Calling all meteorite collectors and enthusiasts! There’s a hot space rock at large and, as Indiana Jones would say, it belongs in a museum. Perhaps you can help put it back in one.
On Aug. 19 a burglary was reported at the Sonnenborgh Museum and Observatory in Utrecht, Netherlands, and one of the items missing is a meteorite that is thought to have originated from the asteroid Vesta.
Seen above in a photo from the museum’s collection, the Meteorite of Serooskerken was recovered from a rare fall in 1925 in the province of Zeeland. Only five meteorites have ever been found in the Netherlands, making the Serooskerken specimen somewhat of a national treasure – not to mention a valuable piece of our Solar System’s history!
About 5–6% of all the meteorites found on Earth are thought to be from Vesta, the second-largest world in the main asteroid belt. (Source)
It doesn’t sound like the meteorite was the target of the burglary, but rather it just happened to be included with other things taken from the museum’s safe.
What’s the chance of that thump you just heard in your house was a meteorite hitting your roof? That was the case for one family in Novato, California during a fireball event that took place in the north bay area near San Francisco on October 17, 2012.
Researchers have now released new results from analysis of the meteor that fell to Earth, revealing that the “Novato meteorite” was part of numerous collisions over a span of 4 billion years.
There is nothing ordinary about a meteorite whether it just spent 4.4 billion years all alone or spent such time in a game of cosmic pinball, interacting with other small or large bodies of our Solar System. On any given night one can watch at least a couple of meteors overhead burning up, lighting up the sky but never reaching the Earth below. However, in less than two years, Dr. Peter Jenniskens, SETI Institute’s renowned meteor expert was effectively host to two meteorites within a couple hours drive from his office in Mountain View, California.
The first was the Sutter Mill meteorite, a fantastic carbonaceous chondrite full of organic compounds. The second was the Novato meteorite, identified as a L6 chondrite fragmental breccia. which is the focus of new analysis, to be released in a paper in the August issue of Meteoritics and Planetary Science. Early on, it was clear that this meteorite had been a part of a larger asteroidal parent body that had undergone impact shocks.
Analysis of the meteorite was spearheaded by Jenniskens who initially determined the trajectory and orbit of the meteoroid from the Cameras for Allsky Meteor Surveillance (CAMS) which he helped establish in the greater San Francisco bay area. Jenniskens immediately released information about the fireball to local news agencies to ask for the public’s help with the hopes of finding pieces of the meteorite. One resident recalled hearing something hit her roof, and with the help of neighbors, they investigated and soon found the first fragment in their backyard.
Finding fragments was the first step, and over a two year period, the analysis of the Novato meteorite was spread across several laboratories around the world with specific specialties.
Dr. Jenniskens, along with 50 co-authors, have concluded that the Novato meteorite had been involved in more impacts than previously thought. Dr. Qingzhu Yin, professor in the Department of Earth and Planetary Sciences at the University of California, Davis stated, “We determined that the meteorite likely got its black appearance from massive impact shocks causing a collisional resetting event 4.472 billion years ago, roughly 64-126 million years after the formation of the solar system.”
The predominant theory of the Moon’s formation involves an impact of the Earth by a Mars-sized body. The event resulted in the formation of the Moon but also the dispersal of many fragments throughout the inner Solar System. Dr. Qingzhu Yin continued, “We now suspect that the moon-forming impact may have scattered debris all over the inner solar system and hit the parent body of the Novato meteorite.”
Additionally, the researcher discovered that the parent body of the Novato meteorite experienced a massive impact event approximately 470 million years ago. This event dispersed many asteroidal fragments throughout the Asteroid Belt including a fragment from which resulted the Novato meteorite.
The trajectory analysis completed earlier by Dr. Jenniskens pointed the Novato meteorite back to the Gefion asteroid family. Dr. Kees Welten, cosmochemist at UC Berkeley, was able to further pinpoint the time, drawing the conclusion, “Novato broke from one of the Gefion family asteroids nine million years ago.” His colleague at Berkeley, cosmochemist Dr. Kunihiko Nishiizumialso added, “but may have been buried in a larger object until about one million years ago.”
There was more that could be revealed about history of the Novato meteorite. Dr. Derek Sears a meteoriticist working for the Bay Area Environmental Research Institute in Sonoma, California and stationed at NASA Ames Reserach Center applied his expertise in thermoluminescence. Dr. Sears was involved in the analysis of Lunar regolith returned by the Apollo astronauts using this analysis method.
“We can tell the rock was heated, but the cause of the heating is unclear,” said Dr. Sears, “It seems that Novato was hit again.” As stated in the NASA press release, “Scientists at Ames measured the meteorites’ thermoluminescence – the light re-emitted when heating of the material and releasing the stored energy of past electromagnetic and ionizing radiation exposure – to determine that Novato may have had another collision less than 100,000 years ago.”
From this apparent final collision one hundred thousand years ago, the Novato meteoroid completed over 10,000 orbits of the Sun and with its final Solar orbit, intercepted the Earth, entering our atmosphere and mostly burning up over California. The meteoroid is estimated to have measured 14 inches across (35 cm) and have weighed 176 pounds (80 kg). What reached the ground likely amounted to less than 5 lbs. (~ 2 kg). Only six fragments were recovered and many more remain buried or hidden in Sonoma and Napa counties.
Besides the analysis that revealed the series of likely impact events in the meteoroids history, a team led by Dr. Dan Glavin from NASA Goddard Space Flight Center undertook analysis in search of amino acids, the building blocks of life. They detected non-protein amino acids in the meteorite that are very rare on Earth. Dr. Jenniskens emphasized that the quick recovery of the fragments by scores of individuals that searched provided pristine samples for analysis.
Robert P. Moreno, Jr. in Santa Rosa, CA photographed the fireball in greatest detail with a high resolution camera. Several other photos were brought forward from other vantage points. Dr. Jenniskens stated, “These photographs show that this meteorite – now one of the best studied meteorites of its kind – broke in spurts, each time creating a flash of light as it entered Earth’s atmosphere.”
Numerous individuals and groups undertook the search for the Novato meteorite. Dr. Jenniskens trajectory analysis included a likely impact zone or strewn field. People from all walks of life roamed the streets, open fields and hillsides of the north bay in search of fragments. Despite organized searches by Dr. Jenniskens, it was the footwork from other individuals that led to finding six fragments and was the first step which led to these studies that add to the understanding of the early Solar System’s development.
For Dr. Jenniskens, Novato was part of a trifecta – the April 22, 2012, Sutter Mill meteorite in the nearby foothills of the Sierras, the Novato meteorite and the massive Chelyabinsk airburst event in Russia on February 15, 2013. Throughout this period, Dr. Jenniskens all-sky camera network continued to expand and record “falling stars” – meteors. The number of meteors recorded with calculated trajectories is now over 175,000. The SETI Institute researcher has been supported by NASA and personnel at the institute and ordinary citizens including amateur astronomers that have refined the methods for meteor orbital determination and estimating their size and mass. Several websites have compiled images and results for the Novato meteorite with Dr. Jenniskens’ – CAMS.SETI.ORG being most prominent.
What is it with Russia and explosive events of cosmic origins? The 1908 Tunguska Explosion, the Chelyabinsk bolide of February 2013, and now this: an enormous 80-meter 60-meter wide crater discovered in the Yamal peninsula in northern Siberia!
To be fair, this crater is not currently thought to be from a meteorite impact but rather an eruption from below, possibly the result of a rapid release of gas trapped in what was once frozen permafrost. The Yamal region is rich in oil and natural gas, and the crater is located 30 km away from its largest gas field. Still, a team of researchers are en route to investigate the mysterious hole further.
Watch a video captured by engineer Konstantin Nikolaev during a helicopter flyover below:
In the video the Yamal crater/hole has what appear to be streams of dry material falling into it. Its depth has not yet been determined. (Update: latest measurements estimate the depth of the hole to be 50-70 meters. Source.)
“The list of possible natural explanations for the giant hole includes a meteorite strike and a gas explosion, or possibly an eruption of underground ice.”
Dark material around the inner edge of the hole seems to suggest high temperatures during its formation. But rather than the remains of a violent impact by a space rock — or the crash-landing of a UFO, as some have already speculated — this crater may be a particularly explosive result of global warming.
According to The Siberian Times:
“Anna Kurchatova from Sub-Arctic Scientific Research Centre thinks the crater was formed by a water, salt and gas mixture igniting an underground explosion, the result of global warming. She postulates that gas accumulated in ice mixed with sand beneath the surface, and that this was mixed with salt – some 10,000 years ago this area was a sea.”
The crater is thought to have formed sometime in 2012.
UPDATE July 17: A new video (in Russian) of the hole from the research team has come out, and apparently it’s been made clear that it’s not the result of a meteorite. Exactly what process did produce it is still unknown, but rising temperatures are still thought to be a factor. Watch below (via Sploid).
(If any Russian-speaking UT readers would like to translate what’s being said, feel free to share in the comments below.)
UPDATE Nov. 13: Once the water in these holes froze solid scientists were able to enter and explore the bottoms. According to an article published on The Guardian, “eighty percent of the crater appears to be made up of ice and there are no traces of a meteorite strike.”
“As of now we don’t see anything dangerous in the sudden appearance of such holes, but we’ve got to study them properly to make absolutely sure we understand the nature of their appearance and don’t need to be afraid about them.”
– Vladimir Pushkarev, Director, Russian Center of Arctic Exploration
See more photos from inside the crater from the Russian Center of Arctic Exploration on The Siberian Times here.
Talk about heavy metal! This shiny, lumpy rock spotted by NASA’s Curiosity rover is likely made mostly of iron — and came from outer space! It’s an iron meteorite, similar to ones found in years past by Curiosity’s forerunners Spirit and Opportunity, but is considerably larger than any of the ones the MER rovers came across… in fact, at 2 meters (6.5 feet) wide this may very well be the biggest meteorite ever discovered on Mars!
Click the image for a supermetallicious high-resolution version from JPL’s Planetary Photojournal.
The picture above was made by combining high-resolution circular images (outlined in white) acquired with the Remote Micro-Imager (RMI) of Curiosity’s ChemCam instrument with color and context from the rover’s Mastcam. The images were taken on mission Sol 640 (May 25, 2014) and have been adjusted to simulate more Earth-like illumination.
Dubbed “Lebanon,” the large meteorite has a smaller fragment lying alongside it, named “Lebanon B.”
While iron meteorites are fairly common on Earth, on Mars they are by far the most common types of meteorites that have been discovered — if just for the sheer fact that they are highly resistant to erosion.*
*Note: that isn’t to say iron meteorites can’t be eroded; on the contrary, much of their signature surface sheen and pitted texture comes from various erosion processes. See a related study from J. W. Ashley et al. here.
“It first looked like a plane with fire coming out of the tail.”— Aaron O.
“I have never seen anything like it. Big, bright and moving gently across sky – slower than a plane, not falling at all but moving across.” — Shannon H.
“Viewed from cockpit of aircraft at 37,000′. Was visible for two or three minutes.”— Landy T.
Flaming plane? Incandescent visitor from the asteroid belt? As the these comments from the AMS Fireball Log attest, the brilliant and s-l-o-w fireball that seared the sky over southeastern Australia tonight was probably one of the most spectacular displays of re-entering space junk witnessed in recent years.
Ted Molczan, citizen satellite tracker and frequent contributor to the amateur satellite watchers SeeSat-L site, notes that the timing and appearance almost certainly point to the decay or de-orbiting of the Russian Soyuz 2-1B rocket booster that launched the meteorological satellite Meteor M2 on July 8.
Meteor over New South Wales. Look closely near the end and you’ll see it disintegrate into small pieces.
The magnificent man-made meteor, weighing some 4,400 pounds (2,000 kg), was seen from Melbourne to Sydney across the states of Victoria and New South Wales around 10 p.m. Hundreds of people were stopped in their tracks. Most noticed how slowly the fireball traveled and how long it continue to burn on the way down.
Spacecraft that reenter from either orbital decay or controlled entry usually break up at altitudes between 45-52 miles (84-72 km) traveling around 17,500 mph (28,000 km/hour) . Compression and friction from the ever-thickening air cause the craft, or in this case, the rocket booster, to slow down and heat up to flaming incandescence just like a hunk of space rock arriving from the asteroid belt. In both cases, we see a brilliant meteor, however manmade debris.
Occasional meteoroids break apart in the atmosphere and scatter meteorites just as pieces of occasional satellites, especially large, heavy craft, can survive the plunge and land intact – if a tad toasted. Whether anything remains of Russian rocket stage or where exactly it fell is still unknown. Here are a few more photos of successful space junk arrivals.
Reportedly, only one person has been struck by satellite debris. In 1997 Lottie Williams of Tulsa, Oklahoma was hit on the shoulder while walking by a small, twisted piece of metal weighing as much as a crushed soda can. It was traced back to the tank of a Delta II rocket that launched a satellite in 1996. I suppose it’s only a matter of time before someone else gets hit, but the odds aren’t great. More likely, you’ll see what alarmed and delighted so many southeastern Australians Thursday night: a grand show of disintegration.
When it comes to the Universe, things often go bump in the night. But whether two galaxies collide, a star explodes in a brilliant supernova, or a meteor hits a massive planet, we tend to catch the aftermath tens to hundreds of thousands of years later.
Of course, there’s always an exception to the rule. In today’s news, astronomers using NASA’s Mars Reconnaissance Orbiter have found a fresh meteor-impact crater. And it’s the biggest seen using before-and-after pictures.
When it comes to the red planet, we’ve seen evidence of fresh craters before, but usually the impact can’t be nailed down to better than a few years’ time. The constant sweep of the obiter’s weather-monitoring camera, the Mars Color Imager (MARCI), however, allowed us to pinpoint the impact to within a day.
The orbiter began its systematic observation of Mars in 2006. Ever since, Bruce Cantor, MARCI’s principle investigator, has examined the camera’s daily images, searching for evidence of dust storms and other observable weather events. Cantor’s findings help NASA operators plan for weather events that may be harmful to the solar-powered rover, Opportunity.
Nearly two months ago, Cantor noticed a black smudge — a telltale sign of an impact — on the red planet. “It wasn’t what I was looking for,” Cantor said in a NASA press release. “I was doing my usual weather monitoring and something caught my eye. It looked usual, with rays emanating from a central spot.”
So Cantor dug through earlier images, discovering that the dark spot wasn’t visible on March 27, 2012, but appeared on March 28, 2012.
MARCI is a low resolution camera, which is what allows it to see a large area of Mars constantly. But without a high resolution image, we can’t pick out the details of the impact-like black smudge. So Cantor performed follow-up observations with the orbiter’s telescope Context Camera (CTX) and the High Resolution Imaging Science Experiment (HiRISE).
CTX has imaged nearly the entire surface of Mars at least once during the orbiter’s seven-plus years of observations. It photographed the site of the newly-discovered crater in January 2012, revealing nothing prior to the impact. But two new craters appear in the recent image.
The largest crater is slightly elongated and spans 48.5 by 43.5 meters, roughly half the length of a football field. “The biggest crater is unusual, quite shallow compared to other fresh craters we have observed,” said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, Tucson.
The impacting object is likely a few meters across. Something that small would burn up in the Earth’s atmosphere, but with a much thinner atmosphere (about 1% as thick as Earth’s), Mars lets most debris right on through.
To add to the details, images from HiRISE revealed more than a dozen smaller craters near the two larger ones seen by CTX. It’s likely that Mars’ atmosphere, as thin as it is, supplied enough pressure to break the incoming meteoroid into smaller pieces, leaving multiple impacts behind.
“Studies of fresh impact craters on Mars yield valuable information about impact rates and about subsurface material exposed by the excavations,” said Leslie Tamppari, deputy project scientist for the Mars Reconnaissance Orbiter mission at NASA’s Jet Propulsion Laboratory. “The combination of HiRISE and CTX has found and examined many of them, and now MARCI’s daily coverage has given great precision about when a significant impact occurred.”
The initial NASA press release can be viewed here.
If the hoped-for meteor blast materializes this Friday night / Saturday morning (May 23-24) Earth won’t be the only world getting peppered with debris strewn by comet 209P/LINEAR. The moon will zoom through the comet’s dusty filaments in tandem with us.
Bill Cooke, lead for NASA’s Meteoroid Environment Office, alerts skywatchers to the possibility of lunar meteorite impacts starting around 9:30 p.m. CDT Friday night through 6 a.m. CDT (2:30-11 UTC) Saturday morning with a peak around 1-3 a.m. CDT (6-8 UTC).
While western hemisphere observers will be in the best location, these times indicate that European and African skywatchers might also get a taste of the action around the start of the lunar shower. And while South America is too far south for viewing the Earth-directed Camelopardalids, the moon will be in a good position to have a go at lunar meteor hunting. Find your moonrise time HERE.
The thick crescent moon will be well-placed around peak viewing time for East Coast skywatchers, shining above Venus in the eastern sky near the start of morning twilight. For the Midwest, the moon will just be rising at that hour, while skywatchers living in the western half of the country will have to wait until after maximum for a look:
“Anyone in the U.S. should monitor the moon until dawn,” said Cooke, who estimates that impacts might shine briefly at magnitude +8-9.
“The models indicate the Camelopardalids have some big particles but move slowly around 16 ‘clicks’ a second (16 km/sec or 10 miles per second). It all depends on kinetic energy”, he added. Kinetic energy is the energy an object possesses due to its motion. Even small objects can pack a wallop if they’re moving swiftly.
Bright lunar meteorite impact recorded on video on September 11, 2013. The estimated 900-lb. space rock flared to 4th magnitude.
Lunar crescents are ideal for meteor impact monitoring because much of the moon is in shadow, illuminated only by the dim glow of earthlight. Any meteor strikes stand out as tiny flashes against the darkened moonscape. For casual watching of lunar meteor impacts, you’ll need a 4-inch or larger telescope magnifying from 40x up to around 100x. Higher magnification is unnecessary as it restricts the field of view.
I can’t say how easy it will be to catch one, but it will require patience and a sort of casual vigilance. In other words, don’t look too hard. Try to relax your eyes while taking in the view. That’s why the favored method for capturing lunar impacts is a video camera hooked up to a telescope set to automatically track the moon. That way you can examine your results later in the light of day. Seeing a meteor hit live would truly be the experience of a lifetime. Here are some additional helpful tips.
On average, about 73,000 lbs. (33 metric tons) of meteoroid material strike Earth’s atmosphere every day with only tiny fraction of it falling to the ground as meteorites. But the moon has virtually no atmosphere. With nothing in the way, even small pebbles strike its surface with great energy. It’s estimated that a 10-lb. (5 kg) meteoroid can excavate a crater 30 feet (9 meters) across and hurl 165,000 lbs. of lunar soil across the surface.
A meteoroid that size on an Earth-bound trajectory would not only be slowed down by the atmosphere but the pressure and heat it experienced during the plunge would ablate it into very small, safe pieces.
NASA astronomers are just as excited as you and I are about the potential new meteor shower. If you plan to take pictures or video of meteors streaking through Earth’s skies or get lucky enough to see one striking the moon, please send your observations / photos / videos to Brooke Boen ([email protected])at NASA’s Marshall Space Flight Center. Scientists there will use the data to better understand and characterize this newly born meteor blast.
On the night of May 23-24, Bill Cooke will host a live web chat from 11 p.m. to 3 a.m. EDT with a view of the skies over Huntsville, Alabama. Check it out.
“Tea, Earl Grey, hot.” Who doesn’t remember that famous command by Captain Picard’s of TV’s “Star Trek: The Next Generation”? While no one’s yet invented a replicator that can brew a cup of tea out of thin air, scientists have taken in step in that direction by creating an amazing replica of a Martian meteorite using a 3D printer.
Without the fuss and expense of a sample retrieving mission to Mars, NASA scientists now have a realistic, true to life facsimile of the ‘Block Island’ meteorite discovered by the Opportunity Rover in 2009. Block Island, an iron-nickel meteorite similar to those found at Meteor Crater in Arizona, is the largest meteorite found on the Red Planet.
Measuring about two feet (60 cm) across, it’s about the size of picnic cooler and weighs an estimated 1,000 pounds. The replica’s made of plastic – you could tote it around like a … picnic cooler.
Analysis of Block Island’s composition using the rover’s alpha particle X-ray spectrometer confirmed that it’s rich in iron and nickel. Scientists based the design of the plastic meteorite on detailed measurements and stereo images taken by Opportunity’s panoramic camera.
The rover made a 360-degree study of the meteorite five years ago taking measurements and many stereo images. But because Opportunity couldn’t see every square inch of the rock, the missing data created holes in the computer model, making it a poor candidate for 3D printing.
Last summer, scientists got around that problem by filling in the missing data and building small scale models of Block Island. To build the life-sized rock, they created depth meshes of the meteorite’s surface from six positions, then combined them into a three-dimensional digital model, according to researcher Kris Capraro of NASA’s Jet Propulsion Laboratory.
The printer built the meteorite from ABS plastic, the same material used in Lego bricks, with cord the width of the plastic line in your weed-whacker. One small problem remained before the replica could be executed – it was too big to fit in the printer’s building space. So researchers broke up the computer model of the meteorite into 11 sections. Printing took 305 hours and 36 minutes.
The sections were assembled and then painted to match the real rock. Said Capraro: “it’s the next best thing to bringing back real Martian rock samples back to Earth.”
Scientists hope someday to use 3D printing to not only replicate more Mars rocks but terrains across the solar system.
Don’t let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they’ll easily fit in the same binocular field of view. The twofer features Ceres (biggest) and Vesta (brightest) which are also the prime targets of NASA’s Dawn Mission. Now en route to a Ceres rendezvous next February, Dawn orbited Vesta from July 2011 to September 2012 and sent back spectacular photos of two vast impact basins, craters stained black by carbon-rich asteroids and parallel troughs that stretch around the 330-mile-wide world like rubber bands.
Astronomers used Dawn’s gravity data to discover Vesta is more like a planet than anyone had supposed. Deep beneath its crust, composed of lighter minerals, lies a denser iron core. Most asteroids were too small to generate enough interior heat through the decay of radioactive elements to melt and “differentiate” into core, mantle and crust like the terrestrial planets. Thanks to our new understanding, you’ll hear Vesta referred to as a ‘baby planet’.
Studies of its crustal rocks showed a match to a clan of basaltic meteorites called howardites, eucrites and diogenites. Many of these formerly volcanic rocks that trace their origin to Vesta are found in numerous private and institutional collections. With a little homework, you can even buy a slice of Vesta on eBay, making for one of the least expensive sample return missions ever undertaken.
Dawn’s Greatest Hits at Vesta – A quick summary of key discoveries accompanied by electric guitar
While Vesta is a rocky body, Ceres shows telltale signs of water and iron-rich clay. Like Vesta, it also appears to have cooked itself into denser core and lighter crust. Because Ceres is less dense than Earth, astronomers believe water ice may be buried beneath its dusty crust.
Earlier this year, astronomers working with the Herschel Space Telescope announced the discovery of plumes of water vapor blasting from two regions on the dwarf planet’s surface. While Ceres is an asteroid it’s also a member of a select group of dwarf planets, bodies large enough to have crunched themselves into spheres through their own gravity but not big enough to clear the region they orbit of smaller asteroids.
Ceres and Vesta will be gradually drawing closer in the coming weeks and months until on July 5 only 10 arc minutes (one-third the diameter of a full moon) will separate them. They’ll also be fading, but not so much that binoculars won’t show them throughout this excellent dual apparition. Vesta will only dim to magnitude +7 by July 1, Ceres to 8.4. Come mid-June I’ll return with a detailed map showing how best to see the dynamic duo during their close conjunction.
Sure, both Ceres and Vesta look exactly like stars even in large amateur telescopes, but sampling photons from real asteroids while listening to the sound of frogs on a spring night is my idea of a good time. Maybe yours too. Good luck!
For all those involved with the initial investigation of the skydiver and the possible meteorite, they now feel they have resolution to their puzzle, thanks to the beauty of crowdsourcing. The rock that showed up in a video taken during a skydive in Norway in 2012 was likely just a rock — accidentally packed in the parachute — and not a meteoroid.
Steinar Midtskogen, from the Norwegian Meteor Network who was involved in the initial investigation of the video, suggested an adaptation of Linus’s Law to explain what has happened in the past week: “Given enough eyeballs, all mysteries are shallow.”
With all the comments, opinions and analysis following the release of the video last week, the team of scientists and video experts from Norway have conceded that the likelihood of the rock being a meteoroid is extremely low. After nearly two years of analyzing the video, the Norwegian team was unable to fully resolve the puzzle, and so they went public, hoping to get input from others.
“We were left with scenarios that we were unable to find possible solutions for against something that fits but is extremely improbable, though possible,” Midtskogen wrote on the NMN website. “We seemed to get no further, and we decided to go public with what we had and at the same time invite anyone to have a go at the puzzle. … We expressed our hope that it would go viral and scrutinized for something that we might have missed, and the result was beyond our expectations.”
The group welcomed all the input (and criticism) but were especially swayed by the ballistics analysis provided by NASA planetary scientist Dr. Phil Metzger, who posted his investigation on Facebook:
Here is my conclusion: the ballistics are consistent with it being a small piece of gravel that came out of his parachute pack and flew past at close distance. The ballistics are also consistent with it being a large meteorite that flew past at about 12 to 18 meters distance. It could be either one, but IMO not anything in between. Based on the odds of parachute packing debris (common) versus meteorite personal flybys (extremely rare), and based on the timing (right after he opened his parachute), I vote for the parachute debris as the more likely.
His three plots are below:
Metzger concluded the likely outcome is that a small piece of gravel about 3.3 cm in diameter flew by the camera by at about 30 meters per second, or 10 meters per second relative to the skydiver.
But while Metzter feels Occam’s razor favors parachute debris, he said his model only shows feasibility.
“I don’t consider it to be a smoking gun,” he told Universe Today. “There could be other, better scenarios.”
And so, Midtskogen told Universe Today, while the rock being a meteoroid isn’t completely ruled out, they feel the best answer is that it was a small rock embedded in the chute, and no further analysis is needed.
“I can confirm that the group will no longer do coordinated work on this,” Midtskogen said via email. “I think all of us feel confident about the conclusion and won’t work more on this individually either – although here I can only speak for myself. It was shown how a pebble packed in the chute could reappear well above the chute, and there is no strong evidence against a small size, so this has been easy to accept.”
While this rock ended up not likely to be a meteoroid, Midtskogen added, the crowdsourcing and interest in the video was overwhelming and encouraging.
“So, no meteorite, but a good story,” he said good-naturedly in his email to Universe Today. “Our mood is still good, and we talk about putting up a plaque at ground zero: “On 17th June 2012 a pebble fell here, witnessed by 6 million people on YouTube”.
Additionally, the skydiver, Anders Helstrup, seemed relieved more than anything.
“After all we seem to have found a more natural explanation to the video,” he told Universe Today. “And that is a good thing. I see that this had to have been MY mistake – packing a pebble into my parachute (I always pack myself). Our intention was to find out more and this way let the story out in the public, for people to make up their own minds. This became way bigger than I had imagined.”
In the end, while this story was not as fantastic as it might have been, it shows the beauty of crowdsourcing and using science to analyze a puzzle. And I readily admit to being overly enthusiastic in my initial article about this being a meteoroid, but I have to agree with Phil Plait who may have said it best in his update today: I would have loved to have this to have been a real meteoroid, but I’m glad this worked the way it did:
The video-makers were honest, did their level best to figure this out, and when they got as far as they could, they put it out to the public. And when it was shown to not be what they had hoped, they admitted it openly and clearly.
— Phil Plait