Our Place in the Galactic Neighborhood Just Got an Upgrade

The sun's newly classified neighborhood -- the Local Arm, as shown in this picture -- is more prominent than previously supposed. Credit: Robert Hurt, IPAC; Bill Saxton, NRAO/AUI/NSF

Some cultures used to say the Earth was the center of the Universe. But in a series of “great demotions,” as astronomer Carl Sagan put it in his book Pale Blue Dot, we found out that we are quite far from the center of anything. The Sun holds the prominent center position in the center of the Solar System, but our star is just average-sized, located in a pedestrian starry suburb — a smaller galactic arm, far from the center of the Milky Way Galaxy.

But perhaps our suburb isn’t as quiet or lowly as we thought. A new model examining the Milky Way’s structure says our “Local Arm” of stars is more prominent than we believed.

“We’ve found there is not a lot of difference between our Local Arm and the other prominent arms of the Milky Way, which is in contrast what astronomers thought before,” said researcher Alberto Sanna, of the Max-Planck Institute for Radio Astronomy, speaking today at the American Astronomical Society’s annual meeting in Indianapolis, Indiana.

Sanna said that one of the main questions in astronomy is how the Milky Way would appear to an observer outside our galaxy.

If you imagine the Milky Way as a rippled cookie, our star is in a neighborhood in between two big ripples (the Sagittarius Arm and the Perseus Arm). Before, we thought the Local Arm (or Orion Arm) was just a small spur between the arms. New research using trigonometric parallax measurements, however, suggests the Local Arm could be a “significant branch” of one of those two arms.

In a few words, our stellar neighborhood is a bigger and brighter one than we thought it was.

Astrophoto: Colorado Milky Way by Michael Underwood
Colorado Milky Way. Credit: Michael Underwood

As part of the BeSSeL Survey (Bar and Spiral Structure Legacy Survey) using the Very Long Baseline Array (VLBA), astronomers are able to make more precise measurements of cosmic distances. The VLBA uses a network of 10 telescopes that work together to figure out how far away stars and other objects are.

It’s hard to figure out the distance from the Earth to other stars. Generally, astronomers use a technique called parallax, which measures how much a star moves when we look at it from the Earth.

VLBA telescope locations, courtesy of NRAO/AUI
VLBA telescope locations, courtesy of NRAO/AUI

When our planet is at opposite sites of its orbit — in spring and fall, for example — the apparent location of stellar objects changes slightly.

The more precisely we can measure this change, the better a sense we have of a star’s distance.

The VLBA undertook a search for spots in our galaxy where water and methanol molecules (also known as masers) enhance radio waves — similar to how lasers strengthen light waves. Masers are like stellar lighthouses for radio telescopes, the National Radio Astronomy Observatory stated.

Trigonometric Parallax method determines distance to star or other object by measuring its slight shift in apparent position as seen from opposite ends of Earth's orbit. CREDIT: Bill Saxton, NRAO/AUI/NSF
Trigonometric Parallax method determines distance to star or other object by measuring its slight shift in apparent position as seen from opposite ends of Earth’s orbit. CREDIT: Bill Saxton, NRAO/AUI/NSF

Between 2008 and 2012, the VLBA tracked the distances to (and movements of) several masers to higher precision than previously, leading to the new findings.

Will the findings help ease our “inferiority complex” after all those great demotions?

“I would say yes, that’s a nice conclusion to say we are more important,” Sanna told Universe Today. “But more importantly, we are now mapping the Milky Way and discovering how the Milky Might appear to an outside observer. We now know the Local Arm arm is something that an observer from afar would definitely notice!”

The results will be published in the Astrophysical Journal, (preprint available here) and were presented today (June 3) at the AAS meeting.

Source: National Radio Astronomy Observatory

Lovely Astrophoto: Cottonwoods and the Milky Way

Cottonwood trees and the Milky Way on May 12, 2013. Credit and copyright: Randy Halverson/Dakotalapse.

Admittedly, I’m partial to Randy Halverson’s night sky photography from South Dakota. Having grown up in neighboring North Dakota myself, Halverson’s images bring back memories of the dark skies that grace the northern plains. But this one is just stunning, not to mention my early childhood home was surrounded by cottonwood trees — towering giants with ample limbs, and one of the few trees that grew well in the harsh prairies of the Dakotas.

Randy said he was trying out some new gear with this image, which is a frame from a timelapse he is shooting (can’t wait!) He used ased a Canon 6D and a Rokinon 24mm F1.4 lens (set at F2), using Emotimo TB3 Black timelapse equipment, shot at ISO 3200 for 20 seconds.

See more of Randy’s work at his Dakotalapse website, or his Facebook page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Astrophoto: Stonehenge, the Milky Way and an Eta Aquarids Meteor

A meteor from the Eta Aquarids flashes over the iconic Stonehenge. Credit and copyright: Peter Greig.

Astrophotographer Peter Greig (St1nkyPete on Flickr) had always wanted to go to Stonehenge in Wiltshire, England, and chose to go there this year for his birthday. It turns out the Universe gave him a little birthday present, with a fabulous clear evening to see the Milky Way shining overhead, along with a few Eta Aquarid meteors flashing in the sky. He captured this amazing shot on May 12. Happy birthday, Peter!

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Milky Way’s Black Hole Munches On Supercooked Gas

Artist's concept of a supermassive black hole at the center of a galaxy. Credit: NASA/JPL-Caltech

It’s a simple menu, but smoking hot. The black hole at the center of the Milky Way galaxy is sucking in ultra-hot molecular gas, as seen through the eyes of the Herschel space telescope.

“The biggest surprise was quite how hot the molecular gas in the innermost central region of the galaxy gets. At least some of it is around 1000ºC [1832º F], much hotter than typical interstellar clouds, which are usually only a few tens of degrees above the –273ºC [-460ºF] of absolute zero,” stated the European Space Agency.

Herschel, which is out of coolant and winding down its scientific operations, will continue producing results in the next few years as scientists crunch the results. The telescope has found a bunch of basic molecules in the Milky Way that include water vapour and carbon monoxide, and has been engaged in looking to learn more about the gas that surrounds the massive black hole at our galaxy’s center.

In a region called Sagittarius* (Sgr A*), this huge black hole — four million times the mass of the sun — is thankfully a safe distance from Earth. It’s 26,000 light years away from the solar system.

At left, ionized gas in the galaxy as seen in radio wavelengths; at right, the spectrum at the center seen by Herschel. Credit: Radio-wavelength image: National Radio Astronomy Observatory/Very Large Array (courtesy of C. Lang); spectrum: ESA/Herschel/PACS & SPIRE/J.R. Goicoechea et al. (2013).
At left, ionized gas in the galaxy as seen in radio wavelengths; at right, the spectrum at the center seen by Herschel. Credit: Radio-wavelength image: National Radio Astronomy Observatory/Very Large Array (courtesy of C. Lang); spectrum: ESA/Herschel/PACS & SPIRE/J.R. Goicoechea et al. (2013).

Trouble is, there’s a heckuva lot of dust blocking our view to the center of the galaxy. Herschel got around that problem by taking pictures in the far-infrared, seeking heat signatures that can bely intense activity in and around the black hole.

“Herschel has resolved the far-infrared emission within just 1 light-year of the black hole, making it possible for the first time at these wavelengths to separate emission due to the central cavity from that of the surrounding dense molecular disc,” stated Javier Goicoechea of the Centro de Astrobiología, Spain, lead author of a paper reporting the results.

The science team supposes that there are strong shocks within the gas (which is magnetized) that help turn up the heat. The shocks could occur when gas clouds butt up against each other, or material shoots out Fast and Furious-style between stars and protostars (young stars.)

“The observations are also consistent with streamers of hot gas speeding towards Sgr A*, falling towards the very center of the galaxy,” stated Goicoechea. “Our galaxy’s black hole may be cooking its dinner right in front of Herschel’s eyes.”

Source: ESA

Timelapse Video Captures a Year of Incredible Night Sky Views

'North Country Dreamland' -a northern Michigan dark sky exposition. Credit: Shawn Malone.

This beautiful new timelapse video might have folks heading in droves for northern Michigan. Shawn Malone of Lake Superior Photo put together this incredible video — her first attempt at a timelapse compilation, believe it or not — using over 10,000 photo frames showing 33 different scenes of various night sky events from northern Michigan over the past year. “It took a year to shoot and a bit of tenacity and persistence to get this into a form of coherent electrified cosmic goodness,” Malone wrote on Vimeo. And did she ever capture cosmic goodness: auroras, the Milky Way rising and setting, meteor showers, a comet, and even aurora and lightning together in one scene. Just gorgeous….

North Country Dreamland from LakeSuperiorPhoto on Vimeo.

Magnificent New Timelapse: Death Valley Dreamlapse 2

The night sky and the infamous sliding stones of Racetrack Playa Lakebed in Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

Have you ever dreamed of camping out under the dark skies of Death Valley? Dream no more: you can enjoy this virtual experience thanks to Gavin Heffernan and his Sunchaser Pictures crew. This magnificent new timelapse video includes some insane star trails, the beautiful Milky Way, and an incredible pink desert aurora!

“As you can see, Death Valley is a crazy place to shoot at,” Gavin said via email to Universe Today, “as the horizon is so strangely uneven/malleable. I don’t know if the valley was cut by water or underground magma, but it’s almost impossible to find a straight horizon.” See some great images from their video, below:

Gavin said he and his team tried out some new timelapse techniques, like moonpainting the foreground landscapes (0:53 — 1:20), and also some experiments merging regular timelapse footage with star trails — “a technique we’ve been calling Starscaping (1:07:1:33)” he said. “If it has an actual name, let us know! 🙂 Star Trails shot at 25 sec exposures. No special effects used, just the natural rotation of the earth’s axis. Photography Merging: STARSTAX. Used two Canon EOS 5Dmkii, with a 24mm/1.4 lens & 28mm/1.8.”

A pink aurora seen in Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.
A pink aurora seen in Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

See their original Death Valley Dreamlapse here, as well as a behind the scenes “making of” video for this second Death Valley Dreamlapse. Sunchaser Pictures also has a new Facebook page, so “like” them!

Star trails timelapse over Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.
Star trails timelapse over Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

DEATH VALLEY DREAMLAPSE 2 from Sunchaser Pictures on Vimeo.

Dust Complicates Determinations of the Distance to Galactic Center

The plane of our Milky Way galaxy (image credit: R. Bertero/deviantart, cropped by DM).  Understanding the nature of the obscuring dust, indicated partly by the dark regions bisecting the plane, is key to establishing a precise distance to the Galactic center.

Obtaining an accurate distance between the Sun and the center of our Galaxy remains one of the principal challenges facing astronomers. The ongoing lively debate concerning this distance hinges partly on the nature of dust found along that sight-line. Specifically, are dust particles lying toward the Galactic center different from their counterparts near the Sun? A new study led by David Nataf asserts that, yes, dust located towards the Galactic center is anomalous. They also look at accurately defining both the distance to the Galactic center and the reputed bar structure that encompasses it.

The team argues that characterizing the nature of small dust particles is key to establishing the correct distance to the Galactic center, and such an analysis may mitigate the scatter among published estimates for that distance (shown in the figure below).  Nataf et al. 2013 conclude that dust along the sight-line to the Galactic center is anomalous, thus causing a non-standard ‘extinction law‘.  

The extinction law describes how dust causes objects to appear fainter as a function of the emitted wavelength of light, and hence relays important information pertaining to the dust properties.

The team notes that, “We estimate a distance to the Galactic center of [26745 light-years] … [adopting a] non-standard [extinction law] thus relieves a major bottleneck in Galactic bulge studies.”

Various estimates for the distance to the Galactic center tabulated by Malkin 2013. The x-axis describes the year, while the y-axis features the distance to the Galactic center in kiloparsecs (image credit: Fig 1 from Malkin 2013/arXiv/ARep).

Nataf et al. 2013 likewise notes that, “The variations in both the extinction and the extinction law made it difficult to reliably trace the spatial structure of the [Galactic] bulge.”  Thus variations in the extinction law (tied directly to the dust properties) also affect efforts to delineate the Galactic bar, in addition to certain determinations of the distance to the Galactic center.  Variations in the extinction law imply inhomogeneities among the dust particles.

“The viewing angle between the bulge’s major axis and the Sun-Galactic centerline of sight remains undetermined, with best values ranging from from  13  to …  44 [degrees],” said Nataf et al. 2013 (see also Table 1 in Vanhollebekke et al. 2009).  The team added that, “We measure an upper bound on the tilt of 40 [degrees] between the bulge’s major axis and the Sun-Galactic center line of sight.”

However, the properties of dust found towards the Galactic center are debated, and a spectrum of opinions exist.  While Nataf et al. 2013 find that the extinction law is anomalously low, there are studies arguing for a standard extinction law.  Incidentally, Nataf et al. 2013 highlight that the extinction law characterizing dust near the Galactic center is similar to that tied to extragalactic supernovae (SNe), “The … [extinction] law toward the inner Galaxy [is] approximately consistent with extra-galactic investigations of the hosts of type Ia SNe.”

The delineation of the bar at the center of our Milky Way galaxy by Nataf et al. 2013. The bar is closer toward the Sun in the 1st Galactic quadrant. The center line represents the direction toward the constellation of Sagitarrius (image credit: Fig 17 from Nataf et al. 2013/arXiv/ApJ).
Left, the delineation of the bar at the center of the Milky Way by Nataf et al. 2013. The centerline represents the direction towards Sagittarius (image credit: Fig 17 from Nataf et al. 2013/arXiv/ApJ).  Right, a macro view of the Galaxy highlighting the general orientation and location of the Galactic bar (image credit: NASA/Wikipedia).  The Galactic bar is not readily discernible in the distribution of RR Lyrae variables.

Deviations from the standard extinction law, and the importance of characterizing that offset, is also exemplified by studies of the Carina spiral arm.  Optical surveys reveal that a prominent spiral arm runs through Carina (although that topic is likewise debated), and recent studies argue that the extinction law for Carina is higher than the standard value (Carraro et al. 2013Vargas Alvarez et al. 2013).  Conversely, Nataf et al. 2013 advocate that dust towards the Galactic center is lower by comparison to the standard (average) extinction law value.

The impact of adopting an anomalously high extinction law for objects located in Carina is conveyed by the case of the famed star cluster Westerlund 2, which is reputed to host some of the Galaxy’s most massive stars.  Adopting an anomalous extinction law for Westerlund 2 (Carraro et al. 2013Vargas Alvarez et al. 2013) forces certain prior distance estimates to decrease by some 50% (however see Dame 2007).  That merely emphasizes the sheer importance of characterizing local dust properties when establishing the cosmic distance scale.

In sum, characterizing the properties of small dust particles is important when ascertaining such fundamental quantities like the distance to the Galactic center, delineating the Galactic bar, and employing distance indicators like Type Ia SNe.

The Nataf et al. 2013 findings have been accepted for publication in the Astrophysical Journal (ApJ), and a preprint is available on arXiv.  The coauthors on the study are Andrew Gould, Pascal Fouque, Oscar A. Gonzalez, Jennifer A. Johnson, Jan Skowron, Andrzej Udalski, Michal K. Szymanski, Marcin Kubiak, Grzegorz Pietrzynski, Igor Soszynski, Krzysztof Ulaczyk, Lukasz Wyrzykowski, Radoslaw Poleski.  The Nataf et al. 2013 results are based partly on data acquired via the Optical Graviational Lensing Experiment (OGLE).  The interested reader desiring additional information will find the following pertinent: Udalski 2003Pottasch and Bernard-Salas 2013Kunder et al. 2008Vargas Alvarez et al. 2013Carraro et al. 2013Malkin 2013Churchwell et al. 2009, Dame 2007Ghez et al. 2008Vanhollebekke et al. 2009.

The Nataf et al. 2013 results are based partly on observations acquired by the OGLE survey (image credit: OGLE team).

Beautiful Astrophoto: The Moon and the Milky Way Arch

A 21-image mosaic showing the Milky Way and the setting Moon at dawn, at the Convent of Orada in Monsaraz, Portugal, in the Alqueva´s Dark Sky Reserve. Credit and copyright: Miguel Claro.

With the arrival of spring, the Milky Way begins its rise in the sky in the northern hemisphere. Now visible at dawn in the skies over Portugal at dawn, astrophotographer Miguel Claro captured this stunning 21-image mosaic showing the arch of the Milky Way framing the setting Moon from Monsaraz, Portugal in the Alqueva Dark Sky Reserve. In the foreground is the Convent of Orada (dated 1670).

“Near the center at the right of palm trees, the moon shines brightly, although not interfering with the giant arc of the Milky Way where it is possible to distinguish a lot of constellations like Ursa Minor, with the Polaris star to the left of the image,” Claro said via email, “until the swan (Cygnus), with its North America nebula (NGC7000) clearly visible, down to the right, we still find the constellation of Sagittarius and Scorpio, with the brilliant super giant star, Antares.”

Click the images to see larger versions (yes, you really want to ’embiggen!’)

See an annotated version below. Claro used a Canon 60Da – ISO1600 Lens 24mm f/2; Exp. 15 seconds, taken on 06/04/2013 at 5:32 AM local time.


An annotated version of a 21-image mosaic showing the Milky Way and the setting Moon at dawn, at the Convent of Orada in Monsaraz, Portugal, in the Alqueva´s Dark Sky Reserve. Credit and copyright: Miguel Claro.
An annotated version of a 21-image mosaic showing the Milky Way and the setting Moon at dawn, at the Convent of Orada in Monsaraz, Portugal, in the Alqueva´s Dark Sky Reserve. Credit and copyright: Miguel Claro.

How Big Are Galaxies?

Galaxy size comparison chart by astrophysicist Rhys Taylor

I’m going to refrain from the initial response that comes to mind… actually, no I won’t — they’re really, really, really big!!!!

</Kermit arms>

Ok, now that that’s out of the way check out this graphic by Arecibo astrophysicist Rhys Taylor, which neatly illustrates the relative sizes of 25 selected galaxies using images made from NASA and ESA observation missions… including a rendering of our own surprisingly mundane Milky Way at the center for comparison. (Warning: this chart may adversely affect any feelings of bigness you may have once held dear.) According to Taylor on his personal blog, Physicists of the Caribbean (because he works had worked at the Arecibo Observatory in Puerto Rico) “Type in ‘asteroid sizes’ into Google and you’ll quickly find a bunch of  images comparing various asteroids, putting them all next to each at the same scale. The same goes for planets and stars. Yet the results for galaxies are useless. Not only do you not get any size comparisons, but scroll down even just a page and you get images of smartphones, for crying out loud.” So to remedy that marked dearth of galactic comparisons, Taylor made his own. Which, if you share my personal aesthetics, you’ll agree is quite nicely done.

“I tried to get a nice selection of well-known, interesting objects,” Taylor explains. “I was also a little limited in that I needed high-resolution images which completely mapped the full extent of each object… still, I think the final selection has a decent mix, and I reckon it was a productive use of a Saturday.” And even with the dramatic comparisons above, Taylor wasn’t able to accurately portray to scale one of the biggest — if not the biggest — galaxies in the observable universe: IC 1101.

For an idea of how we measure up to that behemoth, he made this graphic:

Galaxy sizes including IC 1101, the largest-known galaxy. Click for a zoomable version. (Credit: Rhys Taylor)
Galaxy sizes including IC 1101, the largest-known galaxy. Click for a zoomable version. (Credit: Rhys Taylor)

That big bright blur in the center? That’s IC 1101, the largest known galaxy — in this instance created by scaling up an image of M87, another supersized elliptical galaxy that just happens to be considerably closer to our own (and thus has had clearer images taken of it.) But the size is right — IC 1101 is gargantuan.

At an estimated 5.5 million light-years wide, over 50 Milky Ways could fit across it! And considering it takes our Solar System about 225 million years to complete a single revolution around the Milky Way… well… yeah. Galaxies are big. Really, really, reallyreally big!

</Kermit arms>

Now if you’ll pardon me, I need to go stop my head from spinning… Read this and more on Rhys Taylor’s blog here, and add Rhys to your awesome astronomy Google+ circles here. And you can find out more about IC 1101 in the video below from Tony Darnell, aka DeepAstronomy:

Black Holes, Fermi Bubbles and the Milky Way

Deep at the heart of our galaxy lurks a black hole. This isn’t exciting news, but neither is it a very exciting place. Or is it? While all might be quiet on the western front now, there may be evidence that our galactic center was once home to some pretty impressive activity – activity which may have included multiple collision events and mergers of black holes as it gorged on a satellite galaxies. Thanks to new insights from a pair of assistant professors, Kelly Holley-Bockelmann at Vanderbilt and Tamara Bogdanovic at Georgia Institute of Technology, we have more evidence which points to the Milky Way’s incredibly active past.

“Tamara and I had just attended an astronomy conference in Aspen, Colorado, where several of these new observations were announced,” said Holley-Bockelmann. “It was January 2010 and a snow storm had closed the airport. We decided to rent a car to drive to Denver. As we drove through the storm, we pieced together the clues from the conference and realized that a single catastrophic event – the collision between two black holes about 10 million years ago – could explain all the new evidence.”

Now, imagine a night sky illuminated by a a huge nebula, one that covers half the celestial sphere. This isn’t a dream, it’s a reality. These massive lobes of high-energy radiation are known as Fermi bubbles and they cover a region some 30,000 light years on either side of the Milky Way’s core. While we can’t observe them directly in visible light, these particles are moving along at close to 186,000 miles per second and glowing in x-ray and gamma ray wavelengths.

According to Fulai Guo and William G. Mathews of the University of California at Santa Cruz: “The Fermi bubbles provide plausible evidence for a recent powerful AGN jet activity in our Galaxy, shedding new insights into the origin of the halo CR population and the channel through which massive black holes in disk galaxies release feedback energy during their growth.”

However, our galactic center is home to more than just some incredible bubbles – it’s the location of three of the most massive clusters of young stars within the Milky Way’s realm. Known as the Central, Arches and Quintuplet clusters, each grouping houses several hundred hot, young stars which dwarf the Sun. They will live short, bright, violent lives… burning out in a scant few million years. Because they live fast and die young, these cluster stars must have formed within recent years during a eruption of star formation near the galactic center – another clue to this cosmic puzzle.

“Because of their high mass, and apparent top-heavy IMF, the Galactic Center clusters contain some of the most massive stars in the Galaxy. This is important, as massive stars are key ingredients and probes of astrophysical phenomena on all size and distance scales, from individual star formation sites, such as Orion, to the early Universe during the age of reionization when the first stars were born. As ingredients, they control the dynamical and chemical evolution of their local environs and individual galaxies through their influence on the energetics and composition of the interstellar medium.” says Donald F. Figer. “They likely play an important role in the early evolution of the first galaxies, and there is evidence that they are the progenitors of the most energetic explosions in the Universe, seen as gamma ray bursts. As probes, they define the upper limits of the star formation process and their presence likely ends further formation of nearby lower mass stars. They are also prominent output products of galactic mergers, starburst galaxies, and active galactic nuclei.”

To deepen the mystery, take a closer look at our central black hole. It spans about 40 light seconds in diameter and weighs about four million solar masses. According to what we know, this should produce intensive gravitational tides – ones that should be sucking in the surroundings. So how is it that astronomers have uncovered groups of new, bright stars closer than 3 light years from the event horizon? Of course, they could be on their way to oblivion, but the data shows these stars seem to have formed there. That’s quite a feat considering it would require a molecular cloud 10,000 times more dense than the one located at our galactic center! Shouldn’t there also be old stars located there as well? The answer is yes, there should be… but there are far fewer than what we can observe and what current theoretical models predict.

Holley-Bockelmann wasn’t about to let the problem rest. When she returned home, she enlisted the aid of Vanderbilt graduate student Meagan Lang to help solve the riddle. Then they recruited Pau Amaro-Seoane from the Max Planck Institute for Gravitational Physics in Germany, Alberto Sesana from the Institut de Ciències de l’Espai in Spain, and Vanderbilt Research Assistant Professor Manodeep Sinha to help. With so many bright minds to help solve this riddle, they soon arrived at a plausible explanation – one which matches observations and allows for testable predictions.

According to their theory, a Milky Way satellite galaxy began migrating towards our core. As it merged with our galaxy, its mass was torn away, leaving only its black hole and a small collection of gravitationally bound stars. After several million years, this “leftover” eventually reached the galactic center and the black holes began to merge. As the smaller black hole was swirled around the larger, it plowed up huge furrows of gas and dust, pushing it into the larger black hole and created the Fermi bubbles. The dueling gravitational forces weren’t gentle… these intense tides were quite capable of compressing the molecular clouds surrounding the core into the density required to produce fresh, young stars. Perhaps the very young stars we now observe at the galactic center?

However, there’s more to the picture than meets the eye. This same plowing of the cosmic turf would have also pushed out existing older stars from the vicinity of the massive central black hole. It’s a scene which fits current models where a black hole merger flings stars out into the galaxy at hyper velocities… a scene which fits the observation of a lack of old stars at the boundaries of our supermassive black hole.

“The gravitational pull of the satellite galaxy’s black hole could have carved nearly 1,000 stars out of the galactic centre,” said Bogdanovic. “Those stars should still be racing through space, about 10,000 light years away from their original orbits.”

Can any of this be proved? The answer is yes. Thanks to large scale surveys like the Sloan Digital Sky Survey, we should be able to pinpoint stars moving at a higher velocity than stars which haven’t been subjected to a similar interaction. If astronomers like Holley-Bockelmann and Bogdanovic look at the hard evidence, they are likely to discover a credible number of high velocity stars which will validate their Milky Way merger model.

Or are they just blowing bubbles?