Norwegian Skydiver Almost Gets Hit by Falling Meteor — and Captures it on Film

A multiple frame picture of the rock falling, taken from a video taken during a skydive in 2012. Credit and copyright: Anders Helstrup, used by permission.

It sounds like a remarkable story, almost unbelievable: Anders Helstrup went skydiving nearly two years ago in Hedmark, Norway and while he didn’t realize it at the time, when he reviewed the footage taken by two cameras fixed to his helmet during the dive, he saw a rock plummet past him. He took it to experts and they realized he had captured a meteorite falling during its “dark flight” — when it has been slowed by atmospheric braking, and has cooled and is no longer luminous.

UPDATE: See our new article on this topic: Follow Up on Skydiving Meteorite: Crowdsourcing Concludes it Was Just a Rock

Respected Norwegian astrophysicist Pål Brekke confirmed to Universe Today that the story is true and the video is authentic. “I was part of the investigation – and kept secret for two years – in hope of finding the meteorite,” Brekke said via a conversation on Twitter.

Since the search for the meteorite has come up empty so far, Helstrup’s story and video has been released in an effort to recruit more people to look for the rock — and to confirm that this actually was a meteorite.

“It has been a little hard to keep it as a secret,” Helstrup told Universe Today via email, “but everyone has been loyal to the project and helped us out!”

Here’s the video:

The rock zooms by at about :15 in this video:

You can watch a slower version in the video below.

Helstrup has been searching with friends, family and volunteers after getting advice from experts from the Geological Museum in Oslo, Norwegian Space Centre and Norwegian meteor network, making painstaking efforts to pinpoint the location of where the meteorite fell.

“The meteorite has for sure some possible hiding spots,” Helstrup said. “There is a forest with lots of different places it can easily disappear. Even if there is several areas where it would be found easily, there is a river, some marshy spots and areas and lots of high grass. Therefore the best chance of a finding would be in springtime. But we have high hopes!”

Finding the rock would provide the definitive confirmation it really was a space rock that Helstrup captured on film. There’s been much debate about the veracity of both the video and the claim (read Phil Plait’s look at the evidence) but in fact, it is Helstrup who might be most skeptical this was a meteor. There are experts, however, who say there is no doubt.

“It can’t be anything else,” said geologist Hans Amundsen, quoted in the Norwegian publication NRK. “The shape is typical of meteorites – a fresh fracture surface on one side, while the other side is rounded.”

He added that the meteorite may have been part of a larger rock that had exploded perhaps 20 kilometers above Helstrup.

What if the rock would have hit Helstrup or his diving partner? Amundson said the rock would have cut him in half.

“Imagine a 5 kilo rock hitting you in the chest at 300 kilometers per hour,” Amundson says in the video. “That would have led to quite an accident investigation.”

This is unique because — if confirmed — this is the first time a meteor in dark flight has been captured on film.

“Fireballs entering the atmosphere have been filmed many times,” says Morten Bilet in the video. Bilet is a meteorite expert. “This is unique because it was filmed during its so called “dark flight” – after it has been burned out. That’s never been done before so this is something new and exciting.”

We’ve asked Helstrup to keep us posted on any developments in this story or if the meteorite is found.

You can read more about the story from NRK, and the Norwegian Space Center, and the Norwegian Meteorite Society.

Martian Meteorite Could Have Contained Ancient Water And Life, NASA Paper Says

A scanning electron microscope image of a small section of a meteorite found evidence of past water in a Martian meteorite (specifically, in the form of tunnels and microtunnels). The meteorite is called Yamato 000593. The rock was originally recovered in Antarctica in 2000 and is believed to have come from Mars. Credit: NASA

Could this meteorite show evidence of ancient water and life on Mars? That’s one possibility raised in a new paper led by NASA and including members of a team who made a contentious claim about Martian microfossils in another meteorite 18 years ago.

“This is no smoking gun,” stated lead author Lauren White, who is based at NASA’s Jet Propulsion Laboratory, of the findings released this week. “We can never eliminate the possibility of contamination in any meteorite. But these features are nonetheless interesting and show that further studies of these meteorites should continue.”

The new, peer-reviewed work focuses on tunnels and microtunnels the scientists said they found in a meteorite called Yamato 00593. The meteorite is about 30 pounds (13.7 kilograms) and was discovered in Antarctica in 2000. The structures were found deep within the rock, NASA stated, and “suggest biological processes might have been at work on Mars hundreds of millions of years ago.”

Scientists believe the 1.3-billion-year-old rock left Mars about 12 million years ago after an impact threw it off the surface. It reached Antarctica 50,000 years ago and after it was found in 2000, was analyzed and believed to be a “nakhlite”, or a kind of Martian meteorite. “Martian meteoritic material is distinguished from other meteorites and materials from Earth and the moon by the composition of the oxygen atoms within the silicate minerals and trapped Martian atmospheric gases,” NASA stated.

An asteroid impacts ancient Mars and send rocks hurtling to space - some reach Earth
An asteroid impacts ancient Mars and send rocks hurtling to space – some reach Earth

There are two things in the meteorite that caught the attention of scientists. One is the aforementioned tunnels and microtunnels, which they say are similar to those altered by bacteria in basalt on Earth. The second is tiny, carbon-enriched spherules (in the nanometer to micrometer range) between layers in the rock — structures similar to another Martian meteorite (Nakhla) that struck Egypt in 1911. In that case, the rock was recovered quickly after landing and still had the same spherules, the researchers noted.

The authors said it’s possible that these structures could be explained by other mechanisms besides life, but said the similarities to what they have found on Earth “imply the intriguing possibility that the Martian features were formed by biotic activity.”

The research team includes NASA’s David McKay (who died a year ago), Everett Gibson and Kathie Thomas-Keptra. In 1996, these same scientists (then led by McKay) found “biogenic evidence” in a meteorite called Allen Hills 84001, but other science teams have disagreed with the findings. There have been a lot of papers about this particular meteorite, and you can read more about the controversy in this 2011 Universe Today article.

Of note, since 1996 NASA and other agencies have found plenty of evidence for past water on Mars, which might throw the findings in a different light. What do you think? You can read the full paper on the new research in the journal Astrobiology.

Source: NASA

Chelyabinsk ‘Was A Pretty Nasty Event’ And Is Spurring Asteroid Action

Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.
Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.

Looking at the power of the Chelyabinsk meteor (which struck a year ago and is visible starting around 1:15 in the video above) is still terrifying all these months later. Happily for those of on Earth worried about these big space rocks, the world’s space agencies are taking the threat seriously and are starting to implement new tracking systems to look out for more threatening space rocks.

“It was a pretty nasty event. Luckily, no one was killed but it just shows the sort of force that these things have,” said Alan Harris, senior scientist of the DLR Institute of Planetary Research in Berlin, in this new European Space Agency video.

An asteroid that is only about 100 meters (328 feet) in diameter, for example, “could actually completely destroy an urban area in the worst case. So those are the things we’re really looking out for and trying to find ways to tackle.”

Check out the video for some examples of how the Europeans are talking about dealing with this problem, including a fun comparison to cosmic billiards and a more serious discussion on how to shove these rocks aside if they were on a collision course with our planet.

For more information on tracking down killer asteroids, check out this past video with Universe Today founder Fraser Cain.

Happy 1st Anniversary Chelyabinsk! The Fireball that Woke Up the World

Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.
Chelyabinsk fireball recorded by a dashcam from Kamensk-Uralsky north of Chelyabinsk where it was still dawn. A study of the area near this meteor air burst revealed similar signatures to the Tall el_Hammam site.

Wonder and terror. Every time I watch the dashcam videos of the Chelyabinsk fireball it sends chills down my spine. One year ago today, February 15, 2013, the good citizens of Chelyabinsk, Russia and surrounding towns collectively experienced these two powerful emotions as they witnessed the largest meteorite fall in over 100 years. 


Incredible compilation of dashcam and security camera videos of the fireball

The Chelyabinsk fall, the largest witnessed meteorite fall since the Tunguska event in 1908, exploded with 20-30 times the force of the atomic bomb over Hiroshima at an altitude of just 14.5 miles (23 km). Before it detonated into thousands of mostly gravel-sized meteorites and dust,  it’s estimate the incoming meteoroid was some 66 feet (20-meters) end to end, as tall as a five-story building. The shock wave from the explosion shattered windows up and down the city, injuring nearly 1,500 people.

Friction and enormous pressures placed upon the Chelyabinsk meteoroid by the atmosphere caused it to explode to pieces and send a shock wave across the cities below. This is a selection of typical small, fusion-crust covered Chelyabinsk meteorites. The U.S. penny is 9mm in diameter. Credit: Bob King
Atmospheric friction pressure on the Chelyabinsk meteoroid caused it to explode to pieces and send a shock wave across the land below. Pictured is a selection of typical small, fusion-crust covered Chelyabinsk meteorites recovered shortly after the fall. The U.S. penny is 9mm in diameter. Credit: Bob King

For nearby observers it briefly appeared brighter than the sun.  NASA Meteorite researcher Peter Jenniskens conducted an Internet survey of eyewitnesses and found that eye pain and temporary blindness were the most common complaints from those who looked directly at the fireball.  20 people also reported sunburns including one person burned so badly that his skin peeled:

Trajectory projection and strewnfield map showing the main fireball (and two additional explosions) at top and the elliptical shaped area where the densest concentration of meteorites were found. Credit: Svend  Buhl and K. Wimmer
Map showing the trajectory of the main fireball in yellow (and two additional explosions at top left). The pink oval, called the strewnfield, is where the densest concentration of meteorites were found. Click to see additional maps. Credit: Svend Buhl and K. Wimmer

“We calculated how much UV light came down and we think it’s possible,” Jenniskens said. Perhaps surprisingly, most of the meteoroid’s mass – an estimated 76% – burned up and was converted to dust during atmospheric entry. It’s estimated that only 0.05% of the original meteoroid or 9,000 to 13,000 pounds of meteorites fell to the ground.


No video I’ve seen better captures the both the explosion of the fireball and ensuring confusion and chaos better than this one.

The largest fragment, weighing 1,442 lbs. (654 kg), punched a hole in the ice of Lake Chebarkul. Divers raised it from the bottom muck on Oct. 16 last year and rafted it ashore, where scientists and excited onlookers watched as the massive space rock was hoisted onto a scale and promptly broke into three pieces. Moments later the scale itself broke from the weight.

The 26-foot-wide (8-meter) hole punched in the ice of Chebarkul Lake by the largest fragment of the Chelyabinsk meteorite. Credit: Eduard Kalinin
The 26-foot-wide (8-meter) hole punched in the ice of Chebarkul Lake by the largest fragment of the Chelyabinsk meteorite. Credit: Eduard Kalinin

There were plenty of meteorite to go around as local residents tracked down thousands of fragments by looking for holes pierced in the snow cover by the hail of space rocks. Working with hands and trowels, they dug out mostly small, rounded rocks covered in fresh black fusion crust, a 1-2 mm thick layer of rock blackened and melted rock from frictional heating by the atmosphere. According to the Meteoritical Bulletin Database entry,  the total mass of the recovered meteorites to date comes to 1,000 kg (2,204 lbs.) with locals finding up to more than half of that total.


Animation of the orbit Chelyabinsk meteoroid via Ferrin and Zuluaga. Meteoroid is the name given a meteor while still orbiting the sun before it enters Earth’s atmosphere.

Thanks to the unprecedented number of observations of the fireball recorded by dashcams, security cameras and eyewitness accounts, astronomers were able to determine an orbit for  Although some uncertainties remain, the object is (was) a member of the Apollo family of asteroids, named for 1862 Apollo, discovered in 1932. Apollos cross Earth’s orbit on a routine basis when they’re nearest the sun. Chelyabink’s most recent crossing was of course its last.

Chelyabinsk meteorites exhibit many signs of  shock created during an asteroid impact long ago. Many specimens show a typical pale white color with small chondrules typical of LL5 chondrite. A closer look shows fine, dark shock veins of melted glass. Other fragments are made of impact melt, rock shocked-heated and blackened by impact. Credit: Bob King
Chelyabinsk meteorites tell the tale of an earlier impact with another asteroid 4.452 billion years ago. Many specimens are pale white with small chondrules typical of LL5 chondrites. A closer look shows fine, dark shock veins of melted glass. Other fragments are made of pure impact melt, rock shocked-heated, melted and blackened by impact. Credit: Bob King

Chelyabinsk belongs to a class of meteorites called ordinary chondrites, a broad category that includes most stony meteorite types. The chondrites formed from dust and metals whirling about the newborn sun some 4.5 billion years ago; they later served as the building blocks for the planets, asteroids and comets that populate our solar system. Chondrites are further subdivided into many categories. Chelyabinsk belongs to the scarce LL5 class — a low iron, low metal stony meteorite composed of silicate materials like olivine and plagioclase along with small amounts of iron-nickel metal.

 

Most of the Chelyabinsk meteorites were shattered and broken during the explosion / shock blast, revealing brecciation, metal and shock veins in their interiors. Credit: Bob King
Most of the Chelyabinsk meteorites were shattered and broken during the explosion / shock blast, revealing brecciation, metal and shock veins in their interiors. Credit: Bob King
A thin slice of Chelyabinsk impact melt breccia. Flows of once-molten rock (gray) surround islands of less altered material. A small iron nickel nodule is seen at lower left. Credit: Bob King
A thin slice of Chelyabinsk impact melt breccia. Flows of once-molten rock (paler gray) surround islands of less altered material. A small iron nickel nodule is seen at lower left. Credit: Bob King

 

A closer look at Chelyabinsk meteorites reveals a fascinating story of ancient impact. Remarkably, the seeds of the meteoroid’s atmospheric destruction were sown 115 million years after the solar system’s formation when ur-Chelyabinsk was struck by another asteroid, suffering a powerful shock event that heated, fragmented and partially melted its interior. Look inside a specimen and the signs are everywhere – flows of melted rock, spider webby shock veins of melted silicates and peculiar, shiny cleavages called “slickensides” where meteorites broke along  pre-existing fracture planes.

Slickensides on a Chelyabinsk meteorite fragment where the fragment broke along a pre-existing fracture plane. Credit: Bob King
Slickensides on a Chelyabinsk meteorite fragment where the fragment broke along a pre-existing fracture plane. Credit: Bob King

Jenniskens calculated that the object may have come from the Flora family of S-type or stony asteroids in the belt between Mars and Jupiter. Somehow Chelyabinsk held together after the impact until nearly the time it met its fate with Earth’s atmosphere. Researchers at University of Tokyo and Waseda University in Japan discovered that the meteorite had only been exposed to cosmic rays for an unusually brief time for a Flora member – just 1.2 million years. Typical exposures are much longer and indicate that the Chelyabinsk parent asteroid only recently broke apart. Jenniskens speculates it was likely part of a loosely-bound, rubble pile asteroid that may have broken apart during a previous close encounter with Earth in the last 1.2 million years. The rest of the rubble pile might still be orbiting relatively nearby as part of the larger population of near-Earth asteroids.

Rivulets of melted rock line the fusion crust of melted rock on this small Chelyabinsk meteorite. Credit: Bob King
Rivulets of melted rock line the fusion crust of melted rock on this small Chelyabinsk meteorite. Credit: Bob King

Good thing Chelyabinsk arrived pre-fractured. Had it been solid through and through, more of the original asteroid might have survived its fiery descent and wreaked even more havoc in in its wake.

We’re fortunate that Chelyabinsk contains a fantastic diversity of features and that we have so many pieces for study. Surveys have found some 500 near-Earth asteroids. No doubt some are part of the parent body of Chelyabinsk and may grace our skies on some future date. Whatever happens, Feb. 15, 2013 will go down as a very loud “wake-up call” for our species to implement more asteroid-hunting programs both in space and on the ground. Enjoy a few more photos of this incredible gift from space:

This Chelyabinsk "nosecone" or "bullet" weighs just 0.35g. It displays a beautiful streamlined form from its flight through the atmosphere. Credit: Bob King
This Chelyabinsk “nosecone” or “bullet” weighs just 0.35g. It displays a beautiful streamlined form from its flight through the atmosphere. Credit: Bob King
Check out the bubble texture on this one. Heated by friction with the air, this fragment shows bubbly crust from escaping gases. Credit: Bob King
Check out the bubble texture on this one. Heated by friction with the air, this fragment shows bubbly crust from escaping gases. Credit: Bob King
Slice of Chelyabinsk showing relatively unshocked areas (light brown) cut by thick dark veins of shock-darkened material. Credit: Bob King
Slice of Chelyabinsk showing mildy shocked areas (light brown) cut by thick dark veins of shock-darkened material. Credit: Bob King
Some Chelyabinsk individuals show interesting variations in color that have nothing to do with rusting. It's believed that varying amounts of oxygen available to the speeding rocks during the meteorite break up created the brownish-red coloration on some fusion crusts. Credit: Bob King
Some Chelyabinsk individuals show interesting variations in color that have nothing to do with rusting. It’s believed that varying amounts of oxygen available to the speeding rocks during the meteorite break up created the brownish-red coloration on some fusion crusts. Credit: Bob King
OK, I saved the weirdest for last - a smaller Chelyabinsk meteorite appears to have followed closely enough behind the larger for there liquid fusion crusts to have welded them together. Just my speculation. Credit: Bob King
I saved the weirdest for last – a smaller Chelyabinsk meteorite appears to have followed closely enough behind the larger for their still-molten fusion crusts to have welded them together. Just my speculation. Credit: Bob King

Experts Question Claim Tunguska Meteorite May Have Come from Mars

Image credit:

In 1908 a blazing white line cut across the sky before exploding a few miles above the ground with a force one thousand times stronger than the nuclear blast that leveled Hiroshima, Japan.

The resulting shock wave felled trees across more than 800 square miles in the remote forests of Tunguska, Siberia.

For over 100 years, the exact origins of the Tunguska event have remained a mystery. Without any fragments or impact craters to study, astronomers have been left in the dark. That’s not to say that all kinds of extraordinary causes haven’t been invoked to explain the event. Various people have thought of everything from Earth colliding with a small black hole to the crash of a UFO.

Russian researchers claim they may finally have evidence that will dislodge all conspiracy theories, but that “may” is huge. A team of four believes they have recovered fragments of the object — the so-called Tunguska meteorite — and even think they are Martian in origin. The research, however, is being called into question.

In a detective-like manner, the team surveyed 100 years’ worth of research. The researchers read eyewitness reports and analyzed aerial photos of the location. They performed a systematic survey of the central region in the felled forest and analyzed exotic rocks and penetration funnels.

A schematic of the Tunguska event. Image Credit:
A schematic of the central region in the felled forest due to the Tunguska event. Image Credit: Anfinogenov et al.

Previously, numerous expeditions failed to recover any fragments that could be attributed conclusively to the long-sought Tunguska meteorite. But then Andrei Zlobin, of the Russian Academy of Sciences’ Vernadsky State Geological Museum, discovered three stones with possible traces of melting. He published the results in April 2013.

Zlobin’s discovery paper was received with skepticism and Universe Today covered the news immediately. A curious question arose quickly: why did it take so long for Zlobin to analyze his samples? The expedition took place in 1988, but it took 20 years before the three Tunguska candidates were nominated and another five years before Zlobin finished the paper.

By Zlobin’s admission, his discovery paper was only a preliminary study. He claimed he didn’t carry out a detailed chemical analysis of the rocks, which is necessary in order to reveal their true nature. Most field experts quickly dismissed the paper, feeling there was more work to be done before Zlobin could truly know if these rocks were fragments from the Tunguska meteor.

Today, new research is moving forward with an analysis of the rocks originally discovered by Zlobin. But an interesting new addition to the collection is a rock called “John’s Stone” — a large boulder discovered in July, 1972. While it’s mostly a dark gray now it was much lighter at the time of its discovery. “John’s Stone has an almond-like shape with one broken side,” lead author Dr. Yana Anfinogenov told Universe Today.

Now the skeptical reader might be asking the same question as before: why is there such a large time-lapse between the discovery of John’s Stone and the analysis presented here? (It’s interesting to note that while this elusive rock has been reviewed in the literature for over 40 years, this is the first time it has appeared in an English paper). Anfinogenov claimed that new data (especially concerning Martian geology) allowed for a much better analysis today than it did in recent years.

Photos (1972) of John's Stone and related findings. Image Credit:
Photos (1972) of John’s Stone and related findings. Image Credit: Anfinovenov et al.

“The ground near John’s Stone presents undeniable impact signs suggesting that the boulder hit the ground with a catastrophic speed,” Anfinogenov told Universe Today. It left a deep trace in the permafrost which allowed researchers to note its trajectory and landing velocity coincides with that of the incoming Tunguska meteorite.

John’s Stone also contains shear-fractured splinter fragments with glossy coatings, indicating the strong effect of heat generated when it entered our atmosphere. The research team attempted to reproduce those glossy coatings found on the splinters by heating another fragment of John’s Stone to 500 degrees Celsius. The experiment was not successful as the fragment disintegrated in high heat.

“The authors do not present a strong case that the boulder known as John’s Stone was involved in the Tunguska event, or that it originated from Mars,” said Dr. Phil Bland, a meteorite expert at Curtin University in Perth, Australia.

They claim the mineral structure and chemical composition of the rocks — a quartz-sandstone with grain sizes of 0.5 to 1.5 cm and rich in silica — match rocks found on Mars. But their paper lacks any microanalysis of the samples, or isotopic study.

While there is a strong case that an impact on Mars could easily eject rock fragments that would then hit the Earth, something doesn’t match up. “The physics of ejecting material from Mars into interplanetary space argues for fragments with diameters of one to two meters, not the 20 to 30 meter range that would be required for Tunguska,” Bland told Universe Today.

It seems as though planetary geologists will require a much stronger case than this to be truly convinced John’s Stone is the Tunguska meteorite, let alone from Mars.

The paper is currently under peer-review but is available for download here.

Selling Rocks from Outer Space: an Interview with ‘Meteorite Man’ Geoff Notkin

Geoff Notkin at Aerolite Meteorites in Tucson, AZ. (© Geoff Notkin. Used with permission.)

What’s the oldest thing you’ve ever held in your hand? A piece of petrified wood? A fossilized trilobite? A chunk of glacier-carved granite? Those are some pretty old things, sure, but there are even older objects to be found across the world… that came from out of this world. And thanks to “Meteorite Men” co-host, author, and educator Geoff Notkin and his company Aerolite Meteorites, you can own a truly ancient piece of the Solar System that can date back over 4.5 billion years.

Founded in 2005, Aerolite (which is an archaic term for meteorite) offers many different varieties of meteorites for sale, from gorgeous specimens worthy of a world-class museum to smaller fragments that you could proudly — and economically — display on your desk. Recently I had the opportunity to talk in depth with Geoff about Aerolite and his life’s work as a meteorite collector and dealer. Here are some of the fascinating things he had to say…

Geoff holds one of his found meteorites (© Geoff Notkin)
“I promised myself as a kid that one day I would have an actual meteorite.” (© Geoffrey Notkin)

So Geoff, what initially got you interested in meteorites and finding them for yourself?

“It’s been a lifelong passion for me, but I’m lucky in that I can really put my finger on a specific event when I was a kid and that was my mother taking me to the Geological Museum in London when I was six or seven… I was already a rock hound, I loved collecting fossils, and my dad was a very keen amateur astronomer. And so I had this love of astronomy and this fascination with other worlds for as long as I can remember. I’m a very tactile person; I’m very hands-on. I like to know how things work… I want to know all the bits and pieces. I was frustrated a bit, because I wanted to know more about astronomy. I could see all these planets and places through the ‘scope, but I couldn’t touch them. But I could touch rocks and fossils.

“So I’m six or seven years old, and I’m on the second floor of the Museum in the Hall of Rocks and Minerals. And at the back was this small display area that’s very dark. And you walked through an arch, it’s almost like walking into a cave. And it was very low light back there, and that was the meteorite collection.

“There were a couple of large meteorites on stands, and in those days — it was the late 60s — security wasn’t the issue that it is today. So you could touch the big specimens, and so I put my hands on these giant meteorites and I was absolutely enthralled.  And I had this sort of epiphany: meteorites were the locus between my two interests, astronomy and rock-hounding. Because they’re rocks… they’re rock samples from outer space. I promised myself as a kid that one day I would have an actual meteorite.

“By finding or owning meteorites, you are forging a solid and tangible connection with astronomy.”

“Of course at the time there was no meteorite business, no meteorite magazines, there was no network of collectors like there is today. Back in the late 60s when I gave myself this challenge it was like saying I was going to start my own space program! But not only did it come true, it’s become my career.”

One of the meteorites offered at Aerolite.org (© Geoff Notkin)
One of the meteorites offered at Aerolite.org (© Geoffrey Notkin)

What makes Aerolite such a great place to buy meteorites?

“I think the caring for the subject matter really shows on the website. We have the best photography in the entire meteorite industry. I think we have the largest selection… we certainly spend a great deal of time discussing the history and importance of pieces… every single meteorite on our website has a detailed description and in most cases multiple photographs. My view is if you’re going to do something, you should really do it to the best of your ability. We don’t cut any corners, we don’t sell anything unless we’re one hundred percent sure of what it is and where it came from.

“I want buyers and visitors to look at the website and share my sense of wonder about meteorites. I think meteorites are the most wonderful things in existence, they’re actual visitors from outer space — they’re inanimate aliens that have landed on our planet.”

“We do this because we want to share our passion. We stand by every piece that we sell.”

How can people be sure they are getting actual meteorites (and not just funny-looking rocks?)

“This is something that’s more important to pay attention to now than ever. Are there fakes, are there shady people? Yes and yes. If you go on eBay at any given time you will find numerous pieces that are being offered for sale that are either not meteorites at all or are one thing being passed off as another thing. Sometimes this is malicious, sometimes people just don’t know any better. So the best way to buy a meteorite and know that it’s real is to buy from a respected dealer who has a solid history in the field.

“I’m by no means the only person who does this. There are a number of very well-established dealers around the world, and a good place to start is the International Meteorite Collectors Association (of which Geoff is a member) which is an international group with hundreds of members — collectors and dealers… it’s sort of a watchdog group that tries to maintain high standards of integrity in the field.

“My company has a very strict policy of never offering anything that’s questionable.”

“I see fakes all the time,” Geoff added. “On eBay, on websites, in newspaper ads… you do have to be careful. My company has a very strict policy of never offering anything that’s questionable. And we do get offered questionable things. There are some countries that have strict policies about exporting meteorites — Australia and Canada being two of them — and we work very closely with academia in both countries, and we have legally exported meteorites from those countries. Not only do we abide by international regulations, we actively support them.”

Geoff and some of his 'alien'-hunting gadgets in the  Chilean desert. (© Geoff Notkin)
Geoff and some of his ‘alien’-hunting gadgets in the Chilean desert. (© Geoffrey Notkin)

So you not only offer meteorites for sale to the general public, but you also donate to schools and museums.

“We work very closely with most of the world’s major meteorite institutions. I have provided specimens to the American Museum of Natural History in New York, the British Museum of Natural History in London, the Vienna Museum of Natural  History, the Center for Meteorite Studies… we work with almost everyone. When we find something that is new or different or exciting, we always donate a piece or pieces to our colleagues in academia. It’s just the right thing, it’s the right thing to do if you discover something important to make it available to science.

A sample of a beautiful, partially-translucent pallasite meteorite (© Geoff Notkin)
A sample of a beautiful, partially-translucent pallasite meteorite (© Geoffrey Notkin)

“Most universities and museums don’t have acquisitions budgets and can’t afford to buy things that they might like to have. In return they classify the meteorites that we found, and they go into the permanent literature and become more valuable as a result. A meteorite with a history and a name and classification is worth more than a random meteorite that somebody just found in a desert. So everybody benefits, it’s a really good match.”

In other words, you really are making a contribution to science as opposed to just “looting.”

“Exactly. And I have, a very few times, gotten emails from disgruntled viewers who didn’t understand what we were doing, saying ‘what makes you think it’s okay to come to Australia and take our meteorites,’ for example. So I wrote a very courteous email back saying that we were in Australia with the express permission and cooperation of the Australian park services and one of the senior park rangers was there with us. And not only did we follow the proper procedure in having those specimens exported from Australia, I donated rare meteorites to collections just as a ‘thank you’ for working with us. It wasn’t a trade, it was a thank you. So everywhere we go, whatever we do, we try and leave a good impression.”

Geoff added, “I do this out of love… this isn’t the best way to make a living! Being a meteorite hunter is probably not the best capital return on your time but it’s a very exciting and rewarding life in every other way.”

Geoff Notkin is also the host of STEM Journals, an educational show on COX 7 soon entering its third season (© Geoff Notkin)
Geoff Notkin is also the host of STEM Journals, an educational show on COX 7 soon entering its third season (© Geoffrey Notkin)

And thus, by buying meteorites from Aerolite, customers aren’t just helping pay for your expeditions and your work but also supporting research and education too.

“People who purchase from us are really participating in the growth of this science. Also, something very near and dear to my heart is science education for kids. You know that I am the host of an educational series called STEM Journals, which is a very — I think — amusing, entertaining, funny, fast-paced look at science, technology, engineering, and math topics. But you can’t make a living doing television shows like that. This is a labor of love… we do it because we think it’s important. If I didn’t have a commercial meteorite company to help underwrite the costs of educational programming and educational books, we just couldn’t do it. It’s as simple as that.

“So we always try to give back. That’s why I speak at schools and universities and give away meteorites to deserving kids at gem shows… because it was done to me when I was seven years old. The look of wonder you see on a kid’s face when you connect with them and they start to grasp the wonder of science… that’s something they’ll never forget.”

That’s great. And it sounds like you haven’t forgotten it yet either!

“I must say after all these years, I’ve been doing this close to full time for nearly twenty years and you never lose the amazement and the wonder of when a meteorite’s found or uncovered. I never go ‘oh, jeez, it’s just another billion-year-old space rock that fell to Earth!’ So it is a privilege to be in a work field where almost daily something wondrous happens.”

As we here at Universe Today know, when it concerns space that’s a common occurrence!

“Exactly!”

One last thing Geoff… do you think we’ll ever run out of meteorites?

“The meteorite collecting field has grown tremendously in the past ten years, and Meteorite Men is part of that. There is a finite supply of meteorites. Of course there are more landing all the time, but not enough to replenish the demand. Periodically there is a new very large discovery made, such as the Gebil Kamil iron in Egypt a couple of years ago. But what is happening is a significant increase in price and a decrease in selection, so some of the real staples we used to see… you can’t get them anymore.

“Still, people who want a meteorite collection, now is a great time for them to be buying because there are more meteorites available than in the past — but it’s not going to stay that way for very long. It’s like any other collectible that has a finite supply.”

Makes sense… I’ll take that as ‘inside advice’ to place an order soon!

______________

My thanks to Geoff for the chance to talk with him a little bit about his fascinating past, his passion, and his company. And as an added bonus to Universe Today readers, Geoff is extending a special 15% off on orders from Aerolite Meteorites — simply mention the code UNIVERSETODAY when you place an order!* (Trust me — once you browse through the site you’ll find something you want.) Also, if you’re in the Tucson area, Geoff Notkin and Aerolite Meteorites will have a table at the Tucson Gem and Mineral Show starting Jan. 31.

One of several meteorite-hunting books by Geoff, featuring an introduction by Neil Gaiman.
One of several meteorite-hunting books by Geoff, featuring an introduction by Neil Gaiman.

Be sure to check out Geoff’s television show STEM Journals on COX7 — the full first two seasons can be found online here and here, and shooting for the third season will be underway soon.

Want to know how to find “inanimate aliens” for yourself? You can find Geoff’s books on meteorite hunting here, as well as some of the right equipment for the job.

And don’t forget to follow Aerolite Meteorites and Geoff Notkin on Twitter!

 

*Sorry, the code isn’t valid for items already on sale or for select consignment items.

Newly Released Security Cam Video Shows Chelyabinsk Meteorite Impact in Lake Chebarkul

The 20-foot (6-meter) hole punched through the ice on Chebarkul Lake by a large fragment of the Chelyabinsk meteorite. Credit: AP


Security camera video showing the impact of the largest piece of the Chelyabinsk meteorite striking Lake Chebarkul during the Feb. 15, 2013 Russian fireball. Credit: Nikolaj Mel’nikov.

When I first watched this video of the half-ton Chelyabinsk meteorite crashing into Lake Chebarkul last Feb. 15 I didn’t see anything. But once you pay close attention, what you’ll see is nothing short of amazing. You’ll recall that a 20-foot (6 meter) hole appeared in the ice immediately after the fall. While no one witnessed the impact, a security camera caught the critical moment from the other side of the lake.

The video recently appeared in an online presentation by Peter Jenniskens, noted meteorite expert and senior research scientist at the SETI Institute. It was released as part of a paper and Powerpoint on the Chelyabinsk airburst. You can listen to Jenniskens’ presentation HERE.

Frame grab from the video showing the breakdown of the impact and resulting ice and snow cloud.
Frame grab from the video showing the breakdown of the impact and resulting ice and snow cloud.

When you watch the video, focus your attention just to the left of what looks like an ice fishing shack at top center and use the handy frame grab above. In the slowed-down portion of the footage you’ll see a cloud of ice and snow blow up and quickly drift to the right of the shack  seconds after impact. While blurry and small, it’s amazing good fortune we have a document of this fall.


Video of the recovery of the largest piece of the Chelyabinsk meteorite

Divers ultimately fished the 1/2 ton Chelyabinsk meteorite – the largest found so far – from the lake on Oct. 16. It measured 5 feet long (1.5 meter) and broke into three pieces as scientists hoisted it into a scale to weigh it.

As a return favor,  the little piece of heaven broke the scale.

Catastrophic Impacts Made Life on Earth Possible

According to a new study, meteors may be less dangerous than we thought, thanks to Earth's atmosphere. Credit: David A Aguilar (CfA).

How did life on Earth originally develop from random organic compounds into living, evolving cells? It may have relied on impacts by enormous meteorites and comets — the same sort of catastrophic events that helped bring an end to the dinosaurs’ reign 65 million years ago. In fact, ancient impact craters might be precisely where life was able to develop on an otherwise hostile primordial Earth.

This is the hypothesis proposed by Sankar Chaterjee, Horn Professor of Geosciences and the curator of paleontology at the Museum of Texas Tech University.

“This is bigger than finding any dinosaur. This is what we’ve all searched for – the Holy Grail of science,” Chatterjee said.

Our planet wasn’t always the life-friendly “blue marble” that we know and love today. At one point early in its history it was anything but hospitable to life as we know it.

“When the Earth formed some 4.5 billion years ago, it was a sterile planet inhospitable to living organisms,” Chatterjee said. “It was a seething cauldron of erupting volcanoes, raining meteors and hot, noxious gasses. One billion years later, it was a placid, watery planet teeming with microbial life – the ancestors to all living things.”

Exactly how did this transition happen? That’s the Big Question in paleontology, and Chatterjee believes he may have found the answer lying within some of the world’s oldest and largest impact craters.

After studying the environments of the oldest known fossil-containing rocks in Greenland, Australia and South Africa, Chatterjee said these could be remnants of ancient craters and may be the very spots where life began in deep, dark and hot environments — similar to what’s found near thermal vents in today’s oceans.

Larger meteorites that created impact basins of about 350 miles in diameter inadvertently became the perfect crucibles, according to Chatterjee. These meteorites also punched through the Earth’s crust, creating volcanically driven geothermal vents. They also brought the basic building blocks of life that could be concentrated and polymerized in the crater basins.

In addition to new organic compounds — and, in the case of comets, considerable amounts of water — impacting bodies may also have brought the necessary lipids needed to help protect RNA and allow it to develop further.

“RNA molecules are very unstable. In vent environments, they would decompose quickly. Some catalysts, such as simple proteins, were necessary for primitive RNA to replicate and metabolize,” Chatterjee said. “Meteorites brought this fatty lipid material to early Earth.”

How organic compounds in crater basins were encapsulated in lipid membranes and became the first cells (Chatterjee)
How organic compounds in crater basins were encapsulated in lipid membranes and became the first cells (Chatterjee)

Based on research in Australia by University of California professor David Deamer, the ingredients for all-important cell membranes were delivered to Earth via meteorites and existed in water-filled craters.

“This fatty lipid material floated on top of the water surface of crater basins but moved to the bottom by convection currents,” suggests Chatterjee. “At some point in this process during the course of millions of years, this fatty membrane could have encapsulated simple RNA and proteins together like a soap bubble. The RNA and protein molecules begin interacting and communicating. Eventually RNA gave way to DNA – a much more stable compound – and with the development of the genetic code, the first cells divided.”

And the rest, as they say, is history. (Well, biology really, and no small amount of chemistry and paleontology… and some astrophysics… well you get the idea.)

Chatterjee recognizes that further experiments will be needed to help support or refute this hypothesis. He will present his findings Oct. 30 during the 125th Anniversary Annual Meeting of the Geological Society of America in Denver, Colorado.

Source: Texas Tech news article by John Davis

Possible Huge Meteorite Fragment Recovered From Russian Fireball

Frame grab from a video of the Feb. 15, 2013 Russian fireball by Aleksandr Ivanov

A half-ton meteorite — presumably from the Russian fireball that broke up over Chelyabinsk in February — was dragged up from Lake Chebarkul in the Urals, Russian media reports said. Scientists estimate the chunk is about 1,260 pounds (570 kilograms), but couldn’t get a precise measurement in the field because the bulky bolide broke the scale, according to media reports.

“The preliminary examination… shows that this is really a fraction of the Chelyabinsk meteorite,” said Sergey Zamozdra, associate professor of Chelyabinsk State University, in reports from Interfax and RT.

A polished slice of one of Russian meteorite samples. You can see round grains called chondrules and shock veins lined with melted rock. The meteorite is probably non-uniform. The preliminary analysis showed that the meteorite belongs to chemical type L or LL, petrologic type 5.
A polished slice of one of Russian meteorite samples (different samples than what was reportedly recovered on Oct. 16). You can see round grains called chondrules and shock veins lined with melted rock. The meteorite is probably non-uniform. The preliminary analysis showed that the meteorite belongs to chemical type L or LL, petrologic type 5.

“It’s got thick burn-off, the rust is clearly seen and it’s got a big number of indents. This chunk is most probably one of the top ten biggest meteorite fragments ever found.”

The big rock was first spotted in September, but it’s taken several attempts to bring it to the surface. If scientists can confirm this came from the fireball, this would be the biggest piece recovered yet. The chunk is reportedly in a natural history museum, where a portion will be X-rayed to determine its origins.

More than 1,000 people were injured and millions of dollars in damage occurred when the meteor broke up in the atmosphere Feb. 15, shattering glass and causing booms.

Since then, there have been numerous papers concerning the meteor’s origins (from the Apollo class of asteroids — you can read this article if you’re unclear on the difference between an asteroid and a meteorite) and tracking the spread of dust through the atmosphere, among other items.

Are We Martians? Chemist’s New Claim Sparks Debate

Are Earthlings really Martians ? Did life arise on Mars first and then journey on meteors to our planet and populate Earth billions of years ago? Earth and Mars are compared in size as they look today.

Are Earthlings really Martians ?
Did life arise on Mars first and then journey on rocks to our planet and populate Earth billions of years ago? Earth and Mars are compared in size as they look today. NASA’s upcoming MAVEN Mars orbiter is aimed at answering key questions related to the habitability of Mars, its ancient atmosphere and where did all the water go.
Story updated[/caption]

Are Earthlings really Martians?

That’s the controversial theory proposed today (Aug. 29) by respected American chemist Professor Steven Benner during a presentation at the annual Goldschmidt Conference of geochemists being held in Florence, Italy. It’s based on new evidence uncovered by his research team and is sure to spark heated debate on the origin of life question.

Benner said the new scientific evidence “supports the long-debated theory that life on Earth may have started on Mars,” in a statement. Universe Today contacted Benner for further details and enlightenment.

“We have chemistry that (at least at the level of hypothesis) makes RNA prebiotically,” Benner told Universe Today. “AND IF you think that life began with RNA, THEN you place life’s origins on Mars.” Benner said he has experimental data as well.

First- How did ancient Mars life, if it ever even existed, reach Earth?

On rocks violently flung up from the Red Planet’s surface during mammoth collisions with asteroids or comets that then traveled millions of miles (kilometers) across interplanetary space to Earth – melting, heating and exploding violently before the remnants crashed into the solid or liquid surface.

An asteroid impacts ancient Mars and send rocks hurtling to space - some reach Earth
An asteroid impacts ancient Mars and send rocks hurtling to space – some reach Earth. Did they transport Mars life to Earth? Or minerals that could catalyze the origin of life on Earth?

“The evidence seems to be building that we are actually all Martians; that life started on Mars and came to Earth on a rock,” says Benner, of The Westheimer Institute of Science and Technology in Florida. That theory is generally known as panspermia.

To date, about 120 Martian meteorites have been discovered on Earth.

And Benner explained that one needs to distinguish between habitability and the origin of life.

“The distinction is being made between habitability (where can life live) and origins (where might life have originated).”

NASA’s new Curiosity Mars rover was expressly dispatched to search for environmental conditions favorable to life and has already discovered a habitable zone on the Red Planet’s surface rocks barely half a year after touchdown inside Gale Crater.

Furthermore, NASA’s next Mars orbiter- named MAVEN – launches later this year and seeks to determine when Mars lost its atmosphere and water- key questions in the Origin of Life debate.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

Of course the proposed chemistry leading to life is exceedingly complex and life has never been created from non-life in the lab.

The key new points here are that Benner believes the origin of life involves “deserts” and oxidized forms of the elements Boron (B) and Molybdenum (Mo), namely “borate and molybdate,” Benner told me.

“Life originated some 4 billion years ago ± 0.5 billon,” Benner stated.

He says that there are two paradoxes which make it difficult for scientists to understand how life could have started on Earth – involving organic tars and water.

Life as we know it is based on organic molecules, the chemistry of carbon and its compounds.

But just discovering the presence of organic compounds is not the equivalent of finding life. Nor is it sufficient for the creation of life.

And simply mixing organic compounds aimlessly in the lab and heating them leads to globs of useless tars, as every organic chemist and lab student knows.

Benner dubs that the ‘tar paradox’.

Although Curiosity has not yet discovered organic molecules on Mars, she is now speeding towards a towering 3 mile (5 km) high Martian mountain known as Mount Sharp.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability of the Red Planet over billions of years.  This mosaic was assembled from over 3 dozen Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination
Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability of the Red Planet over billions of years. This mosaic was assembled from over 3 dozen Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer-kenkremer.com

Upon arrival sometime next spring or summer, scientists will target the state of the art robot to investigate the lower sedimentary layers of Mount Sharp in search of clues to habitability and preserved organics that could shed light on the origin of life question and the presence of borates and molybdates.

It’s clear that many different catalysts were required for the origin of life. How much and their identity is a big part of Benner’s research focus.

“Certain elements seem able to control the propensity of organic materials to turn into tar, particularly boron and molybdenum, so we believe that minerals containing both were fundamental to life first starting,” says Benner in a statement. “Analysis of a Martian meteorite recently showed that there was boron on Mars; we now believe that the oxidized form of molybdenum was there too.”

The second paradox relates to water. He says that there was too much water covering the early Earth’s surface, thereby causing a struggle for life to survive. Not exactly the conventional wisdom.

“Not only would this have prevented sufficient concentrations of boron forming – it’s currently only found in very dry places like Death Valley – but water is corrosive to RNA, which scientists believe was the first genetic molecule to appear. Although there was water on Mars, it covered much smaller areas than on early Earth.”

Parts of ancient Mars were covered by oceans, lakes and streams of liquid water in this artists concept, unlike the arid and bone dry Martian surface of today. Subsurface water ice is what remains of Martian water.
Parts of ancient Mars were covered by oceans, lakes and streams of liquid water in this artists concept, unlike the arid and bone dry Martian surface of today. Subsurface water ice is what remains of Martian water.

I asked Benner to add some context on the beneficial effects of deserts and oxidized boron and molybdenum.

“We have chemistry that (at least at the level of hypothesis) makes RNA prebiotically,” Benner explained to Universe Today.

“We require mineral species like borate (to capture organic species before they devolve to tar), molybdate (to arrange that material to give ribose), and deserts (to dry things out, to avoid the water problem).”

“Various geologists will not let us have these [borates and molybdates] on early Earth, but they will let us have them on Mars.”

“So IF you believe what the geologists are telling you about the structure of early Earth, AND you think that you need our chemistry to get RNA, AND IF you think that life began with RNA, THEN you place life’s origins on Mars,” Benner elaborated.

“The assembly of RNA building blocks is thermodynamically disfavored in water. We want a desert to get rid of the water intermittently.”

I asked Benner whether his lab has run experiments in support of his hypothesis and how much borate and molybdate are required.

“Yes, we have run many lab experiments. The borate is stoichiometric [meaning roughly equivalent to organics on a molar basis]; The molybdate is catalytic,” Benner responded.

“And borate has now been found in meteorites from Mars, that was reported about three months ago.

At his talk, Benner outlined some of the chemical reactions involved.

Although some scientists have invoked water, minerals and organics brought to ancient Earth by comets as a potential pathway to the origin of life, Benner thinks differently about the role of comets.

“Not comets, because comets do not have deserts, borate and molybdate,” Benner told Universe Today.

The solar panels on the MAVEN spacecraft are deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Littleton, Colorado, before shipment to Florida 0on Aug. 2 and blastoff for Mars on Nov. 18, 213. Credit: Lockheed Martin
MAVEN is NASA’s next Mars orbiter and seeks to determine when Mars lost its atmosphere and water- key questions in the Origin of Life debate. MAVEN is slated to blastoff for Mars on Nov. 18, 2013. It is shown here with solar panels deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Waterton, Colorado, before shipment to Florida in early August. Credit: Lockheed Martin

Benner has developed a logic tree outlining his proposal that life on Earth may have started on Mars.

“It explains how you get to the conclusion that life originated on Mars. As you can see from the tree, you can escape that conclusion by diverging from the logic path.”

Finally, Benner is not one who blindly accepts controversial proposals himself.

He was an early skeptic of the claims concerning arsenic based life announced a few years back at a NASA sponsored press conference, and also of the claims of Mars life discovered in the famous Mars meteorite known as ALH 84001.

“I am afraid that what we thought were fossils in ALH 84001 are not.”

The debate on whether Earthlings are really Martians will continue as science research progresses and until definitive proof is discovered and accepted by a consensus of the science community of Earthlings – whatever our origin.

On Nov. 18, NASA will launch its next mission to Mars – the MAVEN orbiter. Its aimed at studying the upper Martian atmosphere for the first time.

“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Bruce Jakosky to Universe Today at a MAVEN conference at the University of Colorado- Boulder. Jakosky, of CU-Boulder, is the MAVEN Principal Investigator.

MAVEN will shed light on the habitability of Mars billions of years ago and provide insight on the origin of life questions and chemistry raised by Benner and others.

Ken Kremer

…………….
Learn more about Mars, the Origin of Life, LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 9: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM