10 Interesting Facts About the Milky Way

Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.
Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.

The Milky Way Galaxy is an immense and very interesting place. Not only does it measure some 120,000–180,000 light-years in diameter, it is home to planet Earth, the birthplace of humanity. Our Solar System resides roughly 27,000 light-years away from the Galactic Center, on the inner edge of one of the spiral-shaped concentrations of gas and dust particles called the Orion Arm.

But within these facts about the Milky Way lie some additional tidbits of information, all of which are sure to impress and inspire. Here are ten such facts, listed in no particular order:

1. It’s Warped:

For starters, the Milky Way is a disk about 120,000 light years across with a central bulge that has a diameter of 12,000 light years (see the Guide to Space article for more information). The disk is far from perfectly flat though, as can be seen in the picture below. In fact, it is warped in shape, a fact which astronomers attribute to the our galaxy’s two neighbors -the Large and Small Magellanic clouds.

These two dwarf galaxies — which are part of our “Local Group” of galaxies and may be orbiting the Milky Way — are believed to have been pulling on the dark matter in our galaxy like in a game of galactic tug-of-war. The tugging creates a sort of oscillating frequency that pulls on the galaxy’s hydrogen gas, of which the Milky Way has lots of (for more information, check out How the Milky Way got its Warp).

The Spiral Galaxy ESO 510-13 is warped similar to our own. Credit: NASA/Hubble Heritage Team (STScI / AURA), C. Conselice (U. Wisconsin / STScI/ NASA
The warp of Spiral Galaxy ESO 510-13 is similar to that of our own. Credit: NASA/Hubble

2. It Has a Halo, but You Can’t Directly See It:

Scientists believe that 90% of our galaxy’s mass consists of dark matter, which gives it a mysterious halo. That means that all of the “luminous matter” – i.e. that which we can see with the naked eye or a telescopes – makes up less than 10% of the mass of the Milky Way. Its halo is not the conventional glowing sort we tend to think of when picturing angels or observing comets.

In this case, the halo is actually invisible, but its existence has been demonstrated by running simulations of how the Milky Way would appear without this invisible mass, and how fast the stars inside our galaxy’s disk orbit the center.

The heavier the galaxy, the faster they should be orbiting. If one were to assume that the galaxy is made up only of matter that we can see, then the rotation rate would be significantly less than what we observe. Hence, the rest of that mass must be made up of an elusive, invisible mass – aka. “dark matter” – or matter that only interacts gravitationally with “normal matter”.

To see some images of the probable distribution and density of dark matter in our galaxy, check out The Via Lactea Project.

3. It has Over 200 Billion Stars:

As galaxies go, the Milky Way is a middleweight. The largest galaxy we know of, which is designated IC 1101, has over 100 trillion stars, and other large galaxies can have as many as a trillion. Dwarf galaxies such as the aforementioned Large Magellanic Cloud have about 10 billion stars. The Milky Way has between 100-400 billion stars; but when you look up into the night sky, the most you can see from any one point on the globe is about 2,500. This number is not fixed, however, because the Milky Way is constantly losing stars through supernovae, and producing new ones all the time (about seven per year).

These images taken by the Spitzer Space Telescope show the dust and gas concentrations around a supernova. Credit: NASA/JPL-Caltech
These images taken by the Spitzer Space Telescope show dust and gas concentrations around a distant supernova. Credit: NASA/JPL-Caltech

4. It’s Really Dusty and Gassy:

Though it may not look like it to the casual observer, the Milky Way is full of dust and gas. This matter makes up a whopping 10-15% of the luminous/visible matter in our galaxy, with the remainder being the stars. Our galaxy is roughly 100,000 light years across, and we can only see about 6,000 light years into the disk in the visible spectrum. Still, when light pollution is not significant, the dusty ring of the Milky Way can be discerned in the night sky.

The thickness of the dust deflects visible light (as is explained here) but infrared light can pass through the dust, which makes infrared telescopes like the Spitzer Space Telescope extremely valuable tools in mapping and studying the galaxy. Spitzer can peer through the dust to give us extraordinarily clear views of what is going on at the heart of the galaxy and in star-forming regions.

5. It was Made From Other Galaxies:

The Milky Way wasn’t always as it is today – a beautiful, warped spiral. It became its current size and shape by eating up other galaxies, and is still doing so today. In fact, the Canis Major Dwarf Galaxy is the closest galaxy to the Milky Way because its stars are currently being added to the Milky Way’s disk. And our galaxy has consumed others in its long history, such as the Sagittarius Dwarf Galaxy.

6. Every Picture You’ve Seen of the Milky Way Isn’t It:

Currently, we can’t take a picture of the Milky Way from above. This is due to the fact that we are inside the galactic disk, about 26,000 light years from the galactic center. It would be like trying to take a picture of your own house from the inside. This means that any of the beautiful pictures you’ve ever seen of a spiral galaxy that is supposedly the Milky Way is either a picture of another spiral galaxy, or the rendering of a talented artist.

Artist's concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL
Artist’s concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL-Caltech

Imaging the Milky Way from above is a long, long way off. However, this doesn’t mean that we can’t take breathtaking images of the Milky Way from our vantage point!

7. There is a Black Hole at the Center:

Most larger galaxies have a supermassive black hole (SMBH) at the center, and the Milky Way is no exception. The center of our galaxy is called Sagittarius A*, a massive source of radio waves that is believed to be a black hole that measures 22,5 million kilometers (14 million miles) across – about the size of Mercury’s orbit. But this is just the black hole itself.

All of the mass trying to get into the black hole – called the accretion disk – forms a disk that has 4.6 million times the mass of our Sun and would fit inside the orbit of the Earth. Though like other black holes, Sgr A* tries to consume anything that happens to be nearby, star formation has been detected near this behemoth astronomical phenomenon.

8. It’s Almost as Old as the Universe Itself:

The most recent estimates place the age of the Universe at about 13.7 billion years. Our Milky Way has been around for about 13.6 billion of those years, give or take another 800 million. The oldest stars in our the Milky Way are found in globular clusters, and the age of our galaxy is determined by measuring the age of these stars, and then extrapolating the age of what preceded them.

Though some of the constituents of the Milky Way have been around for a long time, the disk and bulge themselves didn’t form until about 10-12 billion years ago. And that bulge may have formed earlier than the rest of the galaxy.

9. It’s Part of the Virgo Supercluster:

As big as it is, the Milky Way is part of an even larger galactic structures. Our closest neighbors include the Large and Small Magellanic Clouds, and the Andromeda Galaxy – the closest spiral galaxy to the Milky Way. Along with some 50 other galaxies, the Milky Way and its immediate surroundings make up a cluster known as the Local Group.

A mosaic of telescopic images showing the galaxies of the Virgo Supercluster. Credit: NASA/Rogelio Bernal Andreo
A mosaic of telescopic images showing the galaxies of the Virgo Supercluster. Credit: NASA/Rogelio Bernal Andreo

And yet, this is still just a small fraction of our stellar neighborhood. Farther out, we find that the Milky Way is part of an even larger grouping of galaxies known as the Virgo Supercluster. Superclusters are groupings of galaxies on very large scales that measure in the hundreds of millions of light years in diameter. In between these superclusters are large stretches of open space where intrepid explorers or space probes would encounter very little in the way of galaxies or matter.

In the case of the Virgo Supercluster, at least 100 galaxy groups and clusters are located within it massive 33 megaparsec (110 million light-year) diameter. And a 2014 study indicates that the Virgo Supercluster is only a lobe of a greater supercluster, Laniakea, which is centered on the Great Attractor.

10. It’s on the move:

The Milky Way, along with everything else in the Universe, is moving through space. The Earth moves around the Sun, the Sun around the Milky Way, and the Milky Way as part of the Local Group, which is moving relative to the Cosmic Microwave Background (CMB) radiation – the radiation left over from the Big Bang.

The CMB is a convenient reference point to use when determining the velocity of things in the universe. Relative to the CMB, the Local Group is calculated to be moving at a speed of about 600 km/s, which works out to about 2.2 million km/h. Such speeds stagger the mind and squash any notions of moving fast within our humble, terrestrial frame of reference!

We have written many interesting articles about the Milky Way for Universe Today. Here’s 10 Interesting Facts about the Milky Way, How Big is the Milky Way?, What is the Closest Galaxy to the Milky Way?, and How Many Stars Are There in the Milky Way?

For many more facts about the Milky Way, visit the Guide to Space, listen to the Astronomy Cast episode on the Milky Way, or visit the Students for the Exploration and Development of Space at seds.org.

Sail Past Orion to the Outer Limits of the Milky Way

Orion (at right), Sirius (bottom) and the pale wintertime Milky Way (center) are well-placed for viewing around 11 o'clock local time in late November. Credit: Bob King

Several nights ago the chill of interstellar space refrigerated the countryside as temperatures fell well below zero. That didn’t discourage the likes of Orion and his seasonal friends Gemini, Perseus and Auriga. They only seemed to grow brighter as the air grew sharper. 

Wending between these familiar constellations like a river steaming in the cold was the Milky Way. The name has always been slightly confusing as it refers to both the milky band of starlight and the galaxy itself.  Every single star you see at night belongs to our galaxy, a 100,000 light-year-wide flattened disk scintillating with over 400 billion suns.

Our solar system lies in the flat plane of a barred spiral galaxy called the Milky Way. Looking through the plane, the stars pile up to form the Milky Way band. In summerr, we face toward the richer, denser core; in winter we look out toward the edge. Credit: NASA with annotations by the author
Face-on (left) and edge-on views of the Milky Way. Our solar system lies in the flat plane of a barred spiral galaxy called the Milky Way. Looking through the plane, the stars pile up to form the Milky Way band. In summer, we face toward the richer, denser core; in winter we look out toward the edge. Credit: NASA with annotations by the author

Earth, Sun and planets huddle together within the mid-plane of the disk, so that when we look straight into it, the density of stars piles up over thousands of light years to form a thick band across the sky. Since most of the stars are very distant and therefore faint, they can’t be seen individually with the naked eye. They blend together to give the Milky Way a milky or hazy look.

During a snowfall, we can see individual flakes nearby but more distant ones increase in number and blend into a uniform haze. Credit: Bob King
During a snowfall, we can see individual flakes nearby but more distant ones increase in number and blend to make a uniform haze similar to what happens when we look across the flat disk of the Milky Way. Credit: Bob King

In a snowstorm, we easily distinguish individual snowflakes falling in front of our face, but looking into the distance, the flakes blend together to create a white, foggy haze. Replace the snowflakes with stars and you have the Milky Way – with a caveat. If we lived in the center of our galaxy, the sky would be milky with stars in all directions just like that snowstorm, but since the Sun occupies the flat plane, they only appear thick when our line of sight is aimed along the galaxy’s equator. Look above and below the disk and the stars quickly thin out as our gaze pierces through the galaxy’s plane and into intergalactic space.

In this view, the ground is literally gone and we can see all around us in space. From this perspective we can see the full circle of the Milky Way. The blue line represents the galactic equator. Time is around midnight December 1st. Notice that the Sun is located in the same direction as the galaxy's center this month. Stellarium
In this view, the ground – Earth – has been removed from the picture and we can see all around us in space. Now we can see that the Milky Way band describes a full circle in the sky. The blue circle represents the galactic equator. The view shows the sky around midnight in early December. The Sun, at lower right, lies in the same direction as the galaxy’s center this month. Source: Stellarium

If you could float in space some distance from the brilliant ball of Earth, you’d see that the Milky Way band passes above, around and below you like a giant hula-hoop. Back on the ground, we can only see about two-thirds of the band over the course of a year. The other third is below the horizon and visible only from the opposite hemisphere, providing yet another good reason to make that trip to Tahiti or Ayers Rock in Australia.

Few know the winter version of the Milky Way that stands above the southeastern horizon around 10:30-11 p.m. local time on moonless nights in early December. No surprise, given it hardly compares to the brightness of the summertime version. This has much to do with where the Sun is located inside the galaxy, some 30,000 light years away from the center or more than halfway to the edge.

The opposite of the galaxy's center is the anticenter, located near El Nath in the northern horn of Taurus above the constellation Orion. Source: Stellarium
Opposite the galaxy’s center lies the anticenter, located near El Nath in the northern horn of Taurus above the constellation Orion. Source: Stellarium

On late fall and winter nights, our planet faces the galaxy’s outer suburbs and countryside where the stars thin out until giving way to relatively starless intergalactic space. Indeed, the anticenter of the Milky Way lies not far from the star El Nath (Beta Tauri) where Taurus meets Auriga. While the hazy band of the Milky Way is still visible through Auriga and Taurus, it’s thin and anemic compared to summer’s billowy star clouds.

The summertime Milky Way from Scorpius to Cygnus is broader and brighter than the winter version because we look into the direction of its center. Credit: Stephen Bockhold
The summertime Milky Way from Scorpius to Cygnus is broader and brighter than the winter version because we face toward the galactic center at nightfall. Credit: Stephen Bockhold

At nightfall in July and August, we face toward the galaxy’s center where 30,000 light years worth of stars, star clouds and nebulae stack up to fatten the Milky Way into a bright, chunky arch on summer evenings compared to winter’s thin gruel.

The slanting winter Milky Way touches many of the familiar, bright constellations of the December sky. This map shows the sky facing southeast around 11 o'clock local time in early December or 9 p.m. in late December. Source: Stellarium
The slanting winter Milky Way touches many of the familiar, bright constellations of December. This map shows the sky facing southeast around 11 o’clock local time in early December or 9 p.m. in late December. Source: Stellarium

The winter Milky Way starts east of brilliant Sirius and grazes the east side of Orion before ascending into Gemini and Auriga and arching over into the western sky to Cassiopeia’s “W”. Binoculars and telescopes resolve it into individual stars and star clusters and help us appreciate what a truly beautiful and rich place our galactic home is.

Few sights that impress us with the scope and scale of where we live than seeing the Milky Way under a dark sky during the silence of a winter night. Picture Earth and yourself as members of that glowing carpet of  stars, and when you can’t take the cold anymore, enjoy the delicious pleasure of stepping inside to unwrap and warm up. You’ve been on a long journey.

Wavelight: Riveting New Night Sky Timelapse

A still image from the WAVELIGHT timelapse by Gavin Heffernan (SunchaserPictures.com) and Harun Mehmedinovic (Bloodhoney.com). Created in association with BBC Earth. Used by permission.

Sandstone formations can be amazing, and if you’ve ever seen or heard about the legendary and hard-to-get-to “Wave” formation in Arizona, you’ll agree it would be a stunning location for a night sky photography shoot. Our friend and timelapse guru Gavin Heffernan was commissioned by the BBC to shoot a timelapse video from this location, and it is absolutely stunning.

“As far as I know, this is the first astrophotography timelapse ever filmed at this amazing location,” Gavin told us via email. “We had seen many beautiful night pictures taken there but no actual timelapses, so we went for it!”

Enjoy the video above, as well a some imagery, below:

This is a video where star trails and rock trails collide! It was assembled from over 10,000 stills snagged on two grueling trips. Check out more of Gavin’s work at his Sunchaser Pictures website.

Another still image from the WAVELIGHT timelapse (vimeo.com/112008512) by Gavin Heffernan (SunchaserPictures.com) and Harun Mehmedinovic (Bloodhoney.com). Created in association with BBC Earth.  Used by permission.
Another still image from the WAVELIGHT timelapse (vimeo.com/112008512) by Gavin Heffernan (SunchaserPictures.com) and Harun Mehmedinovic (Bloodhoney.com). Created in association with BBC Earth. Used by permission.

WAVELIGHT from Sunchaser Pictures on Vimeo.

Completely Gorgeous Shot of the Milky Way Over Jasper National Park

The Milky Way over Lake Annette in Jasper National Park, Alberta, a Dark Sky Preserve, on October 24, 2014. Credit and copyright: Alan Dyer/Amazing Sky Photography.

Does it get any more gorgeous than this? What an absolutely beautiful view of the night sky over Lake Annette and Whistler’s Mountain in Jasper National Park.

“I shot this at the Lake Annette Star Party, one of the Dark Sky Festival events, using the Canon 60Da and 10-22mm lens at 10mm f/4 and ISO 3200 for 1 minute, untracked,” said prolific astrophotographer Alan Dyer on Flickr. “Shot October 24, 2014, with fresh snow on Whistler across the lake and valley and on a calm night with still waters reflecting the stars.”

Absolutely spell-binding! Click on the image for larger versions on Flickr, and check out more of Alan’s stunning imagery on his website, Amazing Sky Photography.

#MilkyWayMonday

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Old Equations Shed New Light on Quasars

An artists illustration of the early Universe. Image Credit: NASA

There’s nothing more out of this world than quasi-stellar objects or more simply – quasars. These are the most powerful and among the most distant objects in the Universe. At their center is a black hole with the mass of a million or more Suns. And these powerhouses are fairly compact – about the size of our Solar System. Understanding how they came to be and how — or if — they evolve into the galaxies that surround us today are some of the big questions driving astronomers.

Now, a new paper by Yue Shen and Luis C. Ho – “The diversity of quasars unified by accretion and orientation” in the journal Nature confirms the importance of a mathematical derivation by the famous astrophysicist Sir Arthur Eddington during the first half of the 20th Century, in understanding not just stars but the properties of quasars, too. Ironically, Eddington did not believe black holes existed, but now his derivation, the Eddington Luminosity, can be used more reliably to determine important properties of quasars across vast stretches of space and time.

A quasar is recognized as an accreting (meaning- matter falling upon) super massive black hole at the center of an “active galaxy”. Most known quasars exist at distances that place them very early in the Universe; the most distant is at 13.9 billion light years, a mere 770 million years after the Big Bang. Somehow, quasars and the nascent galaxies surrounding them evolved into the galaxies present in the Universe today.  At their extreme distances, they are point-like, indistinguishable from a star except that the spectra of their light differ greatly from a star’s. Some would be as bright as our Sun if they were placed 33 light years away meaning that  they are over a trillion times more luminous than our star.

An artists illustration of the central engine of a Quasar. These "Quasi-stellar Objects" QSOs are now recognized as the super massive black holes at the center of emerging galaxies in the early Universe. (Photo Credit: NASA)
An artists illustration of the central engine of a quasar. These “Quasi-stellar Objects” QSOs are now recognized as the super massive black holes at the center of emerging galaxies in the early Universe. (Photo Credit: NASA)

The Eddington luminosity  defines the maximum luminosity that a star can exhibit that is in equilibrium; specifically, hydrostatic equilibrium. Extremely massive stars and black holes can exceed this limit but stars, to remain stable for long periods, are in hydrostatic equilibrium between their inward forces – gravity – and the outward electromagnetic forces. Such is the case of our star, the Sun, otherwise it would collapse or expand which in either case, would not have provided the stable source of light that has nourished life on Earth for billions of years.

Generally, scientific models often start simple, such as Bohr’s model of the hydrogen atom, and later observations can reveal intricacies that require more complex theory to explain, such as Quantum Mechanics for the atom. The Eddington luminosity and ratio could be compared to knowing the thermal efficiency and compression ratio of an internal combustion engine; by knowing such values, other properties follow.

Several other factors regarding the Eddington Luminosity are now known which are necessary to define the “modified Eddington luminosity” used today.

The new paper in Nature shows how the Eddington Luminosity helps understand the driving force behind the main sequence of quasars, and Shen and Ho call their work the missing definitive proof that quantifies the correlation of a quasar properties to a quasar’s Eddington ratio.

They used archival observational data to uncover the relationship between the strength of the optical Iron [Fe] and Oxygen[O III] emissions – strongly tied to the physical properties of the quasar’s central engine – a super-massive black hole, and the Eddington ratio. Their work provides the confidence and the correlations needed to move forward in our understanding of quasars and their relationship to the evolution of galaxies in the early Universe and up to our present epoch.

Astronomers have been studying quasars for a little over 50 years. Beginning in 1960, quasar discoveries began to accumulate but only through radio telescope observations. Then, a very accurate radio telescope measurement of Quasar 3C 273 was completed using a Lunar occultation. With this in hand, Dr. Maarten Schmidt of California Institute of Technology was able to identify the object in visible light using the 200 inch Palomar Telescope. Reviewing the strange spectral lines in its light, Schmidt reached the right conclusion that quasar spectra exhibit an extreme redshift and it was due to cosmological effects. The cosmological redshift of quasars meant that they are at a great distance from us in space and time. It also spelled the demise of the Steady-State theory of the Universe and gave further support to an expanding Universe that emanated from a singularity – the Big Bang.

Dr. Maarten Schmidt, Caltech University, with Donald Lynden-Bell, were the first recipients of the Kavli Prize in Astrophysics, “for their seminal contributions to understanding the nature of quasars”. While in high school, this author had the privilege to meet Dr. Schmidt at the Los Angeles Museum of Natural History after his presentation to a group of students. (Photo Credit: Caltech)
Dr. Maarten Schmidt, Caltech, with Donald Lynden-Bell, were the first recipients of the Kavli Prize in Astrophysics, “for their seminal contributions to understanding the nature of quasars”. While in high school, this author had the privilege to meet Dr. Schmidt at the Los Angeles Museum of Natural History after his presentation to a group of students. (Photo Credit: Caltech)

The researchers, Yue Shen and Luis C. Ho are from the Institute for Astronomy and Astrophysics at Peking University working with the Carnegie Observatories, Pasadena, California.

References and further reading:

“The diversity of quasars unified by accretion and orientation”, Yue Shen, Luis C. Ho, Sept 11, 2014, Nature

“What is a Quasar?”, Universe Today, Fraser Cain, August 12, 2013

“Interview with Maarten Schmidt”, Caltech Oral Histories, 1999

“Fifty Years of Quasars, a Symposium in honor of Maarten Schmidt”, Caltech, Sept 9, 2013

Amazing Timelapse: Watch the Milky Way Spin Above the Space Station

The Milky Way above the International Space Station's solar panels. Credit: NASA/NASA Crew Earth Observations

Have you ever sat outside on a starry night and just watched the stars move slowly above you? Here’s a video that shows what it is like to sit back on a spaceship and gaze at the ever-changing sky above.

This timelapse was compiled from recent images taken from the International Space Station. Hugh Carrick-Allan, a 3D Animator/VFX artist living in Sydney Australia used a sequence of 52 images posted on the NASA Crew Earth Observation website. The video also features the Aurora Australis and and some random satellites.

He also created the beautiful image below by combining all 52 the images.

“I used DeepSkyStacker to stack the images, I used PixInsight for some heavy noise reduction on the foreground, and then I combined and tweaked everything in Photoshop,” Carrick-Allan wrote on his website.

Look Up! The Space Station Must Be The Ultimate Stargazing Location

"I never imagined that flying to space would give me a different view of our entire galaxy," tweeted Expedition 41 astronaut Alexander Gerst from the International Space Station in September 2014. Credit: Alexander Gerst / Twitter

While NASA often speaks about the power of Earth observation from the International Space Station, the picture above from one of the astronauts on board now shows something else — you can get an awesome view of the Milky Way.

With the view unobscured by the atmosphere, the picture from Expedition 41 European astronaut Alexander Gerst shows that his perch on the ISS is pretty amazing. We wonder how it compares to some of the desert or mountaintop observatories here on Earth! And there are astronomical experiments on board, such as this one that may have found dark matter.

Below we’ve handpicked some of the best recent pictures from Gerst and NASA astronaut Reid Wiseman, a crewmate, as they take in the wonder of our planet and the universe.

Elemental Mystery: Lithium Is Also Rare Outside Of The Milky Way

An image of globular cluster M54 taken by the Very Large Telescope Survey Telescope at the European Southern Observatory's Paranal Observatory in northern Chile. Credit: ESO

This new picture of M54 — a part of a satellite galaxy to the Milky Way called the Sagittarius Dwarf Galaxy — is part of a “test case” astronomers have to figure out a mystery of missing lithium.

For decades, astronomers have been aware of a dearth of lithium in our own galaxy, the Milky Way. This image from the Very Large Telescope’s Survey Telescope represents the first effort to probe for the element outside of our galaxy.

“Most of the light chemical element lithium now present in the Universe was produced during the Big Bang, along with hydrogen and helium, but in much smaller quantities,” the European Southern Observatory stated.

“Astronomers can calculate quite accurately how much lithium they expect to find in the early Universe, and from this work out how much they should see in old stars. But the numbers don’t match — there is about three times less lithium in stars than expected. This mystery remains, despite several decades of work.”

In any case, observations of M54 show that the amount of lithium there is similar to the Milky Way — meaning that the lithium problem is not confined to our own galaxy. A paper based on the research was published in the Monthly Notices of the Royal Astronomical Society. The research was led by Alessio Mucciarelli at the University of Bologna in Italy.

Source: European Southern Observatory

How Dark Matter Could Reduce The Fleet Of Galaxies Following The Milky Way

On either side of the white line in the picture are two models of how dark matter is distributed in a galaxy similar to the Milky Way. At left, non-interacting cold dark matter creates satellite galaxies. At right, dark matter interacting with other particles makes the number of observed satellite galaxies smaller. Credit: Durham University

Funny how small particle interactions can have such a big effect on the neighbors of the Milky Way. For a while, scientists have been puzzled about the dearth of small satellite galaxies surrounding our home galaxy.

They thought that cold dark matter in our galaxy should encourage small galaxies to form, which created a puzzle. Now, a new set of research suggests the dark matter actually interacted with small bits of normal matter (photons and neutrinos) and the dark matter scattered away, reducing the amount of material available for building galaxies.

“We don’t know how strong these interactions should be, so this is where our simulations come in,” stated Celine Boehm, a particle physicist at Durham University who led the research. “By tuning the strength of the scattering of particles, we change the number of small galaxies, which lets us learn more about the physics of dark matter and how it might interact with other particles in the Universe.”

Artist's conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Artist’s conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt

Dark matter is a poorly understood part of the Universe, which is frustrating for scientists because it (along with dark energy) is believed to make up the majority of our Cosmos. There are several postulated types of it, but the main thing to understand is dark matter is hard to detect (except, in certain cases, through its interactions with gravity.)

This isn’t the only explanation for why the galaxies are missing, the scientists caution. Perhaps the universe’s first stars were so hot that they affected the gas that other stars formed from, for example.

A paper on the research was published in the Monthly Notices of the Royal Astronomical Society and is also available in preprint version on Arxiv.

Source: Royal Astronomical Society

Astrophoto: I Need Warp Speed in 3 Minutes or We’re All Dead

Is Earth going at warp speed in this image? This is a composite of two photographs, one for the foreground and one for the sky. The photographer zoomed in on the image of the Milky Way for the last 10 seconds of the exposure to give it a 'warp speed' look. Credit and copyright: Mike Taylor/Mike Taylor Photography.

Whoa! Having just returned from the science and science fiction mashup that is Dragon Con, my mind is still combining the two. Then I saw this image from Mike Taylor, which is one of the most unique Milky Way images I’ve ever seen. Perfect!

Mike said he combined two images, one for the foreground and one for the night sky image of the Milky Way. “I zoomed in on the Milky Way for the last 10 seconds of the exposure to give it the “warp speed” look,” he said.

He calls the image “Somniloquy” which is a term that describes the act of talking while asleep. Yep. I’m pretty sure that happened at Dragon Con, too….

Check out another awesome Milky Way image by Mike, below.

This is a 7 image vertical panorama of the night sky in Maine where the late Summer Milky Way makes a dramatic background for a small shack and tree.  Credit and copyright: Mike Taylor/Mike Taylor Photography.
This is a 7 image vertical panorama of the night sky in Maine where the late Summer Milky Way makes a dramatic background for a small shack and tree. Credit and copyright: Mike Taylor/Mike Taylor Photography.

Mike noted this image was taken right next to a cell tower that emits a red light over the landscape throughout the night. “Normally I would change the color balance but I decided to leave the red color in the foreground (although I toned it down quite a bit) to add to the overall feeling of the image,” he said. Mike stitched the images together via PTGui and processed through Lightroom 5 & Photoshop CS5.

Nikon D600 & 14-24 @ 14mm
f/2.8 – 7 x 30 secs – ISO 4000
08/28/14 – 10:20PM

You can see a discussion of this image on Mike’s G+ page.

The specs on the ‘warp speed’ image:

Milky Way image taken with a Nikon D600 & 14-24mm at 24mm, f/2.8 – 30 seconds at ISO 4000 on 05/30/14 at 1:38 AM at Goblin Valley State Park, Utah.

Foreground image also taken with the same camera at f/5.6 – 1/60 seconds at ISO 100 on 05/25/14 at 6:28 PM, on Potash Rd near Moab, Utah.

Mike offers photography classes, and you can find out more about when/where here.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.