Planetary Bake Sale and Car Wash to Support Exploration of the Solar System

Would you support a car wash or bake sale for planetary science?

[/caption]

Across the country, planetary scientists and students are planning for an upcoming bake sale and car wash on June 9, 2012. The event is in response to the 21% proposed budget cuts to planetary exploration, and while the volunteer bakers and washers will take donations, the main idea is to get the word out to the general public about the proposed budget slashing, and to ask people to send letters to their representatives. “Take Social Action and Participate,” says the event website. “Help Protect the NASA Planetary Budget from Cuts!”

The event was organized by Alan Stern, Principal Investigator of the New Horizons mission and former Associate Administrator of NASA’s Science Mission Directorate. There are several institutions across the US who already have events planned, (see here for planned events) and Stern is hoping for more events to be added. There’s even a ‘cookbook’ of ideas and instructions for how to host an event.

The event is supported by the Division for Planetary Sciences (DPS) of the American Astronomical Society, the world’s largest professional association of planetary scientists, which urges Congress to support and fund a vigorous planetary science program as recommended by the National Research Council. “We strongly believe that the robotic exploration of the solar system resonates with the American people; it is something that NASA needs to be doing and doing exceptionally well, and it is something the American people will support even in tight budget times,” the DPS said in a statement.

At the Lunar and Planetary Science Conference in March, Steve Squyres, Principal Investigator of the Mars Exploration Rovers and chair of the recent National Research Council (NRC) Decadal Survey for planetary science, said that for the planetary science budget to be restored, it would be crucial for the scientific community to respond in a unified fashion. “I’ve spent a lot of time looking at the budget, and as bad as it looks, they are looking for reasons to cut even further. There just is not enough money. What we just cannot do, we can’t give anyone reasons to cut even further. There are people looking to do that. We must respond as a unified voice.”

This bake sale and carwash is an attempt to have a unified voice across the country of showing how devastating the cuts would be for the future of NASA’s overall vision. President Obama has stated he will see astronauts on Mars in his lifetime, so the plan to put the Mars program essentially on hold is perplexing.

Additionally, the job losses and “institutional knowledge” losses would be devastating. “A 20% budget cut will likely equal 20% loss of jobs,” one commenter from the audience at the LPSC NASA Night event said. “People who land missions on Mars will lose their jobs, and when we get to the stage of landing humans on Mars, those with the know-how won’t be there.”

Check out the National Planetary Exploration Car Wash & Bake Sale website to see how you can support planetary science.

Going to the Moon? Don’t Touch the Historical Artifacts, NASA Says

NASA recommends an artifact boundary extending 75 m from the Apollo 11 lunar module descent stage. Photo credit: NASA

[/caption]

Don’t say you haven’t been warned. NASA put out an official document today specifying how close any future spacecraft and astronauts visiting the Moon can come to the artifacts left on the lunar surface by all US space missions, including the Apollo landing sites, any robotic landing sites like Surveyor and impact sites like LCROSS.

While these recommendations are not mandatory (there’s obviously no way to enforce this yet) the document states, “rather, it is offered to inform lunar spacecraft mission planners interested in helping preserve and protect lunar historic artifacts and potential science opportunities for future missions.”

For example, NASA recommends an artifact boundary extending 75 m from the Apollo 11 lunar module descent stage.

NASA isn’t expecting a rush of astro-looters to descend upon the Moon, but with China discussing a Moon landing, and with several Google Lunar X PRIZE teams hoping to send robotic landers, they want to make sure nothing from previous missions is disturbed.

“In the 50 years since the first lunar missions, the spaceflight community has not formally provided recommendations to the next generation of lunar explorers on how to preserve the original artifacts and protect ongoing science from the potentially damaging effects of nearby landers,” NASA said in an accompanying press release, saying that they recognize the steadily increasing technical capabilities of space-faring commercial entities and nations throughout the world that may be on the verge of landing spacecraft on the surface of the Moon.

The document specifies how close another spacecraft can hover, flyover, hop or touchdown near landing sites or spacecraft.

And not just hardware is included in the “don’t touch” areas: “U.S. human, human-robotic lunar presence, including footprints, rover tracks, etc., although not all anthropogenic indicators are protected as identified in the recommendations,” the document says.

NASA’s decisions on proximity boundaries were made from recommendations from external experts from the historic, scientific and flight-planning communities and apply to US government artifacts on the lunar surface.

NASA says they released this document to open discussions with commercial and international space agencies, and seek any improvements to the recommendations.

Read the full document here (pdf file).

Source: NASA

Spacecraft Captures Mercury-Jupiter Conjunction

Mercury (top) and Jupiter by the LASCO C3 instrument on the SOHO spacecraft. Credit: NASA/SOHO

[/caption]

Here’s a great shot from the Solar and Heliospheric Observatory (SOHO) spacecraft of Mercury (top planet) and Jupiter snuggling up together, along with the Pleiades cluster, all close to Sun, as seen from SOHO’s LASCO C3 instrument (Large Angle and Spectrometric Coronagraph). SOHO has been in space since 1995, and is a workhorse of solar observing, giving us insights into the workings of the Sun, comets and other bodies in the Solar System. Check out the SOHO website for more great images.

Hat tip to @Sungrazercomets on Twitter.

Watch Jupiter as a ‘Space Invader’

This great video created from images taken by the Solar and Heliospheric Observatory (SOHO) on May 13 and 14 show Jupiter as it comes close to the Sun (from our vantage point) in a solar conjunction. But what it really looks like is the old “Space Invaders” video game, with Jupiter marching across the screen. There’s even a couple of sungrazing comets “pewpew-ing” in like the laser cannon shots in the game, and a coronal mass ejection completes the scene as an explosion (which is actually more like “Asteroids.”) For more fun, the team who created this video at the Naval Research Laboratory’s Sungrazing Comets website takes the time to show all the different objects in the scene, which amazingly includes Callisto and Ganymede, two of Jupiter’s moons. All it needs is the funky video game background music.
Continue reading “Watch Jupiter as a ‘Space Invader’”

Opportunity Roving Mars Once Again

Opportunity's traverse map from Sol 2951 (May 13 on Earth) and shows the entirety of the rover's travels to that point. Image Credit: NASA/JPL/Cornell/University of Arizona

[/caption]

After spending 19 weeks working in one place during the Martian winter in Meridian Planum, the Opportunity Mars rover is now roving once again. During the winter, available solar power was too low for driving, but on May 8th (here on Earth), Opportunity took its first drive since Dec. 26, 2011. She drove about 3.67 meters (12 feet) northwest and downhill.

“We’re off the Greeley Haven outcrop onto the sand just below it,” said rover driver Ashley Stroupe of JPL. “It feels good to be on the move again.”

During the period while the rover was stationary, she wasn’t just sleeping. Engineers sent commands for Oppy to use the spectrometers and microscopic imager on its robotic arm to inspect more than a dozen targets within reach on the outcrop. Radio Doppler signals from the stationary rover during the winter months served an investigation of the interior of Mars by providing precise information about the planet’s rotation, a study that scientists were hoping to do with the Spirit rover, but unfortunately she fell silent before they could do the experiment.

Opportunity drove about 12 feet (3.67 meters) on May 8, 2012, after spending 19 weeks working in one place while solar power was too low for driving during the Martian winter. The winter worksite was on the north slope of an outcrop called Greeley Haven. The rover used its rear hazard-avoidance camera after nearly completing the May 8 drive, capturing this view looking back at the Greeley Haven. The dark shape in the foreground is the shadow of Opportunity's solar array. The view is toward the southeast. Image Credit: NASA/JPL-Caltech

So how is Opportunity’s power supply? As long as the rover stays tilted northward towards the Sun – about 8 degrees is all that’s needed – she will have sufficient power to take short drives.

But unless wind removes some dust from her solar arrays, allowing more sunlight to reach the solar cells, the rover will need to work during the next few weeks at locations with no southward slope. “We’ll head south as soon as power levels are adequate to handle the slopes where we’ll go,” said Mars Exploration Rover Deputy Project Scientist Diana Blaney of JPL.

“Our next goal is a few meters farther north on Cape York, at a bright-looking patch of what may be dust,” said Opportunity science-team member Matt Golombek of JPL. “We haven’t been able to see much dust in Meridiani. This could be a chance to learn more about it.”

Beyond the dust patch, the team intends to use Opportunity to study veins in bedrock around the northern edge of Cape York. A vein inspected before winter contained gypsum deposited long ago by mineral-laden water flowing through a crack in the rock.

As you remember, Opportunity has been going strong for over 9 years now, exploring the Meridiani region of Mars since landing in January 2004. It arrived at the Cape York section of the rim of Endeavour Crater in August 2011, and has been studying rock and soil targets on Cape York since then.

Vote for the Curiosity Rover to Become a LEGO Toy

A Lego Curiosity Rover on display at the National Air and Space Museum in Chantilly, Virginia for their Space Day event to welcome the addition of the Discovery Space Shuttle. You can see the underside of the shuttle in the background. Credit: Stephen Pakbaz.

[/caption]

I know a lot of our readers are — like me — huge LEGO fans, and of course, we have lots of fans of the Mars Science Laboratory, a.k.a the Curiosity rover. One of our readers, Allen Eyler, just sent me an email on how disappointed he and many other rover fans are about the fact that LEGO has no plans to create a Curiosity toy model. However, LEGO has a website where users can submit prototype designs for LEGO projects and if 10,000 people vote for the design, then LEGO will consider mass-producing and marketing that design. Bring in Stephen Pakbaz, an engineer at JPL who was involved in some of the design and testing of the real Curiosity rover. He has now designed and built an amazing Curiosity rover in LEGO, at 1:20 scale. It features the same ‘rocker-bogie’ wheel action just like the real Curiosity rover, along with an articulating arm and a deployable mast.

It looks awesome and I’m already wanting to play with it! And just think of the great outreach for NASA and space exploration it would be to have a Lego Curiosity rover for sale in stores. We now just need our readers to help boost the votes for Curiosity as a LEGO toy model.

All you need to do is visit LEGO’s CUUSOO page for the Curiosity rover and cast your vote. You can see more images of the rover there, or at Stephen Pakbaz’s Flickr page, where there is even a video that shows how the rocker-bogie system works.

Let’s do this!

Curiosity is now on its way to Mars and is set for an exciting landing on August 6. Watch below the incredible, nail-biting video of how it is going to happen:

Moon Craters 3-D!

A young unnamed crater on the Moon west of Isaev crater. Credit: NASA/GSFC/Arizona State University; Anaglyph by Nathanial Burton-Bradford.

[/caption]

While many are hoping to see a larger-than-usual view of the Moon this weekend, here’s some great 3-D closeups courtesy of the Lunar Reconnaissance Orbiter and imaging wizard Nathanial Burton Bradford. This great 3-D view (Red/Cyan glasses needed) shows quite an interesting young impact crater on the Moon, (17.682°S, 144.408°E) west of Isaev crater. Click on the image for a larger view, and in 3-D you can dive right in and see all the nooks and crannies – what scientists call complex crater morphology.

Below you can view a Digital Terrain Model, or DTM of this same crater, and find the specifics of how deep the various parts of the crater are and other information critical to scientific investigations of the Moon.

Digital Terrain Model (DTM) of an unnamed crater in the farside highlands. Image is 3.2 km across. Credit: NASA/GSFC/Arizona State University.

Another recent view released by the LRO camera team is of impact melt deposit on another unnamed crater on nearside highlands (38.112°N, 53.052°E; northeast of Mare Tranquillitatis). Again, Nathanial Burton-Bradford provides a 3-D view, and amazingly, the crater walls appear deceptively steep in 3-D as opposed to the regular 2-D view:

3D anaglyph of rim impact melt deposit on Unnamed crater on nearside highlands (38.112°N, 53.052°E; northeast of Mare Tranquillitatis). Credit: NASA/GSFC/Arizona State University; anaglyph by Nathanial Burton-Bradford.

What is impact melt? “So much energy is released when an asteroid or comet slams into the Moon that some of target rock (the Moon) is melted,” wrote Lillian Ostrach on the LRCO website. “For large craters, such as Tycho or Copernicus, the impact event responsible for forming these craters was large enough to generate melt that coated and covered the crater floor, and ejected melt pooled and flowed outside the crater cavity.”

Ostrach says that LROC images show that impact melt is widespread and quite common to lunar impact craters — but as this image shows – take a close look to find channels, flows, and veneers across much of the region.

Here’s LROC’s regular view:

Impact melt started to flow back into the crater cavity before it solidified. Image width is 500 m, from the LROC Narrow Angle Camera. Credit: NASA/GSFC/Arizona State University.

Find out more about these recent LRO images on the LROC website, and see more of Nathanial’s photography handiwork at his DeviantArt page.

Weird Swirly Features Found on Mars

Cooling lava on Mars can form patterns like snail shells when the lava is pulled in two directions at once. Such patterns, rare on Earth, have never before been seen on Mars. This image, with more than a dozen lava coils visible, shows an area in a volcanic region named Cerberus Palus that is about 500 meters (1640 feet) wide. Credit: NASA

[/caption]

Strange coiling spiral patterns have been found on Mars surface by a graduate student who was doing what many of us enjoy: looking through the high-resolution images from the HiRISE camera on the Mars Reconnaissance Orbiter. Similar features have been seen on Earth, but this is the first time they have been identified on Mars. However, on Mars, these features, called lava coils, are supersized. “On Mars the largest lava coil is 30 meters across – that’s 100 feet,” said Andrew Ryan from Arizona State University. “That’s bigger than any known lava coils on Earth.”

The lava coils resemble snail or nautilus shells. Ryan has found about 269 of these lava coils just in one region on Mars, Cerberus Palus. 174 of them swirl in a clockwise-in orientation, 43 are counterclockwise, and 52 of the features remain unclassified due to resolution limits.

A small lava coil on pahoehoe flow, Kilauea Volcano, Hawai`i(see the pocket knife for scale.) Credit: W.W. Chadwick

On Earth, lava coils can be found on the Big Island of Hawaii, mainly on the surface of ropey pahoehoe lava flows. They usually form along slow-moving shear zones in a flow; for example, along the margins of a small channel, and the direction of the flow can be determined from a lava coil.

“The coils form on flows where there’s a shear stress – where flows move past each other at different speeds or in different directions,” said Ryan. “Pieces of rubbery and plastic lava crust can either be peeled away and physically coiled up – or wrinkles in the lava’s thin crust can be twisted around.”

Similarly, Ryan said scientists have documented the formation of rotated pieces of oceanic crust at mid-ocean ridge spreading centers.

Newer lava lying between two older plates of rough, hardened lava was still hot and plastic enough to form coils and spirals when the plates slid past one another. This image shows an area about 360 meters (1200 feet) wide in Cerberus Palus. Credit: NASA

But Ryan and the co-author on the paper, Phil Christiansen, Principal Investigator for the Thermal Emission Imaging Spectrometer on the Mars Odyssey spacecraft, are certain water has nothing to do with the formation of the lava coils on Mars.

“There are no known mechanisms to naturally produce spiral patterns in ice-rich environments on the scale and frequency observed in this area,” they wrote in their paper. “It is also unlikely that ice-rich patterned regolith, which takes decades to centuries to develop, could fracture and drift. The lava coils and drifting polygonal and platy-ridge lava crust described above are therefore most consistent with known volcanic analogs, rather than ice-related processes.”
These features are probably quite young, formed 1.5 to 200 million years ago in Mars’ late Amazonian period when the planet was volcanically active.

The team’s paper presented at the 2012 Lunar and Planetary Science Conference

Outer Space – Mind Blowing Video from Jupiter and Saturn

Video Caption: This mesmerizing video unveils incredibly amazing sequences around Jupiter and Saturn from NASA’s Cassini and Voyager missions set to stirring music by “The Cinematic Orchestra -That Home (Instrumental)”. Credit: Sander van den Berg

Don’t hesitate 1 moment ! Look and listen to this mind blowing video of the Jupiter and Saturnian systems.

If you love the wonders of the hitherto unknown Universe unveiled before your eyes – and long to explore – feast your eyes on this short new video right now titled simply; “Outer Space”. Continue reading “Outer Space – Mind Blowing Video from Jupiter and Saturn”

Dawn Reveals More of Vesta’s Secrets

These composite images from the framing camera aboard NASA's Dawn spacecraft show three views of a terrain with ridges and grooves near Aquilia crater in the southern hemisphere of the giant asteroid Vesta. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

Vesta is finally giving up its secrets, thanks to the Dawn spacecraft! The latest images sent back from Dawn are revealing new details about the giant asteroid, including its varied surface composition, sharp temperature changes and clues to its internal structure. Scientists say all the information garnered by Dawn will help us to better understand the early solar system and processes that dominated its formation.

“Dawn now enables us to study the variety of rock mixtures making up Vesta’s surface in great detail,” said Harald Hiesinger, a Dawn participating scientist at Münster University in Germany. “The images suggest an amazing variety of processes that paint Vesta’s surface.”

Images from Dawn’s framing camera and visible and infrared mapping spectrometer, taken 420 miles (680 kilometers) and 130 miles (210 kilometers) above the surface of the asteroid, show a variety of surface mineral and rock patterns. Coded false-color images help scientists better understand Vesta’s composition and enable them to identify material that was once molten below the asteroid’s surface.

Researchers also see breccias, which are rocks fused during impacts from space debris. Many of the materials seen by Dawn are composed of iron- and magnesium-rich minerals, which often are found in Earth’s volcanic rocks. Images also reveal smooth pond-like deposits, which might have formed as fine dust created during impacts settled into low regions.

These images of Tarpeia crater, near the south pole of the giant asteroid Vesta, were obtained by the visible and infrared mapping spectrometer on NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech/UCLA/INAF

At the Tarpeia crater near the south pole of the asteroid, Dawn imagery revealed bands of minerals that appear as brilliant layers on the crater’s steep slopes. The exposed layering allows scientists to see farther back into the geological history of the giant asteroid.

The layers closer to the asteroid’s surface bear evidence of contamination from space rocks bombarding Vesta. Layers below preserve more of their original characteristics. Frequent landslides on the slopes of the craters also have revealed other hidden mineral patterns.

This colorized image from NASA’s Dawn mission shows temperature variations at Tarpeia crater, near the south pole of the giant asteroid Vesta. Image credit: NASA/JPL-Caltech/UCLA/INAF

“These results from Dawn suggest Vesta’s ‘skin’ is constantly renewing,” said Maria Cristina De Sanctis, lead of the visible and infrared mapping spectrometer team based at Italy’s National Institute for Astrophysics in Rome.

This set of images from NASA's Dawn mission shows topography of the southern hemisphere of the giant asteroid Vesta and a map of Vesta’s gravity variations that have been adjusted to account for Vesta’s shape. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn has given scientists a near 3-D view into Vesta’s internal structure. By making ultra-sensitive measurements of the asteroid’s gravitational tug on the spacecraft, Dawn can detect unusual densities within its outer layers. Data now show an anomalous area near Vesta’s south pole, suggesting denser material from a lower layer of Vesta has been exposed by the impact that created a feature called the Rheasilvia basin. The lighter, younger layers coating other parts of Vesta’s surface have been blasted away in the basin.

Dawn obtained the highest-resolution surface temperature maps of any asteroid visited by a spacecraft. Data reveal temperatures can vary from as warm as minus 10 degrees Fahrenheit (minus 23 degrees Celsius) in the sunniest spots to as cold as minus 150 degrees Fahrenheit (minus 100 degrees Celsius) in the shadows. This is the lowest temperature measurable by Dawn’s visible and infrared mapping spectrometer. These findings show the surface responds quickly to illumination with no mitigating effect of an atmosphere.

“After more than nine months at Vesta, Dawn’s suite of instruments has enabled us to peel back the layers of mystery that have surrounded this giant asteroid since humankind first saw it as just a bright spot in the night sky,” said Carol Raymond, Dawn deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “We are closing in on the giant asteroid’s secrets.”

The latest findings were presented today at the European Geosciences Union meeting in Vienna, Austria.

Source: NASA