many craters around its edges and lava flow gradually gave the area the ridge- and rille-covered floor we see tonight. Its name is the “Sea of Moisture,” but look for its frozen waves in the long dry landscape.

Caught on the north-western rim of Mare Humorum, look for crater Mersenius. It is a typical Nectarian geological formation, spanning approximately 51 miles in diameter in all directions. Power up in a telescope to look for fine features such as steep slopes supporting newer impact crater Mersenius P and tiny interior craterlet chains. Can you spot white formations and crevices along its terraced walls? How about Rimae Mersenius? Further south you’ll spy tiny Liebig helping to support Mersenius D’s older structure, along with its own small set of mountains known as the Rupes Liebig. Continue to follow the edge of Mare Humorum around the wall known as Rimae Doppelmayer until you reach the shallow old crater Doppelmayer. As you can see, the whole floor fractured crater has been filled with lava flow from Mare Humorum’s formation, pointing to an age older than Humorum itself. Look for a shallow mountain peak in its center – there’s a very good chance this peak is actually higher than the crater walls. Did this crater begin to upwell as it filled? Or did it experience some volcanic activity of its own? Take a closer look at the floor if the lighting is right to spy a small lava dome and evidence of dark pyroclastic deposits – it’s a testament to what once was!

Still got the moonlight blues? Then try your hand at a super challenging double – Mu Librae. This pair is only a magnitude apart in brightness and right at the limit for a small telescope. Up the power slowly and look for the companion just to the southwest of the primary. Good luck and mark your observation because Mu’s blues are on many observing lists!

And out of the blue comes a meteor shower! Keep watch tonight for the June Draconids. The radiant for this shower will be near handle of Big Dipper – Ursa Major. The fall rate varies from 10 to 100 per hour, but tonight’s bright skies will toast most of the offspring of comet Pons-Winnecke. On a curious note, today in 1908 was when the great Tunguska impact happened in Siberia. A fragment of a comet, perhaps?

Sunday, July 1 – Today In 1917, the astronomers at Mt. Wilson were celebrating as the 100? primary mirror arrived. Up until that time, the 60? Hale telescope (donated by George Hale’s father) was the premier creation of St. Gobrain Glassworks – which was later commissioned to create the blank for the Hooker telescope. Thanks to the funds provided by John D. Hooker (and Carnegie), the dream was realized after years of hard work and ingenuity to create not only a building to properly house it – but the telescope workings as well. It saw “first light” five months later on November 1.
As anxious astronomers waited for this groundbreaking moment, the scope was aimed at Jupiter but the image was horrible – to their dismay, workmen had left the dome open and the Sun had heated the massive mirror! Try as they might to rest until it had cooled – no astronomer slept. Fearful of the worst, sometime around three in the morning they returned again long after Jupiter had set. Pointing the massive scope towards a star, they achieved a perfect image!

If you’re looking for a perfect image, then look no further than the western horizon tonight at twilight. Why? Because Mercury is going to be a “guest star” in the Beehive Cluster! Be sure to at least get out your binoculars and look at the speedy little inner planet as it cruises about a degree or so to the western edge of M44.

Tonight we’ll return again to our landmark lunar feature – crater Grimaldi – and begin our journey north…

As you move north of Grimaldi on a crater hop, the next feature you will en-counter is the walled plain of Hevelius. With a diameter of about 64 miles, this round area doesn’t have a height we can really measure because of its lunar position, but we can see that it does have some relatively steep walls around its edges. Hevelius was formed in the Nectarian geological period and if you look closely you’ll see that it has a small central peak, a fine rimae and many craterlet chains, too. Can you spot large interior Crater Hevelius A with just binoculars? How about companion crater Cavalerius which is part of its northern border?

While you’re out, take the time to look at lowly Theta Lupi about a fistwidth south-southwest of the mighty Antares. While this rather ordinary looking 4th magnitude star appears to be nothing special – there’s a lesson to be learned here. So often in our quest to look at the bright and incredible – the distant and the impressive – we often forget about the beauty of a single star. When you take the time to seek the path less traveled, you just might find more than you expected. Hiding behind a veil of the “ordinary” lies a trio of three spectral types and three magnitudes in a diamond-dust field. An undiscovered gem…

Until next week? Ask for the Moon, but keep on reaching for the stars!