Looks like we dodged a bullet. A bullet-shaped asteroid that is. The 70-meter Goldstone radar dish, part of NASA’s Deep Space Network, grabbed a collage of photos of Earth-approaching asteroid 2014 SC324 during its close flyby last Friday October 24. These are the first-ever photos of the space rock which was discovered September 30 this year by the Mt. Lemmon Survey. The level of detail is amazing considering that the object is only about 197 feet (60-meters) across. You can also see how incredibly fast it’s rotating – about 30-45 minutes for a one spin.
In the cropped version, the shape is somewhat clearer with the asteroid appearing some four times longer than wide. 2014 SC324 belongs to the Apollo asteroid class, named for 1862 Apollo discovered in 1932 by German astronomer Karl Reinmuth. Apollo asteroids follow orbits that occasionally cross that of Earth’s, making them a potential threat to our planet. The famed February 15, 2013 Chelyabinsk fireball, with an approximate pre-atmospheric entry size of 59 feet (18-m), belonged to the Apollo class.
Lance Benner and colleagues at Goldstone also imaged another Apollo asteroid that passed through our neighborhood on October 19 called 2014 SM143. This larger object, estimated at around 650 feet (200-m) across, was discovered with the Pan-STARRS 1 telescope on Mt. Haleakala in Hawaii on September 17. Tell me we’re not some shiny ball on a solar system-sized pool table where the players fortunately miss their shot … most of the time.
As astronomers tracked the close pass of Near Earth Asteroid 2014 RC this weekend, reports came out of Nicaragua that a possible meteorite struck near the capital of Managua.
Details are still sketchy, but government sources cite reports of a loud bang and ground tremor late Saturday night on September 6th. Later images circulating late Sunday evening showed a crater 12 metres wide and 5.5 metres deep on a remote section of the international airport at Managua, which also hosts a local air force installation.
Reports state that the impact went off “like a bomb,” and Wilfried Strauch of the Nicaragua Institute of Earth Studies has already gone on record as being “convinced it was a meteorite.” Investigators are currently scouring the alleged impact site for debris.
This has also sparked a lively discussion across forums and social media: is the crater the result of an extraterrestrial impactor?
Of course, cosmic coincidences can and do happen. Last year, the close passage of asteroid 2012 DA14 was upstaged by the explosion of a 20-metre asteroid over the city of Chelyabinsk on the very same day. And though the two were conclusively proven to be unrelated, they did serve to raise general human awareness that, yes, large threatening rocks do indeed menace the Earth. And ironically, the aforementioned asteroid 2014 RC was about the same size as the Chelyabinsk asteroid, which snuck up on the Earth undetected from a sunward direction.
But Ron Baalke, a software engineer at the Jet Propulsion Laboratory has posted an update to the close pass by asteroid 2014 RC on the NASA’s Near Earth Object website, saying, “Since the explosion in Nicaragua occurred a full 13 hours before the close passage of asteroid 2014 RC, these two events are unrelated.”
Baalke also noted that “no eyewitness accounts or imagery have come to light of the fireball flash or debris trail that is typically associated with a meteor of the size required to produce such a crater.”
There are a few other problems with the Managua crater, though of course, we’d love to be proven wrong. Many observers have noted that the crater does not appear to look fresh, and the trees and soil around it appear to be relatively undisturbed. A first visual impression of the site looks more like a ground slump or sinkhole than an impact, or perhaps an excavation. Others have also noted the similarity of the crater with a military blast, a very good possibility with an air force base nearby.
Meteorite Men’s own Geoff Notkin has voiced doubts as to the authenticity of the meteor crater on Twitter.
Of course, it’s possible (though unlikely) that the impactor struck the site from straight overhead, leaving the area around it undisturbed. As with meteor showers, an impactor striking the Earth before local midnight would be coming at the planet from behind at a lower combined velocity.
Color me skeptical on this one. Still, we’ve been wrong before, and it’s always a boon for science when a new meteorite fall turns out to be real. Many have already cited the similarities between the Managua crater and the Carancas event in 2007 in Peru near Lake Titicaca that was initially considered dubious as well.
But again, it’s highly improbable that the Managua event is related to 2014 RC, however, which made its closest pass over the southern hemisphere near New Zealand many hours later at 18:18 UT on Sept 7th. We ran a recent simulation of the pass in Starry Night from the vantage point of the asteroid, and you’ll note that Central America is well out of view:
It’s also curious that no still images or video of the Managua event have yet to surface. This is strange, as it occurred on a Saturday night near a capital city of 2.4 million. The weather over Managua was partly cloudy that night, and generally, a security camera or two usually catches sight of the fireball.
We also did a check through any upcoming space junk reentries, which also proved to be a poor fit for a potential suspect. The next slated reentry is a BREEZE-M Tank with the NORAD ID of 2011-074D associated with the 2011 launch of AMOS-5. This object was not overhead around the time of the Managua event, and is predicted to reenter on September 9th at 15:15 UT +/- 14 hours.
And the same goes for the launch of AsiaSat-6 by SpaceX on Saturday night, as launches from the Cape head out eastward across the Atlantic and away from the Gulf of Mexico region.
Unfortunately, images and video would go a long way towards gauging a direction and final orbit of a suspect meteorite. The discovery of meteoritic debris at the site would also serve to clinch the link between the crater and a cosmic impactor as well. Or perhaps, news of the impending passage of NEO asteroid 2014 RC and the recent pass of 2014 RA the weekend prior had already primed the general public to suspect a meteor strike as an explosion was heard late in the evening… we’ve lived near bombing ranges, and are familiar with the sound of late night explosions ourselves.
To be sure, the universe is a dangerous place, and errant rocks from above do on occasion have it out for any unwary species that gets in their way.
So we’ll open it up for discussion: what do you think happened on Saturday night near Managua? Was it a meteorite, or another case of a “meteor-wrong?”
Here’s a bit of good news: the Serooskerken meteorite, which was stolen from the Sonnenborgh Museum and Observatory in Utrecht, Netherlands on Monday night, has been recovered. It was found in a bag left in some bushes alongside a tennis court and turned in to the police.
It’s not quite “game, set, match” though; unfortunately the meteorite was broken during the theft. (See a photo here via Twitter follower Marieke Baan.) Still, the Sonnenborgh Museum director is glad to have the pieces back, which he said will remain useful for research and can still be exhibited. (Source)
The Serooskerken meteorite was recovered from a fall in the Dutch province of Zeeland on August 28, 1925. Classified as a diogenite (HED) it is thought to have originated from the protoplanet Vesta, the second most massive object in the main asteroid belt between the orbits of Mars and Jupiter (and the previous target of NASA’s Dawn mission.) It is one of only five meteorite specimens ever recovered in the Netherlands.
The meteorite was one of several items reported stolen from the Sonnenborgh Museum on the night of August 18-19, 2014.
Calling all meteorite collectors and enthusiasts! There’s a hot space rock at large and, as Indiana Jones would say, it belongs in a museum. Perhaps you can help put it back in one.
On Aug. 19 a burglary was reported at the Sonnenborgh Museum and Observatory in Utrecht, Netherlands, and one of the items missing is a meteorite that is thought to have originated from the asteroid Vesta.
Seen above in a photo from the museum’s collection, the Meteorite of Serooskerken was recovered from a rare fall in 1925 in the province of Zeeland. Only five meteorites have ever been found in the Netherlands, making the Serooskerken specimen somewhat of a national treasure – not to mention a valuable piece of our Solar System’s history!
About 5–6% of all the meteorites found on Earth are thought to be from Vesta, the second-largest world in the main asteroid belt. (Source)
It doesn’t sound like the meteorite was the target of the burglary, but rather it just happened to be included with other things taken from the museum’s safe.
What’s the chance of that thump you just heard in your house was a meteorite hitting your roof? That was the case for one family in Novato, California during a fireball event that took place in the north bay area near San Francisco on October 17, 2012.
Researchers have now released new results from analysis of the meteor that fell to Earth, revealing that the “Novato meteorite” was part of numerous collisions over a span of 4 billion years.
There is nothing ordinary about a meteorite whether it just spent 4.4 billion years all alone or spent such time in a game of cosmic pinball, interacting with other small or large bodies of our Solar System. On any given night one can watch at least a couple of meteors overhead burning up, lighting up the sky but never reaching the Earth below. However, in less than two years, Dr. Peter Jenniskens, SETI Institute’s renowned meteor expert was effectively host to two meteorites within a couple hours drive from his office in Mountain View, California.
The first was the Sutter Mill meteorite, a fantastic carbonaceous chondrite full of organic compounds. The second was the Novato meteorite, identified as a L6 chondrite fragmental breccia. which is the focus of new analysis, to be released in a paper in the August issue of Meteoritics and Planetary Science. Early on, it was clear that this meteorite had been a part of a larger asteroidal parent body that had undergone impact shocks.
Analysis of the meteorite was spearheaded by Jenniskens who initially determined the trajectory and orbit of the meteoroid from the Cameras for Allsky Meteor Surveillance (CAMS) which he helped establish in the greater San Francisco bay area. Jenniskens immediately released information about the fireball to local news agencies to ask for the public’s help with the hopes of finding pieces of the meteorite. One resident recalled hearing something hit her roof, and with the help of neighbors, they investigated and soon found the first fragment in their backyard.
Finding fragments was the first step, and over a two year period, the analysis of the Novato meteorite was spread across several laboratories around the world with specific specialties.
Dr. Jenniskens, along with 50 co-authors, have concluded that the Novato meteorite had been involved in more impacts than previously thought. Dr. Qingzhu Yin, professor in the Department of Earth and Planetary Sciences at the University of California, Davis stated, “We determined that the meteorite likely got its black appearance from massive impact shocks causing a collisional resetting event 4.472 billion years ago, roughly 64-126 million years after the formation of the solar system.”
The predominant theory of the Moon’s formation involves an impact of the Earth by a Mars-sized body. The event resulted in the formation of the Moon but also the dispersal of many fragments throughout the inner Solar System. Dr. Qingzhu Yin continued, “We now suspect that the moon-forming impact may have scattered debris all over the inner solar system and hit the parent body of the Novato meteorite.”
Additionally, the researcher discovered that the parent body of the Novato meteorite experienced a massive impact event approximately 470 million years ago. This event dispersed many asteroidal fragments throughout the Asteroid Belt including a fragment from which resulted the Novato meteorite.
The trajectory analysis completed earlier by Dr. Jenniskens pointed the Novato meteorite back to the Gefion asteroid family. Dr. Kees Welten, cosmochemist at UC Berkeley, was able to further pinpoint the time, drawing the conclusion, “Novato broke from one of the Gefion family asteroids nine million years ago.” His colleague at Berkeley, cosmochemist Dr. Kunihiko Nishiizumialso added, “but may have been buried in a larger object until about one million years ago.”
There was more that could be revealed about history of the Novato meteorite. Dr. Derek Sears a meteoriticist working for the Bay Area Environmental Research Institute in Sonoma, California and stationed at NASA Ames Reserach Center applied his expertise in thermoluminescence. Dr. Sears was involved in the analysis of Lunar regolith returned by the Apollo astronauts using this analysis method.
“We can tell the rock was heated, but the cause of the heating is unclear,” said Dr. Sears, “It seems that Novato was hit again.” As stated in the NASA press release, “Scientists at Ames measured the meteorites’ thermoluminescence – the light re-emitted when heating of the material and releasing the stored energy of past electromagnetic and ionizing radiation exposure – to determine that Novato may have had another collision less than 100,000 years ago.”
From this apparent final collision one hundred thousand years ago, the Novato meteoroid completed over 10,000 orbits of the Sun and with its final Solar orbit, intercepted the Earth, entering our atmosphere and mostly burning up over California. The meteoroid is estimated to have measured 14 inches across (35 cm) and have weighed 176 pounds (80 kg). What reached the ground likely amounted to less than 5 lbs. (~ 2 kg). Only six fragments were recovered and many more remain buried or hidden in Sonoma and Napa counties.
Besides the analysis that revealed the series of likely impact events in the meteoroids history, a team led by Dr. Dan Glavin from NASA Goddard Space Flight Center undertook analysis in search of amino acids, the building blocks of life. They detected non-protein amino acids in the meteorite that are very rare on Earth. Dr. Jenniskens emphasized that the quick recovery of the fragments by scores of individuals that searched provided pristine samples for analysis.
Robert P. Moreno, Jr. in Santa Rosa, CA photographed the fireball in greatest detail with a high resolution camera. Several other photos were brought forward from other vantage points. Dr. Jenniskens stated, “These photographs show that this meteorite – now one of the best studied meteorites of its kind – broke in spurts, each time creating a flash of light as it entered Earth’s atmosphere.”
Numerous individuals and groups undertook the search for the Novato meteorite. Dr. Jenniskens trajectory analysis included a likely impact zone or strewn field. People from all walks of life roamed the streets, open fields and hillsides of the north bay in search of fragments. Despite organized searches by Dr. Jenniskens, it was the footwork from other individuals that led to finding six fragments and was the first step which led to these studies that add to the understanding of the early Solar System’s development.
For Dr. Jenniskens, Novato was part of a trifecta – the April 22, 2012, Sutter Mill meteorite in the nearby foothills of the Sierras, the Novato meteorite and the massive Chelyabinsk airburst event in Russia on February 15, 2013. Throughout this period, Dr. Jenniskens all-sky camera network continued to expand and record “falling stars” – meteors. The number of meteors recorded with calculated trajectories is now over 175,000. The SETI Institute researcher has been supported by NASA and personnel at the institute and ordinary citizens including amateur astronomers that have refined the methods for meteor orbital determination and estimating their size and mass. Several websites have compiled images and results for the Novato meteorite with Dr. Jenniskens’ – CAMS.SETI.ORG being most prominent.
What is it with Russia and explosive events of cosmic origins? The 1908 Tunguska Explosion, the Chelyabinsk bolide of February 2013, and now this: an enormous 80-meter 60-meter wide crater discovered in the Yamal peninsula in northern Siberia!
To be fair, this crater is not currently thought to be from a meteorite impact but rather an eruption from below, possibly the result of a rapid release of gas trapped in what was once frozen permafrost. The Yamal region is rich in oil and natural gas, and the crater is located 30 km away from its largest gas field. Still, a team of researchers are en route to investigate the mysterious hole further.
Watch a video captured by engineer Konstantin Nikolaev during a helicopter flyover below:
In the video the Yamal crater/hole has what appear to be streams of dry material falling into it. Its depth has not yet been determined. (Update: latest measurements estimate the depth of the hole to be 50-70 meters. Source.)
“The list of possible natural explanations for the giant hole includes a meteorite strike and a gas explosion, or possibly an eruption of underground ice.”
Dark material around the inner edge of the hole seems to suggest high temperatures during its formation. But rather than the remains of a violent impact by a space rock — or the crash-landing of a UFO, as some have already speculated — this crater may be a particularly explosive result of global warming.
According to The Siberian Times:
“Anna Kurchatova from Sub-Arctic Scientific Research Centre thinks the crater was formed by a water, salt and gas mixture igniting an underground explosion, the result of global warming. She postulates that gas accumulated in ice mixed with sand beneath the surface, and that this was mixed with salt – some 10,000 years ago this area was a sea.”
The crater is thought to have formed sometime in 2012.
UPDATE July 17: A new video (in Russian) of the hole from the research team has come out, and apparently it’s been made clear that it’s not the result of a meteorite. Exactly what process did produce it is still unknown, but rising temperatures are still thought to be a factor. Watch below (via Sploid).
(If any Russian-speaking UT readers would like to translate what’s being said, feel free to share in the comments below.)
UPDATE Nov. 13: Once the water in these holes froze solid scientists were able to enter and explore the bottoms. According to an article published on The Guardian, “eighty percent of the crater appears to be made up of ice and there are no traces of a meteorite strike.”
“As of now we don’t see anything dangerous in the sudden appearance of such holes, but we’ve got to study them properly to make absolutely sure we understand the nature of their appearance and don’t need to be afraid about them.”
– Vladimir Pushkarev, Director, Russian Center of Arctic Exploration
See more photos from inside the crater from the Russian Center of Arctic Exploration on The Siberian Times here.
Talk about heavy metal! This shiny, lumpy rock spotted by NASA’s Curiosity rover is likely made mostly of iron — and came from outer space! It’s an iron meteorite, similar to ones found in years past by Curiosity’s forerunners Spirit and Opportunity, but is considerably larger than any of the ones the MER rovers came across… in fact, at 2 meters (6.5 feet) wide this may very well be the biggest meteorite ever discovered on Mars!
Click the image for a supermetallicious high-resolution version from JPL’s Planetary Photojournal.
The picture above was made by combining high-resolution circular images (outlined in white) acquired with the Remote Micro-Imager (RMI) of Curiosity’s ChemCam instrument with color and context from the rover’s Mastcam. The images were taken on mission Sol 640 (May 25, 2014) and have been adjusted to simulate more Earth-like illumination.
Dubbed “Lebanon,” the large meteorite has a smaller fragment lying alongside it, named “Lebanon B.”
While iron meteorites are fairly common on Earth, on Mars they are by far the most common types of meteorites that have been discovered — if just for the sheer fact that they are highly resistant to erosion.*
*Note: that isn’t to say iron meteorites can’t be eroded; on the contrary, much of their signature surface sheen and pitted texture comes from various erosion processes. See a related study from J. W. Ashley et al. here.
“It first looked like a plane with fire coming out of the tail.”— Aaron O.
“I have never seen anything like it. Big, bright and moving gently across sky – slower than a plane, not falling at all but moving across.” — Shannon H.
“Viewed from cockpit of aircraft at 37,000′. Was visible for two or three minutes.”— Landy T.
Flaming plane? Incandescent visitor from the asteroid belt? As the these comments from the AMS Fireball Log attest, the brilliant and s-l-o-w fireball that seared the sky over southeastern Australia tonight was probably one of the most spectacular displays of re-entering space junk witnessed in recent years.
Ted Molczan, citizen satellite tracker and frequent contributor to the amateur satellite watchers SeeSat-L site, notes that the timing and appearance almost certainly point to the decay or de-orbiting of the Russian Soyuz 2-1B rocket booster that launched the meteorological satellite Meteor M2 on July 8.
Meteor over New South Wales. Look closely near the end and you’ll see it disintegrate into small pieces.
The magnificent man-made meteor, weighing some 4,400 pounds (2,000 kg), was seen from Melbourne to Sydney across the states of Victoria and New South Wales around 10 p.m. Hundreds of people were stopped in their tracks. Most noticed how slowly the fireball traveled and how long it continue to burn on the way down.
Spacecraft that reenter from either orbital decay or controlled entry usually break up at altitudes between 45-52 miles (84-72 km) traveling around 17,500 mph (28,000 km/hour) . Compression and friction from the ever-thickening air cause the craft, or in this case, the rocket booster, to slow down and heat up to flaming incandescence just like a hunk of space rock arriving from the asteroid belt. In both cases, we see a brilliant meteor, however manmade debris.
Occasional meteoroids break apart in the atmosphere and scatter meteorites just as pieces of occasional satellites, especially large, heavy craft, can survive the plunge and land intact – if a tad toasted. Whether anything remains of Russian rocket stage or where exactly it fell is still unknown. Here are a few more photos of successful space junk arrivals.
Reportedly, only one person has been struck by satellite debris. In 1997 Lottie Williams of Tulsa, Oklahoma was hit on the shoulder while walking by a small, twisted piece of metal weighing as much as a crushed soda can. It was traced back to the tank of a Delta II rocket that launched a satellite in 1996. I suppose it’s only a matter of time before someone else gets hit, but the odds aren’t great. More likely, you’ll see what alarmed and delighted so many southeastern Australians Thursday night: a grand show of disintegration.
When it comes to the Universe, things often go bump in the night. But whether two galaxies collide, a star explodes in a brilliant supernova, or a meteor hits a massive planet, we tend to catch the aftermath tens to hundreds of thousands of years later.
Of course, there’s always an exception to the rule. In today’s news, astronomers using NASA’s Mars Reconnaissance Orbiter have found a fresh meteor-impact crater. And it’s the biggest seen using before-and-after pictures.
When it comes to the red planet, we’ve seen evidence of fresh craters before, but usually the impact can’t be nailed down to better than a few years’ time. The constant sweep of the obiter’s weather-monitoring camera, the Mars Color Imager (MARCI), however, allowed us to pinpoint the impact to within a day.
The orbiter began its systematic observation of Mars in 2006. Ever since, Bruce Cantor, MARCI’s principle investigator, has examined the camera’s daily images, searching for evidence of dust storms and other observable weather events. Cantor’s findings help NASA operators plan for weather events that may be harmful to the solar-powered rover, Opportunity.
Nearly two months ago, Cantor noticed a black smudge — a telltale sign of an impact — on the red planet. “It wasn’t what I was looking for,” Cantor said in a NASA press release. “I was doing my usual weather monitoring and something caught my eye. It looked usual, with rays emanating from a central spot.”
So Cantor dug through earlier images, discovering that the dark spot wasn’t visible on March 27, 2012, but appeared on March 28, 2012.
MARCI is a low resolution camera, which is what allows it to see a large area of Mars constantly. But without a high resolution image, we can’t pick out the details of the impact-like black smudge. So Cantor performed follow-up observations with the orbiter’s telescope Context Camera (CTX) and the High Resolution Imaging Science Experiment (HiRISE).
CTX has imaged nearly the entire surface of Mars at least once during the orbiter’s seven-plus years of observations. It photographed the site of the newly-discovered crater in January 2012, revealing nothing prior to the impact. But two new craters appear in the recent image.
The largest crater is slightly elongated and spans 48.5 by 43.5 meters, roughly half the length of a football field. “The biggest crater is unusual, quite shallow compared to other fresh craters we have observed,” said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, Tucson.
The impacting object is likely a few meters across. Something that small would burn up in the Earth’s atmosphere, but with a much thinner atmosphere (about 1% as thick as Earth’s), Mars lets most debris right on through.
To add to the details, images from HiRISE revealed more than a dozen smaller craters near the two larger ones seen by CTX. It’s likely that Mars’ atmosphere, as thin as it is, supplied enough pressure to break the incoming meteoroid into smaller pieces, leaving multiple impacts behind.
“Studies of fresh impact craters on Mars yield valuable information about impact rates and about subsurface material exposed by the excavations,” said Leslie Tamppari, deputy project scientist for the Mars Reconnaissance Orbiter mission at NASA’s Jet Propulsion Laboratory. “The combination of HiRISE and CTX has found and examined many of them, and now MARCI’s daily coverage has given great precision about when a significant impact occurred.”
The initial NASA press release can be viewed here.
If the hoped-for meteor blast materializes this Friday night / Saturday morning (May 23-24) Earth won’t be the only world getting peppered with debris strewn by comet 209P/LINEAR. The moon will zoom through the comet’s dusty filaments in tandem with us.
Bill Cooke, lead for NASA’s Meteoroid Environment Office, alerts skywatchers to the possibility of lunar meteorite impacts starting around 9:30 p.m. CDT Friday night through 6 a.m. CDT (2:30-11 UTC) Saturday morning with a peak around 1-3 a.m. CDT (6-8 UTC).
While western hemisphere observers will be in the best location, these times indicate that European and African skywatchers might also get a taste of the action around the start of the lunar shower. And while South America is too far south for viewing the Earth-directed Camelopardalids, the moon will be in a good position to have a go at lunar meteor hunting. Find your moonrise time HERE.
The thick crescent moon will be well-placed around peak viewing time for East Coast skywatchers, shining above Venus in the eastern sky near the start of morning twilight. For the Midwest, the moon will just be rising at that hour, while skywatchers living in the western half of the country will have to wait until after maximum for a look:
“Anyone in the U.S. should monitor the moon until dawn,” said Cooke, who estimates that impacts might shine briefly at magnitude +8-9.
“The models indicate the Camelopardalids have some big particles but move slowly around 16 ‘clicks’ a second (16 km/sec or 10 miles per second). It all depends on kinetic energy”, he added. Kinetic energy is the energy an object possesses due to its motion. Even small objects can pack a wallop if they’re moving swiftly.
Bright lunar meteorite impact recorded on video on September 11, 2013. The estimated 900-lb. space rock flared to 4th magnitude.
Lunar crescents are ideal for meteor impact monitoring because much of the moon is in shadow, illuminated only by the dim glow of earthlight. Any meteor strikes stand out as tiny flashes against the darkened moonscape. For casual watching of lunar meteor impacts, you’ll need a 4-inch or larger telescope magnifying from 40x up to around 100x. Higher magnification is unnecessary as it restricts the field of view.
I can’t say how easy it will be to catch one, but it will require patience and a sort of casual vigilance. In other words, don’t look too hard. Try to relax your eyes while taking in the view. That’s why the favored method for capturing lunar impacts is a video camera hooked up to a telescope set to automatically track the moon. That way you can examine your results later in the light of day. Seeing a meteor hit live would truly be the experience of a lifetime. Here are some additional helpful tips.
On average, about 73,000 lbs. (33 metric tons) of meteoroid material strike Earth’s atmosphere every day with only tiny fraction of it falling to the ground as meteorites. But the moon has virtually no atmosphere. With nothing in the way, even small pebbles strike its surface with great energy. It’s estimated that a 10-lb. (5 kg) meteoroid can excavate a crater 30 feet (9 meters) across and hurl 165,000 lbs. of lunar soil across the surface.
A meteoroid that size on an Earth-bound trajectory would not only be slowed down by the atmosphere but the pressure and heat it experienced during the plunge would ablate it into very small, safe pieces.
NASA astronomers are just as excited as you and I are about the potential new meteor shower. If you plan to take pictures or video of meteors streaking through Earth’s skies or get lucky enough to see one striking the moon, please send your observations / photos / videos to Brooke Boen ([email protected])at NASA’s Marshall Space Flight Center. Scientists there will use the data to better understand and characterize this newly born meteor blast.
On the night of May 23-24, Bill Cooke will host a live web chat from 11 p.m. to 3 a.m. EDT with a view of the skies over Huntsville, Alabama. Check it out.