A family in Oslo got a surprise when they visited their allotment garden cabin for the first time this season and found that a 585-gram (20 oz.) meteorite had ripped a hole through the roof. The space rock was discovered “lying five or six metres away,” the cabin’s owner, Rune Thomassen, told the local newspaper VG.
Such an event is rare in Norway; since 1848 the country has noted only 14 meteorite discoveries.
Astrophysicist Knut Jørgen Røed Ødegaard from the University of Oslo investigated the report and found it to be genuine.
“You can tell immediately that it’s genuine from the burned crust, and you can also recognize it from how rough and unusual it is. It gives me goosebumps,” Ødegaard told VG.
NASA Astrobiology Institute’s Hans Amundsen noted the meteorite’s unusual composition: “This is a very rare meteorite because you can see from the cut of it that it contains fragments from many different kinds of rock that have cemented together, forming a so-called breccia.”
Such meteorites are caused by previous collisions, cementing together different types of material from impacts with asteroids or planets.This means the meteorite that landed on the Thomassens’ cabin may very well have been blown off the surface of Mars at some point in the distant past!
“This is unique. This is double-unique,” Ødegaard noted to VG.
According to Amundsen, such a meteorite is very valuable to researchers as well as private collectors, who may be willing to pay highly for it. Chunks of Mars have fetched USD $877 per gram in the past… making the Thomassens’ find potentially worth over $500,000!
Norway’s geological museum has the country’s only meteorite collection “and they’re the right ones to determine what kind of meteorite this is,” Amundsen said.
Read more on this story here, and see coverage with photos and video on the VG site here (in Norwegian).
Scientists aren’t entirely sure when the last major asteroid hit the Earth, but it’s certain to happen again. Alan Harris, asteroid researcher at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR), is hoping to head the next one off. Last month, Harris established an international collaboration of 13 researchers to investigate methods of shielding the Earth from near Earth objects (NEOs). The project is, appropriately, called NEOShield.
Asteroids approaching the planet typically travel between 5 and 30 kilometres (about 5 to 19 miles) per second. As that speed, a moderate sized body can have major consequences. The Barringer Crater in Arizona, often referred to as Meteor Crater, is a 1,200 metre crater (about 3,950 feet or 0.7 miles) that scientists hypothesize was caused by a 50 metre (164 feet) meteor.
The bad news is that there are thousands of known NEOs just like the one that made Meteor Crater, leading experts to posit that a dangerous collision could occur as often as every two hundred years.
The good news is that it’s possible to stop an asteroid hitting the Earth. You just have to be in the right place at the right time to give the object the right push in another direction.
Scientists are focusing on possible methods of redirecting threatening asteroids so they miss the Earth. “In order to modify their orbit and prevent a collision with Earth, a force must be exerted on them,” explains Alan Harris. “And at the precise time, as well.” One way to do this is to have a spacecraft impact a threatening asteroid, imparting enough force to change its orbit. “In my opinion, this is a very practical method,” said Harris. But there are still questions to answer, like how to guide the spacecraft to a moving target at the right angle for the right impact and how to minimize the effects of fuel movement on the spacecraft’s path.
Another way is to use the spacecraft’s gravitational pull to nudge the asteroid into a different orbit. If the object is far enough away, a tiny tug could have a big effect. But so far, “this method only exists on paper,” said Harris, “but it could work.”
Another third, less appealing prospect, is to use explosive power to break up an Earth-bound asteroid. But this could be disastrous, creating a shower of debris instead of one solid piece. As such, Harris considers this method a last resort. “If a very large, dangerous object with a diameter of one kilometre [0.6 miles] or more is discovered,” explains Harris, changing its orbit won’t be a option. “The greatest force we would be able to use to divert the asteroid from its path would be a nuclear explosion. This technique is regarded as a very controversial.”
Over the next three years, during which the European Union will support the project with four million Euros and international partners will contribute an additional 1.8 million Euros, the NEOShield project will research these defence methods. The scientists will focus on data from asteroid observations and lab experiments to generate computer simulations, ultimately determining how best to protect the Earth from future devastating impacts.
The giant Asteroid Vesta literally floats in space in a new high resolution 3-D image of the battered bodies Eastern Hemisphere taken by NASA’s Dawn Asteroid Orbiter.
Haul out your red-cyan 3-D anaglyph glasses and lets go whirling around Vesta and sledding down mountains to greet the alien Snowman! The sights are fabulous !
The Dawn imaging group based at the German Aerospace Center (DLR), in Berlin, Germany and led by team member Ralf Jaumann has released a trio of new high resolution 3-D images that are the most vivid anaglyphs yet published by the international science team.
The lead anaglyph shows the highly varied topography of the Eastern Hemisphere of Vesta and was taken during the final approach phase as Dawn was about 5,200 kilometers (3,200 miles) away and preparing to achieve orbit in July 2011.
The heavily cratered northern region is at top and is only partially illuminated because of Vesta’s tilted angle to the Sun at that time of year. Younger craters are overlain onto many older and more degraded craters. The equatorial region is dominated by the mysterious troughs which encircle most of Vesta and may have formed as a result of a gargantuan gong, eons ago.
The southern hemisphere exhibits fewer craters than in the northern hemisphere. Look closely at the bottom left and you’ll see the huge central mountain complex of the Rheasilvia impact basin visibly protruding out from Vesta’s south polar region.
This next 3-D image shows a close-up of the South Pole Mountain at the center of the Rheasilvia Impact basin otherwise known as the “Mount Everest of Vesta”.
The central complex is approximately 200 kilometers (120 miles) in diameter and is approximately 20 kilometers (12 miles) tall and is therefore about two and a half times taller than Earth’s Mount Everest!
Be sure to take a long look inside the deep craters and hummocky terrain surrounding “Mount Everest”.
A recent study concludes that, in theory, Vesta’s interior is cold enough for water ice to lurk beneath the North and South poles.
Finally lets gaze at the trio of craters that make up the “Snowman” in the 3-D image snapped in August 2011 as Dawn was orbiting at about 2,700 kilometers (1,700 miles) altitude. The three craters are named Minucia, Marcia and Calpurnia from top to bottom. Their diameters respectively are; 24 kilometers (15 miles), 53 kilometers (33 miles) and 63 kilometers (40 miles).
It is likely that Marcia and Calpurnia formed from the impact of a binary asteroid and that Minucia formed in a later impact. The smooth region around the craters is the ejecta blanket.
Vesta is the second most massive asteroid in the main Asteroid Belt between Mars and Jupiter. It is 330 miles (530 km) in diameter.
Dawn is the first spacecraft from Earth to visit Vesta. It achieved orbit in July 2011 for a year long mission. Dawn will fire up its ion propulsion thrusters in July 2012 to spiral out of orbit and sail to Ceres, the biggest asteroid of them all !
Vesta and Ceres are also considered to be protoplanets.
For hundreds of years, people have seen tiny flashes of light on the surface of the Moon. Very brief, but bright enough to be seen from Earth, these odd flashes still hadn’t been adequately explained up until now. Also known as Transient Lunar Phenomena (TLPs), they’ve been observed on many occasions, but rarely photographed. On Earth, meteorites burning up in the atmosphere can produce similar flashes, but the Moon has no atmosphere for anything to burn up in, so what could be causing them? As it turns out, according to a new study, the answer is still meteorites, but for a slightly different reason.
The lights don’t result from burning up as on Earth, but rather are hot blobs of material produced by the impact itself. The impacts were calculated to be powerful enough to melt the meteorites, producing super hot liquid droplets, called melt droplets, that produced light as they formed and then began to cool afterwards. The meteorites themselves can be tiny, but still cause an impact that could be seen from Earth.
Sylvain Bouley, a planetary scientist at the Paris Observatory and co-author of the study, explains: “You have just a small piece of cometary material or asteroid, about 10 centimeters, that can do a very bright flash visible from the Earth.”
Fellow planetary scientist Carolyn Ernst of Johns Hopkins University’s Applied Physics Laboratory, adds: “Something is melting, and because it’s so hot, it radiates in the visible wavelength until it cools down.”
The study included observations from 1999 – 2007, for which the brightness of the flashes and sizes and speeds of the meteorites were calculated.
The impacts have also been replicated at the Meteoroid Environment Office at the Marshall Space Flight Center, where tiny aluminum spheres were shot into simulated lunar dirt. The results were similar, helping to confirm the other team’s findings.
Other previous possible explanations included reflections on the Moon by tumbling satellites or even volcanic activity. There may still be debate though, as an earlier report in 2007 had attributed the flashes to outgassing on the Moon’s surface.
The paper will be published in the March 2012 issue of Icarus.
Scientists studying life on Mars got a late Christmas present this year: confirmation that meteorites found in Morocco in December are of Martian origin. It’s a significant discovery; Martian meteorites fall to Earth only about once every 50 years making this a once-in-a-lifetime, and for many a once-in-a-career, event. The Mars rocks are worth more than their weight in gold, but what they can tell us could be even more valuable.
Astronomers suspect that the meteorite has been wandering around the solar system for millions of years, ever since something big smashed into the red planet and sent debris flying all directions. One of those pieces has wandered its way towards Earth and plunged through the atmosphere.
This is only the fifth time scientists have chemically confirmed the Martian origin of meteorites. Rocks found in France in 1815, in India in 1865, in Egypt in 1911, and in Nigeria in 1962 have all been positively identified as being from Mars.
The chemical signature of the Moroccan rocks and the Martian air match said Tony Irving of the University of Washington who did the scientific analysis. But this discovery is different. The rocks weren’t just found, they were seen streaking through the sky in July 2011, which makes them extremely valuable.
These rocks have only had six months to accumulate Earth-based materials and traces of life; typically Martian meteorites found on Earth have been here anywhere from decades to millennia, giving them ample time to become tainted.
These new rocks, while still contaminated because they have been on Earth for months, are relatively pure. “It’s incredibly fresh. It’s highly valuable for that reason,” said Carl Agee, director of the Institute of Meteoritics and curator at the University of New Mexico.
It’s also a rare find. This new sample, about 15 pounds of rocks, brings the total weight of all Martian samples on Earth to just 240 pounds.
Meteorite dealer Darryl Pitt is cashing in on the rocks’ rarity and selling pieces for $11,000 to $22,500 an ounce and has sold most of his supply already. At that price, the Martian meteorite costs about 10 times as much as gold.
Cornell University astronomer Steve Squyres, the principal investigator for NASA’s Mars Exploration Rover Program, is less excited. The rocks, he said, are not the kind scientists are most hoping for. They are hard, igneous or volcanic rock. A softer kind of rock capable of holding water or life would be better. But he also points that these rocks aren’t likely to come streaking through the atmosphere. Any soft rock would be unlikely to survive the fiery entry through Earth’s atmosphere.
Former NASA sciences chief Alan Stern, director of the Florida Space Institute at the University of Central Florida, takes a brighter outlook. “It’s nice to have Mars sending samples to Earth,” he said, “particularly when our pockets are too empty to go get them ourselves.”
Until we manage a sample return mission from Mars, this is the best shot scientists have to study the red planet up close.
A unique type of crystal appears to have its origins in meteorites, according to a new study. Quasicrystals are an unusual type of crystalline structure that were initially thought to have only occurred in artificial conditions in labs, and impossible in nature, until they were found by geologists in the Koryak mountains in Russia in 2009. Their origin was unknown, but now new evidence indicates that they most likely came from space in meteorites, dating back to the early stages of the formation of the solar system.
Regular crystals, such as diamonds, snowflakes and salt, are symmetrical, ordered and repeating geometrical arrangements of atoms that extend in all three spatial dimensions (at both microscopic and macroscopic scales); they are commonly found in different types of rock. Quasicrystals are different however, with variations from the standard structure and composition.
When the newly found quasicrystals were studied, they were found to be composed primarily of copper and aluminum, similar to carbonaceous meteorites. The clincher came when the isotope measurements (ratios of oxygen atoms) indicated an extraterrestrial origin.
From the paper:
“Our evidence indicates that quasicrystals can form naturally under astrophysical conditions and remain stable over cosmic timescales.”
“The rock sample was first identified for study as a result of a decade-long systematic search for a natural quasicrystal (4). Quasicrystals are solids whose atomic arrangement exhibits quasi-periodic rather than periodic translational order and rotational symmetries that are impossible for ordinary crystals (5) such as fivefold symmetry in two-dimensions and icosahedral symmetry in three-dimensions. Until recently, the only known examples were synthetic materials produced by melting precise ratios of selected elemental components and quenching under controlled conditions (6–8). The search consisted of applying a set of metrics for recognizing quasicrystals to a database of powder diffraction data (4) and examining minerals outside the database with elemental compositions related to those of known synthetic quasicrystals.”
“What is clear, however, is that this meteoritic fragment is not ordinary. Resolving the remarkable puzzles posed by this sample will not only further clarify the origin of the quasicrystal phase but also shed light on previously unobserved early solar system processes. Fitting all these clues together in a consistent theory of formation and evolution of the meteorite is the subject of an ongoing investigation.”
The report has been published in the January 2 issue of Proceedings of the National Academy of Science. The article (PDF) is here. More detailed information about quasicrystals is also available here and here.
Celebrate the winter holiday season in the company of an ‘Alien Snowman’ on the asteroid Vesta, someone we didn’t even have a clue about until six months ago.
Vesta and the Snowman have been transformed into the beautiful banner above – sent to me courtesy of the Dawn mission team to share with the readers of Universe Today.
Now you can be a creative artist and use the striking new images of Vesta to fashion your own greeting cards (see below) and send seasonal tidings of winter holiday cheer not possible before – all thanks to the remarkably insightful discoveries of Dawn’s international science team.
The Dawn spacecraft orbiting the giant asteroid Vesta is one of NASA’s crowning scientific accomplishments of 2011 because it’s cameras and spectrometers have unveiled a mysteriously diverse world that has no match elsewhere in our solar system.
The more we explore the unknown the more we are enlightened as to just how limited our view of the Universe is from within the narrow confines of our miniscule abode.
The Kepler Space Telescopes latest discoveries of Earth-sized worlds are just the latest examples guiding us to a clearer understanding of our place in the Universe.
Here are just a few of the Vestan images you can masterfully decorate – the Snowman, The Mount Everest of Vesta and the cataclysmically bombarded South Pole.
So, let you imaginations run wild with wintery scenes to match the majesty of this matchless world. The Dawn Education and Public Outreach (EPO) team has created several templates which you can access here
Of course you can also use any of the images posted at the Dawn mission website.
And feel free to post your inspired creations here at Universe Today.
Vesta is the second most massive object in the main Asteroid Belt between Mars and Jupiter.
Dawn arrived in orbit at Vesta in July 2011 for the first ever close up studies of the shattered celestial body. Dawn will spend a year investigating Vesta before spiraling out towards Ceres, the largest asteroid.
They are headed toward the surface like a speeding freight train… and running ahead of them is a shockwave. Just like a loud sound can trigger a snow avalanche here on Earth, the shockwave of a meteorite crashing through the Martian atmosphere could trigger dust avalanches on the surface before an actual impact.
According to a study led by University of Arizona undergraduate student, Kaylan Burleigh, there is sufficient photographic evidence to prove that incoming meteorites are producing enough energy to impact the surface environment just as much as the strike. Mars’ thin atmosphere also contributes, since the lesser density means most meteorites survive the trip to the surface. “We expected that some of the streaks of dust that we see on slopes are caused by seismic shaking during impact,” said Burleigh. “We were surprised to find that it rather looks like shockwaves in the air trigger the avalanches even before the impact.”
Spotting new craters happens frequently. Thanks to the HiRISE camera on board NASA’s Mars Reconnaissance Orbiter, researchers find up to twenty newly formed craters that measure between 1 and 50 meters (3 to 165 feet) each year. To perform their study, the team focused their attention on a grouping of five craters which formed at the same time. This quintuplet is located near the Martian equator, about 825 kilometers (512 miles) south of the boundary scarp of Olympus Mons. Earlier investigations of the area had revealed dark streaks which were surmised at the time to be landslides, but no one thought to credit them to an impact theory. The largest crater in the cluster measures 22 meters, or 72 feet across and the multiple formation is thought to have occurred due to a shattering of the meteor just ahead of final impact.
“The dark streaks represent the material exposed by the avalanches, as induced by the airblast from the impact,” Burleigh said. “I counted more than 100,000 avalanches and, after repeated counts and deleting duplicates, arrived at 64,948.”
As Burleigh took a closer look at the distribution of avalanches around the impact site, he noticed a lot of relative things, but the most important was a curved formation described as scimitars. This was a major clue as to how they were formed. “Those scimitars tipped us off that something other than seismic shaking must be causing the dust avalanches,” Burleigh said.
Just as a freight train sends a rumble before it arrives, so does the incoming meteor. By using computer modeling, the team was able to simulate how a shockwave could form and match the scimatar patterns to the HiRISE images. “We think the interference among different pressure waves lifts up the dust and sets avalanches in motion. These interference regions, and the avalanches, occur in a reproducible pattern,” Burleigh said. “We checked other impact sites and realized that when we see avalanches, we usually see two scimitars, not just one, and they both tend to be at a certain angle to each other. This pattern would be difficult to explain by seismic shaking.”
Because there are no plate tectonics, nor water erosion issues, these types of findings are very important to understanding how many Martian surface features are formed. “This is one part of a larger story about current surface activity on Mars, which we are realizing is very different than previously believed,” said Alfred McEwen, principal investigator of the HiRISE project and one of the co-authors of the study. “We must understand how Mars works today before we can correctly interpret what may have happened when the climate was different, and before we can draw comparisons to Earth.”
In newly released footage from the University of Western Ontario, a bright, slow-moving fireball was captured in the skies near Toronto, Canada on December 12, 2011 by remote cameras watching for meteors. Although this meteor looks huge as it burns up in Earth’s atmosphere, astronomers estimate the rock to have been no bigger than a basketball. Footage reveals it entered the atmosphere at a shallow angle of 25 degrees, moving about 14 km per second. It first became visible over Lake Erie then moved toward the north-northeast.
See below for the video.
But in a meteorite-hunter alert, Peter Brown, the Director of Western’s Centre for Planetary & Space Exploration said that data garnered from the remote cameras suggest that surviving fragments of the rock are likely, with a mass that may total as much as a few kilograms, likely in the form of many fragments in one gram to hundreds of a gram size range.
“Finding a meteorite from a fireball captured by video is equivalent to a planetary sample return mission,” said Brown. “We know where the object comes from in our solar system and can study it in the lab. Only about a dozen previous meteorite falls have had their orbits measured by cameras so each new event adds significantly to our understanding of the small bodies in the solar system. In essence, each new recovered meteorite is adding to our understanding of the formation and evolution of our own solar system.”
Brown and his team are interested in hearing from anyone who may have witnessed or recorded this event, or who may have found fragments of the freshly fallen meteorite. See UWO’s website for contact information.
Another camera view of the meteor:
Western Meteor Group’s Southern Ontario Meteor Network sensor suite has seven all-sky video systems designed to automatically detect bright fireballs.
At 6:04 p.m. on December 12, six of the seven cameras of Western’s Southern Ontario Meteor Network recorded this meteor. In a press release, UWO said the fireball’s burned out at an altitude of 31 km just south of the town of Selwyn, Ontario. It is likely to have dropped small meteorites in a region to the east of Selwyn near the eastern end of Upper Stony Lake. See the map of the projected path below.
Although this bright fireball occurred near the peak of the annual Geminid meteor shower, the astronomers say it is unrelated to that shower.
The giant Asteroid Vesta is among the most colorful bodies in our entire solar system and it appears to be much more like a terrestrial planet than a mere asteroid, say scientists deciphering stunning new images and measurements of Vesta received from NASA’s revolutionary Dawn spacecraft. The space probe only recently began circling about the huge asteroid in July after a four year interplanetary journey.
Vesta is a heavily battered and rugged world that’s littered with craters and mysterious grooves and troughs. It is the second most massive object in the Asteroid Belt and formed at nearly the same time as the Solar System some 4.5 Billion years ago.
“The framing cameras show Vesta is one of the most colorful objects in the solar system,” said mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “Vesta is unlike any other asteroid we have visited so far.”
Scientists presented the new images and findings from Dawn at the American Geophysical Union meeting this week in San Francisco.
“Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” Reddy said. “We do not know why Vesta is so special.”
Although many asteroids look like potatoes, Reddy said Vesta reminds him more of an avocado.
Asteroid Vesta is revealed as a ‘rainbow-colored palette’ in a new image mosaic (above) showcasing this alien world of highly diverse rock and mineral types of many well-separated layers and ingredients.
Researchers assigned different colors as markers to represent different rock compositions in the stunning new mosaic of the asteroid’s southern hemisphere.
The green areas in the mosaic suggest the presence of the iron-rich mineral pyroxene or large-sized particles, according to Eleonora Ammannito, from the Visible and Infrared (VIR) spectrometer team of the Italian Space Agency. The ragged surface materials are a mixture of rapidly cooled surface rocks and a deeper layer that cooled more slowly.
What could the other colors represent?
“The surface is very much consistent with the variability in the HED (Howardite-Eucritic-Diogenite) meteorites,” Prof. Chris Russell, Dawn Principal Investigator (UCLA) told Universe Today in an exclusive interview.
“There is Diogenite in varying amounts.”
“The different colors represent in part different ratios of Diogenite to Eucritic material. Other color variation may be due to particle sizes and to aging,” Russell told me.
No evidence of volcanic materials has been detected so far, said David Williams, Dawn participating scientist of Arizona State University, Tucson.
Before Dawn arrived, researchers expected to observe indications of volcanic activity. So, the lack of findings of volcanism is somewhat surprising. Williams said that past volcanic activity may be masked due to the extensive battering and resultant mixing of the surface regolith.
“More than 10,000 high resolution images of Vesta have been snapped to date by the framing cameras on Dawn,” Dr. Marc Rayman told Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.
Dawn will spend a year in orbit at Vesta and investigate the asteroid at different altitudes with three on-board science instruments from the US, Germany and Italy.
The probe will soon finish spiraling down to her lowest mapping orbit known as LAMO (Low Altitude Mapping Orbit), approximately 130 miles (210 kilometers) above Vesta’s surface.
“Dawn remains on course to begin its scientific observations in LAMO on December 12,” said Rayman.
The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team. The Visible and Infrared Mapping camera was provided by the Italian Space Agency.
In July 2012, Rayman and the engineering team will fire up Dawn’s ion propulsion system, break orbit and head to Ceres, the largest asteroid and what a number of scientists consider to be a planet itself.
Ceres is believed to harbor thick caches of water ice and therefore could be a potential candidate for life.
Read continuing features about Dawn by Ken Kremer starting here: