There’s been a lot of really incredible videos and images of the meteor that streaked across Russian skies on Feb. 15, 2013… but this isn’t one of them.
I recently spotted it on YouTube, uploaded by several users and claiming to be a crater from the meteorite. Whether done purposely to deceive or just in error, the fact is that this isn’t from that event. Actually it’s not even a meteorite crater at all.
What this video shows is a feature in Derweze, Turkmenistan. It’s the remains of a 1971 drilling project by Soviet geologists. When the ground under their rig collapsed after breaking into an underground cavern full of natural gas, the geologists decided to set the borehole on fire to flare off the gases.
They assumed all the gas would soon burn off and the fire would go out. But it’s still burning today, nearly 42 years later.
The fiery glow from the circular pit has inspired the hole’s local name, “The Door to Hell.” You can find some photos of this infernal feature here.
Anyway, in the nature of not only informing but also preventing the spread of disinformation, hopefully this will help clear up any confusion for those who might run across the same video in coming days. News about the Russian meteor is still — no pun intended — very hot right now, and it’s likely that at least a few fraudulent articles might try to garner some attention.
If you want to see some real videos of the meteor, check out our original breaking news article here and see some photos of an actual resulting crater — icy, not fiery — in a frozen Russian lake here.
In order to not make for more easy hits on the incorrectly-titled video I did not set it to play. If you do still want to watch it, you can find it here.
A small asteroid entered Earth’s atmosphere early Friday, February 15, 2013 over Chelyabinsk, Russia at about 9:20 am local Russian time. Initial estimates, according to Bill Cooke, lead for the Meteoroid Environments Office at NASA’s Marshall Space Flight Center, is that the asteroid was about 15 meters (50 feet) in diameter, with a weight of 7,000 metric tons. It hit the atmosphere at a shallow angle of about 20 degrees, at a speed of about 65,000 km/h (40,000 mph).
It traveled through the atmosphere for about 30 seconds before breaking apart and producing violent airburst ‘explosion’ about 20-25 km (12-15 miles) above Earth’s surface, producing an energy shockwave equivalent to a 300 kilotons explosion. That energy propagated down through the atmosphere, stuck the city below – the Chelyabinsk region has a population of about 1 million — and windows were broken, walls collapsed and there were other reports of minor damage throughout the city.
The official impact time was 7:20:26 p.m. PST, or 10:20:26 p.m. EST on Feb. 14 (3:20:26 UTC on Feb. 15).
Cooke said that at this time, the known damage is not due to fragments of the bolide striking the ground but only from the airburst. “There are undoubtedly fragments on the ground, but at the current time no pieces have been recovered that we can verify with any certainty,” Cooke said during a media teleconference today.
He added that the space rock appears to be “an asteroid in nature,” – likely a rocky asteroid since it broke apart in the atmosphere. It wasn’t detected by telescopes searching for asteroids because of its small size, but also because “it came out of the daylight side of our planet – was in the daylight sky and as a result was not detected by any earth based telescopes. #RussianMeteor was not detected from Earth because it came from the daylight side (i.e the Sun-facing side of Earth).
The meteor left a trail in the sky about 480 km (300 miles) long.
Cooke, along with Paul Chodas, a research scientist in the Near Earth Object Program Office at NASA’s Jet Propulsion Laboratory said that asteroids this size hit the Earth on average about once every 100 years. “These are rare events, and it was an incredible coincidence that it happened on the same day as the close flyby of Asteroid 2012 DA14,” Chodas said. “The two are not related in any way.”
The Russian meteor is the largest reported since 1908, when a meteor hit Tunguska, Siberia. Oddly enough, the Tunguska event was caused by an object about the size of 2012 DA14, the asteroid that flew by Earth today harmlessly. The meteor, which was about one-third the diameter of asteroid 2012 DA14, became brighter than the Sun, as seen in some of the videos here. Its trail was visible for about 30 seconds, so it was a grazing impact through the atmosphere.
There were certainly pieces that hit the ground, according to Jon M. Friedrich from Fordham University. “For something that created a bolide and sonic detonation of the size seen in Russia, it seems likely that fragments reached the earth,”Friedrich said in an email to Universe Today. “In fact, there are reports of a crater in a frozen lake and other locations that were in the path of the meteor. The resulting fragments are not likely large – I’d expect some of the absolute largest to be football to basketball sized, with many fragments being smaller, like marbles.”
Chodas said that defending the Earth against tiny asteroids like this is challenging issue, “something that is not currently our goal,” he said. “NASA’s goal it to find the larger asteroids. Even 2012 DA14 is on the smaller size. The tiny asteroid that hit over Russia is very difficult to detect, an in order to defend the Earth, the problem and issue there is to find these things early enough to do something about it if we wanted to divert it. While smaller asteroids are easier to divert, they are much more difficult to detect.”
“What an amazing day for near Earth objects,” Chodas said, “with two events happening on the same day.”
The lead animation courtesy of Analytical Graphics, Inc.
Pieces of the Moon and Mars have been found on Earth before, as well as chunks of Vesta and other asteroids, but what about the innermost planet, Mercury? That’s where some researchers think this greenish meteorite may have originated, based on its curious composition and the most recent data from NASA’s MESSENGER spacecraft.
NWA 7325 is the name for a meteorite fall that was spotted in southern Morocco in 2012, comprising 35 fragments totaling about 345 grams. The dark green stones were purchased by meteorite dealer Stefan Ralew (who operates the retail site SR Meteorites) who immediately made note of their deep colors and lustrous, glassy exteriors.
Ralew sent samples of NWA 7325 to researcher Anthony Irving of the University of Washington, a specialist in meteorites of planetary origin. Irving found that the fragments contained surprisingly little iron but considerable amounts of magnesium, aluminum, and calcium silicates — in line with what’s been observed by MESSENGER in the surface crust of Mercury.
And even though the ratio of calcium silicates is higher than what’s found on Mercury today, Irving speculates that the fragments of NWA 7325 could have come from a deeper part of Mercury’s crust, excavated by a powerful impact event and launched into space, eventually finding their way to Earth.
In addition, exposure to solar radiation for an unknown period of time and shock from its formation could have altered the meteorite’s composition somewhat, making it not exactly match up with measurements from MESSENGER. If this is indeed a piece of our Solar System’s innermost planet, it will be the first Mercury meteorite ever confirmed.
But the only way to know for sure, according to Irving’s team’s paper, is further studies on the fragments and, ultimately, sample returns from Mercury.
Irving’s team’s findings on NWA 7325 will be presented at the 44th Lunar and Planetary Science Conference to be held in Houston, TX, on March 18-22. Read more in this Sky & Telescope article by Kelly Beatty.
Inset image: impact craters located within Mercury’s Caloris Basin (NASA/JHUAPL)
Martian meteorite NWA 7034 weighs approximately 320 grams (11 ounces). Credit: NASA
A 2-billion-year-old rock found in the Sahara desert has been identified as a meteorite from Mars’ crust, and it contains ten times more water than any other Martian meteorite found on Earth. It also contains organic carbon. The age of the rock, called NWA 7034, would put its origins in the early era of the most recent geologic epoch on Mars, the Amazonian epoch. While its composition is different from any previously studied Martian meteorite, NASA says it matches surface rocks and outcrops that have been studied by Mars rovers and Mars-orbiting satellites.
“The contents of this meteorite may challenge many long held notions about Martian geology,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “These findings also present an important reference frame for the Curiosity rover as it searches for reduced organics in the minerals exposed in the bedrock of Gale Crater.”
This new class of meteorite was found in 2011 in the Sahara Desert. Designated Northwest Africa (NWA) 7034, and nicknamed “Black Beauty,” it weighs approximately 320 grams (11 ounces). Research teams from the University of New Mexico, the University of California at San Diego and the Carnegie Institution in Washington analyzed mineral and chemical composition, age, and water content.
NWA 7034 is made of cemented fragments of basalt, rock that forms from rapidly cooled lava. The fragments are primarily feldspar and pyroxene, most likely from volcanic activity.
“This Martian meteorite has everything in its composition that you’d want in order to further our understanding of the Red Planet,” said Carl Agee, leader of the analysis team and director and curator at the University of New Mexico’s Institute of Meteoritics in Albuquerque. “This unique meteorite tells us what volcanism was like on Mars 2 billion years ago. It also gives us a glimpse of ancient surface and environmental conditions on Mars that no other meteorite has ever offered.”
There are about one hundred Martian meteorites that have been collected on Earth. They were all likely blasted off the Red Planet by either an asteroid or comet impact, and then spent millions of years traveling through space before falling to Earth.
Researchers theorize the large amount of water contained in NWA 7034 may have originated from interaction of the rocks with water present in Mars’ crust. The meteorite also has a different mixture of oxygen isotopes than has been found in other Martian meteorites, which could have resulted from interaction with the Martian atmosphere.
Scientists say the age of NWA 7034 is important because it is much older than most other Martian meteorites.
“We now have insight into a piece of Mars’ history at a critical time in its evolution,” said Mitch Schulte, program scientist for the Mars Exploration Program at NASA Headquarters.
Most Martian meteorites are divided into three rock types, named after three meteorites; Shergotty, Nakhla, and Chassigny. These “SNC” meteorites currently number about 110. Their point of origin on Mars is not known and recent data from lander and orbiter missions suggest they are a mismatch for the Martian crust. Although NWA 7034 has similarities to the SNC meteorites, including the presence of macromolecular organic carbon, this new meteorite has many unique characteristics.
“The texture of the NWA meteorite is not like any of the SNC meteorites,” said co-author Andrew Steele, who led the carbon analysis at the Carnegie Institution’s Geophysical Laboratory. “This is an exciting measurement in Mars and planetary science. We now have more context than ever before to understanding where they may come from.”
Earlier today, Euronews reported an icy “mega meteorite” fall in a farmer’s field in the Hrira region of Morocco. The farmer found the chunk of supposed space ice and put it in his freezer for later investigation by scientists, who apparently confirmed that it is in fact from space.
The meteoroid seen over the UK on September 21, 2012 has created quite a sensation – make that a several sensations. First, the bright object(s) in the night sky were seen across a wide area by many people, and the brightness and duration – 40 to 60 seconds reported and videoed by some observers – had some experts wondering if the slow moving light-show might have been caused by space junk. But analysis by satellite tracker Marco Langbroek revealed this was likely an Aten asteroid, asteroid which have orbits that often cross the Earth’s orbit, but their average distance from the Sun is less than 1 AU, the distance from the Earth to the Sun.
Atens are fairly unusual, making this a rather unique event. But then came another analysis that seemed to be so crazy, it might have been true: this meteoroid may have skipped like a stone in and out of Earth’s atmosphere, where it slowed enough to orbit the Earth until appearing as another meteor over Canada, just a few hours after it was seen over the UK and northern Europe.
How amazing that would have been! And there was much speculation about this possibility. But, it turns out, after more details emerged and further investigation ensued, it is not possible that the space rock could have boomeranged around the world and been seen in again 2½ hours later over Canada. However, the current thinking is that at least one or two of the largest pieces retained enough velocity that they went into an elliptical Earth orbit, and went perhaps a half an orbit around Earth.
“At first it seemed natural to consider a possible dynamical linkage (between the UK and Canadian meteors), partly because the precise location and time over Quebec/Ontario was not well-known early on,” said aerospace engineer and meteor expert Robert Matson, in an email to Universe Today. Matson worked extensively with Esko Lyytinen, a member of the Finnish Fireball Working Group of the Ursa Astronomical Association, to analyze the possible connection between the September 21 UK fireball, and the Quebec fireball that followed about 2½ hours later.
At first, the time of the fireball sighting over southeastern Canada and northeastern USA was in doubt, but two Canadian all-sky cameras from the Western Meteor Physics Group captured the meteor, providing an accurate time.
“And once I triangulated the location to a spot between Ottawa and Montreal, a linkage to the UK fireball was no longer possible due to the longitude mismatch,” Matson said.
Additionally, the 153-minute time difference between meteors places a strict limit on the maximum longitude difference for a “skipping” meteoroid of roughly 38 degrees. This would put the final perigee well off the coast of Newfoundland, south of Greenland, Matson added.
More facts emerged, putting a death knoll on the connection between the two.
“Independent of the longitude mismatch, triangulation of the Canadian videos revealed that the entry angle was quite steep over Quebec – quite at odds with what an orbiting remnant from a prior encounter would have had,” Matson said. “So the meteors are not only unrelated, their respective asteroid sources would have been in different solar orbits.”
Image of fireball taken on Feb. 25, 2004 by the Elginfield CCD camera from the University of Western Ontario.
Another duo of astronomers from the British Astronomical Association, John Mason and Nick James concurred, also noting the shallow angle of the UK fireball, in addition to its slow speed. “We get velocities of 7.8 and 8.5 km/s and a height of 62 km ascending,” they wrote in the BAA blog. “These velocities and the track orientation and position are not at all consistent with ongoing speculation that there is a connection between this fireball and a fireball seen in south-eastern Canada/north-eastern USA 155 minutes later.”
But did parts of the meteoroid survive and skip out of the atmosphere? “Nearly all of the fragments of the meteoroid did just come in for good during and shortly after the UK passage, but at least one or two of the largest pieces retained enough velocity that they went into elliptical earth orbit,” Matson said. “The perigee of that orbit was a little over 50 km above the UK. The apogee would have been half an orbit later, possibly thousands of kilometers above the South Pacific, south of New Zealand.”
Just how high the apogee altitude was depends on how much the meteoroid decelerated over the UK, Matson added.
“This is why Esko, myself and others are very interested in determining the velocity of those fragments after they passed through perigee,” he said. “Below 7.9 km/sec, and they never get back out of the atmosphere; between 7.9 and 11.2 km/sec, they go into orbit — and we believe a couple of the biggest pieces were in the lower half of this range.”
But Matson said that if any remnant or remnants of the UK fireball did “skip” out of the atmosphere, they certainly had to come back in for good somewhere on the planet. “It is even remotely possible that it happened over Quebec,” Matson said. “But the laws of orbital mechanics do not allow an aerobraked fragment of the UK meteoroid to reenter over Quebec only 2½ hours later. It would have to be more than 4 hours later to line up with Quebec.”
The most likely scenario, Matson said, is that the surviving portion(s) of the UK meteoroid came in for good less than 2½ hours later, with the only possible locations during that window being the North Atlantic, Florida, Cuba, Central America, the Pacific, New Zealand, Australia, the Indian Ocean, the Arabian Peninsula, Turkey or southern Europe. Of these, the northern hemisphere locations would be favored.
So perhaps we haven’t heard the last of this meteoroid!
As crazy as the bouncing bolide sounds, it has happened in the past, according to Kelly Beatty at Sky and Telescope, who mentioned at least one instance where a large meteoroid streaked across the sky and then returned to interplanetary space. This sighting took place over the Rocky Mountains in broad daylight on August 10, 1972, and the meteoroid came as close as 35 miles (57 km) above Earth’s surface before skipping out into space. Beatty added that its velocity was too fast to become captured and return again.
Londoners awoke this morning to news of a meteorite which struck a taxi in the heart of the city’s busy shopping district Covent Garden. Witnesses were left stunned by what looked like a scene straight out of a science fiction film. An incident team arrived almost immediately to cordon off the meteorite and keep the public at a safe distance.
No one was injured as a result of the incident, but it’s a cosmic harbinger of things to come…
Of course, the “things to come” turn out to be 4 weeks of science programs on Eden TV’s Science Month, which starts up in July.
The incident was in fact a well-orchestrated publicity stunt by the UK’s Eden TV (Sky 532 Virgin 208). Science Month will run all day every day during the month of July. Highlights in the first week include Wonders of the Universe (Monday 2 July at 9pm), Finding Life Beyond Earth (Monday 2 July at 10pm), The Code (Wednesday 4 July at 10pm) and Deadliest Volcano (Thursday 5 July at 7pm).
Sure, after all’s said and done it was a PR stunt. But it was a cool PR stunt (even if not quite scientifically accurate!)
Come on, we all know that meteorites aren’t steaming hot when they land. 😉
Scientists have discovered a new mineral embedded in a meteorite that fell to Earth over 40 years ago, and it could be among the oldest minerals, formed in the early days of our solar system. The mineral is a type of titanium oxide and has been named panguite, after Pan Gu, the giant from ancient Chinese mythology who established the world by separating yin from yang to create the Earth and the sky.
“Panguite is an especially exciting discovery since it is not only a new mineral, but also a material previously unknown to science,” says Chi Ma, from Caltech and author of a new paper detailing the discovery.
The Allende meteorite arrived at Earth in 1969 as an exploding fireball in the skies over Mexico, scattering thousands of pieces of meteorites across the state of Chihuahua. The Allende meteorite is the largest carbonaceous chondrite—a diverse class of primitive meteorites—ever found on our planet and is considered by many the best-studied meteorite in history.
Ma has been leading nanomineralogy investigations of primitive meteorites, which looks at tiny particles of minerals, and has now found nine new minerals, including allendeite, hexamolybdenum, tistarite, kangite and now panguite.
“The intensive studies of objects in this meteorite have had a tremendous influence on current thinking about processes, timing, and chemistry in the primitive solar nebula and small planetary bodies,” said coauthor George Rossman, also from Caltech.
The team said the new mineral is likely among the first solid objects formed in our solar system and could date back to over 4 billion years ago, before the formation of Earth and the other planets.
According to Ma, studies of panguite and other newly discovered refractory minerals are continuing in an effort to learn more about the conditions under which they formed and subsequently evolved. “Such investigations are essential to understand the origins of our solar system,” he said.
The new mineral’s chemical name is Ti4+,Sc,Al,Mg,Zr,Ca, so it contains some unusual elements like zirconium and scandium.
The mineral and the mineral name have been approved by the International Mineralogical Association’s Commission on New Minerals, Nomenclature and Classification.
A dazzling daytime fireball zipped across New Mexico and Colorado yesterday creating a stir among law enforcement agencies, news organizations, radio stations and briefly grounded air tankers fighting wildfires west of Colorado Springs.
According to the Denver Post, Pueblo air-dispatch received reports of “balls of fire or something in the air.” As a precaution, officials grounded flights to ensure no aircraft were hit. Flights resumed 90 minutes later.
The event occurred between 12:35 and 12:40 MDT Wednesday afternoon. Witnesses say the fireball lasted about 3 seconds about 45 degrees above the ground, heading from the north to the south and ending near the horizon, with a tail color ranging from bright white to yellow and red. Some of the nearly 20 reports received by the American Meteor Society report that the brightness of the fireball was brighter than a full moon; some reporting it brighter than the Sun.
A fireball is a meteor that is larger and brighter than normal. Although typically visible after sunset, dramatic fireballs have been recorded during the daytime, such as the April 22, 2012 bright daytime meteor that was seen over California in the US. Usually meteors are smaller than a pebble and move very fast. As the object encounters increased friction from the air in the upper atmosphere, it begins to get hot and glow. Most meteors burn up before hitting the ground. But some survive to be picked up and put in museums. Scientists estimate that nearly 100 tons of space dust lands on Earth every day. Most of it lands in the ocean.
The North American Aerospace Defense Command (NORAD) based at Peterson Air Force Base near Colorado Springs told the Denver Post they were not tracking any man-made objects in the area.
The Denver Museum of Nature and Science has meteor cameras stationed around the state. Unfortunately, they are turned off during the day and no video or pictures have surfaced.
Astronomers and meteor/meteorite enthusiasts will certainly be interested in seeing any pictures or videos of the event, and so are we! If saw the event, or happened to capture it on a camera or surveillance video, you can send it to us or post it on our Flickr page.
Lead image caption: A Perseid fireball meteor. Credit: Pierre Martin of Arnprior, Ontario, Canada.
Editor’s note: This guest post was written by Andy Tomaswick, an electrical engineer who follows space science and technology.
The search for biologically created organic molecules on Mars goes back at least to the 1970s with the Viking program. Those missions had famously mixed results, and so the search for carbon-based life on Mars continues to this day. Researchers keeping piling on more and more evidence to excite astrobiologists and new results published in a study by the Planetary Science Institute and the Carnegie Institute of Washington may heighten their enthusiasm.
The latest results come from a team led by Andrew Steele of the Carnegie Institution for Science who surveyed meteorites from Mars, which covered a 4.2 billion year time span of Martian geology. While it is no surprise that there are organics on Mars — that Martian meteorites contain carbon-based molecules has been known for years — the team confirmed those findings by detecting organics on ten of the eleven meteorites they examined. However, questions remained as to where exactly the meteorite-bound organic molecules came from and, if they were from Mars, what had created them?
The team set out to answer these questions and came to the conclusion that the molecules are indeed from Mars and not the result of some cross-contamination from Earth’s biosphere. However, they also found that the molecules were not created by any biological process. The organics actually formed in the chunks of rock that later became the meteorites that transported them to earth. Their formation was part of a volcanic process that traps carbon in crystal structures formed by cooling magma. Through a series of non-biological chemical reactions, the complex organics found in the meteorites are created using the carbon trapped in these crystals.
The team also casts doubt on another possible explanation: whether the organics might be caused by emissions from microbes that had migrated into the volcano via tectonic processes similar to those on Earth. They point out that Mars does not have the tectonic activity similar to Earth so there is very little likelihood that the molecules are created by microbial activity.
That might sound like a depressing result for the astrobiologists. But the important finding from this study is that Mars has been natively and naturally creating complex organic molecules for 4.2 billion years and may be still be doing so today. Since the creation of organic molecules on Earth was a precursor to life, scientists can still hold out hope that the same life-creating process might have already happened on the red planet.
Interestingly, one of the Martian meteorites that was studied was the famous ALH84001, the meteorite that some researchers claimed in 1996 might contain fossils from Mars. That claim was subsequently strongly challenged, and studies of the rock are ongoing. ALH84001 is a portion of a meteorite that was dislodged from Mars by a huge impact about 16 million years ago and that fell to Earth in Antarctica approximately 13,000 years ago. The meteorite was found in Allan Hills ice field in Antarctica.
Lead image caption: ALH84001 is one of 10 rocks from Mars in which researchers have found organic carbon compounds that originated on Mars without involvement of life. Credit: NASA/JSC/Stanford University