360 Degrees of Milky Way at Your Fingertips

A screen grab of the new zoomable Milky Way mosaic that uses Microsoft's WorldWide Telescope viewer. Click to use. Credit: NASA

Touring the Milky Way’s a blast with this brand new 360-degree interactive panorama. More than 2 million infrared photos taken by NASA’s Spitzer Space Telescope were jigsawed into a 20-gigapixel click-and-zoom mosaic that takes the viewer from tangled nebulae to stellar jets to blast bubbles around supergiant stars.  

Magnetic loops carry gas and dust above disks of planet-forming material circling stars, as shown in this artist's conception. These loops give off extra heat, which NASA's Spitzer Space Telescope detects as infrared light. The colors in this illustration show what an alien observer with eyes sensitive to both visible light and infrared wavelengths might see. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)
Magnetic loops carry gas and dust above disks of planet-forming material circling stars, as shown in this artist’s conception. These loops give off extra heat, which NASA’s Spitzer Space Telescope detects as infrared light. The colors in this illustration show what an alien observer with eyes sensitive to both visible light and infrared wavelengths might see. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

The new composite, using infrared images taken over the past decade, was compiled by a team led by UW-Madison astronomer Barbara Whitney and unveiled at a TEDactive conference in Vancouver, Canada Thursday. Unlike visual light, infrared penetrates the ubiquitous dust concentrated in the galactic plane to reveal structures otherwise obscured.


Catching a GLIMPSE of the Milky Way in this short video presentation

“For the first time, we can actually measure the large-scale structure of the galaxy using stars rather than gas,” explained Edward Churchwell, UW-Madison professor of astronomy and team co-leader. “We’ve established beyond the shadow of a doubt that our galaxy has a large bar structure that extends halfway out to the sun’s orbit. We know more about where the Milky Way’s spiral arms are.”

Named GLIMPSE360 (Galactic Legacy Mid-Plane Survey Extraordinaire project), the deep infrared survey captures only about 3% of the sky, but because it focuses on the plane of the Milky Way, where stars are most highly concentrated, it shows more than half of all the galaxy’s 300 billion suns.

The Milky Way is a spiral galaxy with several prominent arms containing stellar nurseries swathed in  pink clouds of hydrogen gas. The sun is shown near the bottom in the Orion Spur. Credit: NASA
The Milky Way is a spiral galaxy with several prominent arms containing stellar nurseries swathed in pink clouds of hydrogen gas. The sun is shown near the bottom in the Orion Spur. Credit: NASA

Using your imagination to hover high above the galactic plane, you’d see the Milky Way is a flat spiral galaxy sporting a stubby bar of stars crossing its central bulge. The solar system occupies a tiny niche in a minor spiral arm called the Orion Spur two-thirds of the way from the center to the edge.  At 100,000 light years across, the Milky Way is vast beyond comprehension and yet it’s only one of an estimated 100 billion galaxies in the observable universe.

Bubbles of gas and sites of star formation are seen in this close up from a region in the constellation Sagittarius. Credit:
Bubbles of gas and sites of star formation are seen in this close up in a region in the constellation Sagittarius. Credit:

While you and I sit back and marvel at all the stellar and nebular eye candy, the Spitzer images are helping astronomers determine where the edge of the galaxy lies and location of the spiral arms. GLIMPSE images have already revealed the Milky Way to be larger than previously thought and shot through with bubbles of expanding gas and dust blown by giant stars.

Spitzer can see faint stars in the “backcountry” of our galaxy — the outer, darker regions that went largely unexplored before.

Barbara Whitney, co-leader of the GLIMPSE360 team
Barbara Whitney, co-leader of the GLIMPSE360 team

“There are a whole lot more lower-mass stars seen now with Spitzer on a large scale, allowing for a grand study,” said Whitney. “Spitzer is sensitive enough to pick these up and light up the entire ‘countryside’ with star formation.”

The new 360-degree view will also help NASA’s upcoming James Webb Space Telescope target the most interesting sites of star-formation, where it will make even more detailed infrared observations.

When you play around with the interactive mosaic,  you’ll notice a few artifacts here and there among the images. Minor stuff. What took some getting used to was  how strikingly different familiar nebulae appeared when viewed in infrared instead of visual light. The panorama is also available on the Aladin viewing platform which offers shortcuts to regions of interest.

Neil deGrasse Tyson, astrophysicist and host of the new Cosmos TV series, gave the third line of our “cosmic address” as the Milky Way after ‘Earth’ and ‘Solar System’. After a few minutes with GLIMPSE360 you’ll  better appreciate the depth and breadth of our galactic home.

How Giant Galaxies Bind The Milky Way’s Neighborhood With Gravity

Artist's conception of the Milky Way galaxy. Credit: Nick Risinger
Artist's conception of the Milky Way galaxy. Credit: Nick Risinger

Is it stretching it too far to think of a Lord of the Rings-esque “Entmoot” when reading the phrase “Council of Giants”? In this case, however, it’s not trees gathering in a circle, but galaxies.

A new map of the galactic neighborhood shows how the Milky Way may be restricted by a bunch of galaxies surrounding and constricting us with gravity.

“All bright galaxies within 20 million light years, including us, are organized in a ‘Local Sheet’ 34-million light years across and only 1.5 million light years thick,” stated Marshall McCall of York University in Canada, who is the sole author of a paper on the subject.

“The Milky Way and Andromeda are encircled by twelve large galaxies arranged in a ring about 24-million light years across. This ‘Council of Giants’ stands in gravitational judgment of the Local Group by restricting its range of influence.”

The "Council of Giants" is shown in this diagram based on 2014 research from York University. It shows the brightest galaxies within 20 million light-years of the Milky Way. The galaxies in yellow are the "Council." (You can see a larger image if you click on this.) Credit: Marshall McCall / York University.
The “Council of Giants” is shown in this diagram based on 2014 research from York University. It shows the brightest galaxies within 20 million light-years of the Milky Way. The galaxies in yellow are the “Council.” (You can see a larger image if you click on this.) Credit: Marshall McCall / York University.

Here’s why McCall thinks this is the case. Most of the Local Sheet galaxies (the Milky Way, Andromeda, and 10 more of the 14 galaxies) are flattened spiral galaxies with stars still forming. The other other two galaxies are elliptical galaxies where star-forming ceased long ago, and of note, this pair lie on opposite sides of the “Council.”

“Winds expelled in the earliest phases of their development might have shepherded gas towards the Local Group, thereby helping to build the disks of the Milky Way and Andromeda,” the Royal Astronomical Society stated. The spin in this group of galaxies, it added, is unusually aligned, which could have occurred due to the influence of the Milky Way and Andromeda “when the universe was smaller.”

The larger implication is the Local Sheet and Council likely came to be in “a pre-existing sheet-like foundation composed primarily of dark matter”, or a mysterious substance that is not measurable by conventional instruments but detectable on how it influences other objects. McCall stated that on a small scale, this could help us understand more about how the universe is constructed.

You can read the study in the Monthly Notices of the Royal Astronomical Society.

Source: Royal Astronomical Society

Astrophoto: “Second Star to the Right and Straight on Until Morning!”

So many stars! A 14-image panorama taken under very dark skies in the heart of the Riverina, New South Wales, Australia, with a bit of direction from a road sign. Credit and copyright: Carlos Orue.

Which way to the center of the galaxy? This very creative — and gorgeous — view of the Milky Way was taken this past weekend (March 9, 2014) by astrophotographer Carlos Orue from Australia. Carlos said the Milky Way was so bright under these dark skies that “I almost needed sunnies to turn down the glare! Lots of green airglow visible too.” Also visible are the large and small Magallanic clouds.

While taking the images for this 14-image panorama, Carlos said he had lots of company: “Kangaroos, wallabies, wombats, emus, bunny rabbits and foxes.”

And just remember, according to Walt Disney, “That second star to the right shines in the night for you, to tell you that the dreams you plan really can come true.”

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Astrophotographer’s Dream: Venus and Milky Way Galaxy Over Singapore

Rise of Venus and the Milky Way in Singapore on Feb. 28, 2014. Credit and copyright: Justin Ng.

“My dream to capture the beautiful Milky Way galaxy in Singapore has finally come true this morning after the monsoon season is over,” said noted astrophotographer Justin Ng, who lives in this island country in South East Asia. Justin noted that since Singapore is known for its heavy light pollution, there are many people who believe it’s impossible to capture stars and the arc of the Milky Way under those conditions. Justin has been taking amazing deep sky and night sky photos for quite some time, but he said with this particular image he’s hoping to prove the naysayers wrong.

“Plus, I hope to inspire more astrophotographers residing in heavily light polluted city to try to capture these ‘impossible’ images,” Justin added.

UPDATE: Below is a new timelapse video from Justin Ng.

This is a single exposure shot of planet Venus and Milky Way Galaxy in Singapore. However, the light pollution near the horizon is also visible.

Justin has now created a timelapse of his Milky Way photography from the same night he took this image, and he says a timelapse like this never been attempted by any photographers in Singapore, this is is the first:

Rise of Milky Way and Venus in Singapore from Justin Ng Photo on Vimeo.

You can see more of Justin’s fantastic astrophotography at his website, on G+, Facebook and Twitter.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

‘Green Valley’ Of Galaxies Shows Off Gas And Star Formation

M33, the Triangulum Spiral Galaxy, seen here in a 4.3 hour exposure image. Astronomers used JWST to examine a section of its south spiral arm to search out and find nearly 800 newly forming stars. Credit and copyright: John Chumack.
M33, the Triangulum Spiral Galaxy, seen here in a 4.3 hour exposure image. Astronomers used JWST to examine a section of its south spiral arm to search out and find nearly 800 newly forming stars. Credit and copyright: John Chumack.

We keep saying this: the universe is more complex than it appears. Conventional thinking in galaxy research postulates that spiral galaxies have star-forming areas, while ellipticals do not due to a lack of gas. While this thinking has been debunked, there’s now emerging research showing a “green valley” of galaxies somewhat in between these two types.

Basically, the research (which includes participation from citizen scientists in the Galaxy Zoo project) is showing that there are two different populations of “green” galaxies, between ellipticals and spirals. Further, what happens to star formation based upon gas in the area.

“In this paper, we take a look at the most crucial event in the life of a galaxy: the end of star formation. We often call this process ‘quenching’ and many astrophysicists have slightly different definitions of quenching. Galaxies are the place where cosmic gas condenses and, if it gets cold and dense enough, turns into stars. The resulting stars are what we really see as traditional optical astronomers,” wrote Kevin Schawinski, a Ph.D. student at the University of Oxford who is on the Galaxy Zoo team, in a blog post.

“Not all stars shine the same way though: stars much more massive than our sun are very bright and shine in a blue light as they are very hot. They’re also very short-lived. Lower mass stars take a more leisurely pace and don’t shine as bright (they’re not as hot). This is why star-forming galaxies are blue, and quiescent galaxies (or ‘quenched’ galaxies) are red: once star formation stops, the bluest stars die first and aren’t replaced with new ones, so they leave behind only the longer-lived red stars for us to observe as the galaxy passively evolves.”

You can read more information in the blog post. The study, which has been accepted for publication in the Monthly Notices of the Royal Astronomical Society, is available on preprint site Arxiv.

Astrophoto: Stunning Wide-Field Mosaic of the Milky Way

A mosaic of two wide field images taken from the Nevada desert, with the view stretching from Cepheus to the Milky Way core in Sagittarius. Credit and copyright: Tanja Sund.

This gorgeous view of the Milky Way was taken by astrophotographer Tanja Sund during a trip to the desert in Nevada. Made from just two images, this long exposure (180 seconds) mosaic has incredible detail and stunning clarity. You seriously need to click on this image to see a larger version!

See more of Tanja’s work at her Flickr page. She has some beautiful night sky and aurora photos, as well as some striking landscape imagery.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Milky Way-Mapping Telescope Nabs Its First Pictures In Space

The Large Magellanic Cloud is visible in this calibration image for the European Space Agency's Gaia telescope taken in 2014. Credit: ESA/DPAC/Airbus DS

From a lonely outpost in space, the European Space Agency’s Gaia telescope is getting ready to map out the Milky Way. It will take some time to calibrate the instruments to make sure they’re ready for work, however, and that’s why you’re looking at the image above.

Controllers aimed the telescope at the Large Magellanic Cloud, which is a satellite galaxy to our own Milky Way, and snapped this picture of star cluster NGC 1818.

“This test picture, taken as part of commissioning the mission to ‘fine tune’ the behaviour of the instruments, is one of the first proper ‘images’ to be seen from Gaia, but ironically, it will also be one of the last, as Gaia’s main scientific operational mode does not involve sending full images back to Earth,” ESA stated.

This is one crucial step along the road to making sure Gaia’s measurements are accurate. In the next five years, it will examine a billion stars (an astounding number, but still only 1 percent of the galaxy’s population). Gaia will build up a database of key stellar properties such as brightness, what it is made of and temperature.

For more information on Gaia, check out this past Universe Today story from its Dec. 19 launch as well as the official Gaia blog.

Source: ESA

Milky Way Shakes, Rattles and Rolls…

Three stages of the evolution of the galaxy simulation used to model the Milky Way. (Credit: AIP)

For decades astronomers have puzzled over the many details concerning the formation of the Milky Way Galaxy. Now a group of scientists headed by Ivan Minchev from the Leibniz Institute for Astrophysics Potsdam (AIP) have managed to retrace our galaxy’s formative periods with more detail than ever before. This newly published information has been gathered through careful observation of stars located near the Sun and points to a rather “moving” history.

To achieve these latest results, astronomers observed stars perpendicular to the galactic disc and their vertical motion. Just to shake things up, these stars also had their ages considered. Because it is nearly impossible to directly determine a star’s true age, they rattled the cage of chemical composition. Stars which show an increase in the ratio of magnesium to iron ([Mg/Fe]) appear to have a greater age. These determinations of stars close to the Sun were made with highly accurate information gathered by the RAdial Velocity Experiment (RAVE). According to previous findings, “the older a star is, the faster it moves up and down through the disc”. This no longer seemed to be true. Apparently the rules were broken by stars with the highest magnesium-to-iron ratios. Despite what astronomers thought would happen, they observed these particular stars slowing their roll… their vertical speed decreasing dramatically.

So what’s going on here? To help figure out these curious findings, the researchers turned to computer modeling. By running a simulation of the Milky Way’s evolutionary patterns, they were able to discern the origin of these older, slower stars. According to the simulation, they came to the conclusion that small galactic collisions might be responsible for the results they had directly observed.

Smashing into, or combining with, a smaller galaxy isn’t new to the Milky Way. It is widely accepted that our galaxy has been the receptor of galactic collisions many times during its course of history. Despite what might appear to be a very violent event, these incidents aren’t very good at shaking up the massive regions near the galactic center. However, they stir things up in the spiral arms! Here star formation is triggered and these stars move away from the core towards our galaxy’s outer edge – and near our Sun.

In a process known as “radial migration”, older stars, ones with high values of magnesium-to-iron ratio, are pushed outward and display low up-and-down velocities. Is this why the elderly, near-by stars have diminished vertical velocities? Were they forced from the galactic center by virtue of a collision event? Astronomers speculate this to be the best answer. By comparison, the differences in speed between stars born near the Sun and those forced away shows just how massive and how many merging galaxies once shook up the Milky Way.

Says AIP scientist Ivan Minchev: “Our results will enable us to trace the history of our home galaxy more accurately than ever before. By looking at the chemical composition of stars around us, and how fast they move, we can deduce the properties of satellite galaxies interacting with the Milky Way throughout its lifetime. This can lead to an improved understanding of how the Milky Way may have evolved into the galaxy we see today.”

Original Story Source: Leibniz Institute for Astrophysics Potsdam News Release. For further reading: A new stellar chemo-kinematic relation reveals the merger history of the Milky Way.

ESA’s Gaia Mission Launches to Map the Milky Way

Soyuz VS06, with Gaia space observatory, lifted off from Europe's Spaceport, French Guiana, on 19 December 2013. (ESA–S. Corvaja)

Early this morning, at 09:12 UTC, the cloudy pre-dawn sky above the coastal town of Kourou, French Guiana was brilliantly sliced by the fiery exhaust of a Soyuz VS06, which ferried ESA’s “billion-star surveyor” Gaia into space to begin its five-year mission to map the Milky Way.

Ten minutes after launch, after separation of the first three stages, the Fregat upper stage ignited, successfully delivering Gaia into a temporary parking orbit at an altitude of 175 km (108 miles). A second firing of the Fregat 11 minutes later took Gaia into its transfer orbit, followed by separation from the upper stage 42 minutes after liftoff. 46 minutes later Gaia’s sunshield was deployed, and the spacecraft is now cruising towards its target orbit around L2, a gravitationally-stable point in space located 1.5 million km (932,000 miles) away in the “shadow” of the Earth.

The launch itself was really quite beautiful, due in no small part to the large puffy clouds over the launch site. Watch the video below:

A global space astrometry mission, Gaia will make the largest, most precise three-dimensional map of our galaxy by surveying more than a billion stars over a five-year period.

“Gaia promises to build on the legacy of ESA’s first star-mapping mission, Hipparcos, launched in 1989, to reveal the history of the galaxy in which we live,” says Jean-Jacques Dordain, ESA’s Director General.

Soyuz VS06, with Gaia, lifted off from French Guiana, 19 December 2013. (ESA - S. Corvaja)
Soyuz VS06 with Gaia (ESA – S. Corvaja, 2013)

Repeatedly scanning the sky, Gaia will observe each of the billion stars an average of 70 times each over the five years. (That’s 40 million observations every day!) It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition.

By taking advantage of the slight change in perspective that occurs as Gaia orbits the Sun during a year, it will measure the stars’ distances and, by watching them patiently over the whole mission, their motions across the sky.

The motions of the stars can be put into “rewind” to learn more about where they came from and how the Milky Way was assembled over billions of years from the merging of smaller galaxies, and into “fast forward” to learn more about its ultimate fate.

“Gaia represents a dream of astronomers throughout history, right back to the pioneering observations of the ancient Greek astronomer Hipparchus, who catalogued the relative positions of around a thousand stars with only naked-eye observations and simple geometry. Over 2,000 years later, Gaia will not only produce an unrivaled stellar census, but along the way has the potential to uncover new asteroids, planets and dying stars.”

– Alvaro Giménez, ESA’s Director of Science and Robotic Exploration

Gaia will make an accurate map of the stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)
Gaia will make an accurate map of a billion stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)

Of the one billion stars Gaia will observe, 99% have never had their distances measured accurately. The mission will also study 500,000 distant quasars, search for exoplanets and brown dwarfs, and will conduct tests of Einstein’s General Theory of Relativity.

“Along with tens of thousands of other celestial and planetary objects,” said ESA’s Gaia project scientist Timo Prusti, “this vast treasure trove will give us a new view of our cosmic neighbourhood and its history, allowing us to explore the fundamental properties of our Solar System and the Milky Way, and our place in the wider Universe.”

Follow the status of Gaia on the mission blog here.

Source: ESA press release and Gaia fact sheet

Gaia's launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA's facility in French Guiana (ESA)
Gaia’s launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA’s facility in French Guiana (ESA)

Anybody Want A Peanut? New Model Shows Tasty Orbital Shapes In Milky Way’s Bulge

Artist's impression of the Milky Way, looking at it edge on. This makes the bulge at the center look like a peanut, astronomers say. Credit: ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt.

Remember that 3-D map of the Milky Way that postulated that the center of the galaxy is shaped like a box or peanut? A new math model of the bulge shows that stars in the center of that bulge move in figure-eight orbits (which can also be interpreted as a peanut-shell shape.) Before, previous studies suggested these orbits looked more like bananas.

“The difference is important; astronomers develop theories of star motions to not only understand how the stars in our galaxy are moving today but also how our galaxy formed and evolves,” the Royal Astronomical Society stated.

In the middle of the galaxy, there are a lot of gravitational forces at play due to the sheer number of stars, as well as particles of dust and dark matter, congregating in the area. This makes it harder to model orbits than in more simple situations, such as our own solar system.

This is how a new model envisions it working:

Milky Way. Image credit: NASA
Milky Way. Image credit: NASA

“As the stars go round in their orbits, they also move above or below the plane of the bar. When stars cross the plane they get a little push, like a child on a swing,” the RAS said.

“At the resonance point, which is a point a certain distance from the center of the bar, the timing of the pushes on the stars is such that this effect is strong enough to make the stars at this point move up higher above the plane. (It is like when a child on the swing has been pushed a little every time and eventually is swinging higher.) These stars are pushed out from the edge of the bulge.”

The researchers suppose that the stars would have two “vertical oscillations” in each orbit, but in between the orbits are shaped somewhat like a peanut shell. This “could give rise to the observed shape of the bulge, which is also like a peanut-shell,” RAS stated.

The research (led by Alice Quillen, an astronomy researcher at the University of Rochester) is available in the Monthly Notices of the Royal Astronomical Society, as well as (in preprint version) on Arxiv.

Source: Royal Astronomical Society