NASA Up Close Tour: VAB and Space Shuttle Endeavour On Display

Now that the shuttle era has come to a close, NASA, through the Kennedy Space Center Visitor Complex, is opening some of its doors to allow the public a peek inside - including the massive doors of the Vehicle Assembly Building or VAB. Photo Credit: Jason Rhian

[/caption]
CAPE CANAVERAL, Fla – When guests visited the Kennedy Space Center Visitor Complex in the past, they never knew if they would have the opportunity to see an actual space shuttle in some stage of being processed for a mission. The operators of the Visitor Complex have changed that – guests will now not only get the chance to see space shuttle Endeavour (as well as potentially Atlantis and Discovery in the future) – but to also tour the cavernous Vehicle Assembly Building.

The opportunity to tour the VAB is currently being offered for a limited time and only to a limited number of Visitor Complex guests per day as part of KSC Up-Close, a new two-hour, guided special interest tour that began on Nov. 1. While touring inside the VAB itself is considered a treat, to actually be just a short distance away from one of the three remaining orbiters to conduct missions to and from orbit – is a rare thing indeed.

One, almost universal, reaction that guests displayed was craning their necks to see all the way to the ceiling of the Vehicle Assembly Building. Photo Credit: Alan Walters/awaltersphoto.com

“We are very pleased to have the ability to offer to our guests the opportunity to see not just the inside of the Vehicle Assembly Building – but one of the orbiters as well,” said the Kennedy Space Center Visitor Complex’s Public Relations Manager Andrea Farmer. “While we don’t know the exact time frame – but this tour should be offered throughout 2012 and possibly into 2013.”

While undoubtedly one of the most memorable stops on the tour, the VAB tour stop is just one stop on this tour. Other stops include; NASA’s KSC Headquarters, the Operations & Checkout building (O&C), as well as the NASA Causeway providing a view of the adjacent Cape Canaveral Air Force Station.

Guests who choose to go on the KSC Up-Close tour should call ahead as seats on this tour are limited and the tour might not be available every day. Photo Credit: Jason Rhian

From here, guests can see launch pads 17, 37, 40, and 41, which are currently used for commercial and government launches.

After their stop at the VAB, guests will get to see the massive Crawler Transporters and “Crawlerway”. Guests will also get to see the Pegasus barge used to haul the shuttle’s large External Fuel Tanks (ETs) from Louisiana; the famous blue countdown clock and the Shuttle Landing Facility.

Discovery, Atlantis and Endeavour all will be in and out of the Vehicle Assembly Building in the future, allowing guests the opportunity to see these spacecraft first hand. Photo Credit: Jason Rhian

The last place that guests will visit is two hills where NASA remotely shoots launch photography and videography. On one side guests can see Launch Complexes 39A and B and on the other side is the Atlantic. This will provide guests to see the renovations that are currently being done to LC-39B in preparation for commercial launches or for the use for the Space Launch System (SLS).

Guests who had the opportunity to take the tour were amazed at what they were seeing, the sheer scale of the facilities and vehicles – as well as the history that they were walking through.

Three-time shuttle veteran Sam Gemar thinks that this new tour is important in allowing the public to gain a greater appreciation for U.S. human space flight efforts.

“Having flown to space myself, I cannot express strongly enough how much of a tremendous opportunity it is for the public to see the actual vehicles that have sent astronauts into space for the past three decades,” Gemar said. “Kennedy Space Center is where America goes to space and the KSC Up – Close tour allows us to share the history of the Vehicle Assembly Building with the world.”

Although the Visitor Complex cannot guarantee that whenever a guest arrives that they will be able to see a space shuttle inside the VAB (each of the orbiters are being processed for display in their new homes in Los Angeles, CA, Washington, D.C. and Florida. Eventually shuttle Atlantis, which will placed be display in a new facility at the Visitor Complex in 2013.

Mars Express Experiences Multiple ‘Safe Mode’ Events

An illustration showing the ESA's Mars Express mission. Credit: ESA/Medialab)

[/caption]

Mars Express has been a fixture in orbit around the Red Planet for almost eight years, but problems with the spacecraft’s computer memory has put the orbiter into safe mode and science observations have been halted for the time being. The spacecraft has gone into safe mode three times since mid-August, twice being recovered successfully. It has also had additional problems with its memory during this time. ESA says a technical work-around is being investigated that will enable the resumption of a number of observations, which will hopefully evolve into a long-term solution.

Safe mode is operational mode designed to safeguard both the spacecraft itself and its instrument payload in the event of faults or errors.

The portion of Mars Express’s computer the Solid-State Mass Memory (SSMM) system, which stores data before sending it on to Earth was not able to either write new data or read the previous data already in memory. The SSMM is a critical subsystem, central to all spacecraft and instrument operations.

Timeline of recent safe mode and anamolous events for Mars Express. Credit: ESA

This is not the first time the spacecraft has gone into safe mode. Three years ago a similar event took place, but now this multiple occurrence of problems has the Mars Express team looking for inventive solutions. The memory system has been switched to the “B” side or redundant computer, but the same fault took place, putting the spacecraft back in safe mode.

Another issue with the spacecraft going into safe mode is that is uses a lot of reserve fuel – as much as is required for six months of normal operations — so the frequent instances of this mode has engineers looking for a long-term solution. Most of the fuel consumption when entering safe mode is the ‘Sun acquisition’ process for letting the spacecraft know where it is in space, which requires a significant amount of spacecraft maneuvering.

ESA says they are making good progress with finding an alternative approach to commanding Mars Express, and will test it soon, and work continues on the finding a full solution to the memory problems.

Source: ESA

China launches Shenzhou-8 bound for Historic 1st Docking in Space

China's unmanned spacecraft Shenzhou-8 blasted off at 5:58 a.m. Beijing Time Nov 1 from the Jiuquan Satellite Launch Center in northwestern desert area. Credit: CMSE

[/caption]

China today launched the Shenzhou-8 capsule on a historic mission to accomplish the nation’s first ever docking in space with another vehicle, already in orbit, and pave the way toward’s China’s true ambition – constructing a multi-module space station by 2020.

The unpiloted Shenzhou-8 streaked skywards today in a blinding flash atop a powerful and upgraded Long March 2F/Y8 carrier rocket in the early morning darkness and precisely on time at 5:58 a.m. Beijing time (5:58 p.m. EDT) from the Jiuquan Satellite Launch Center in the Gobi Desert in northwest China. Viewers could watch a live CCTV broadcast from state media broadcast in English.

The Long March first stage is augmented with four liquid fueled strap on boosters. Spectacular TV views show the boosters and payload fairings being jettisoned.

The goal of the mission is for China to master critical and complex rendezvous and docking technologies and link up with China’s 1st orbiting prototype space station module dubbed Tiangong-1, or Heavenly Palace-1.

A modified model of the Long March CZ-2F rocket carrying the unmanned spacecraft. Shenzhou-8 blasts off from the launch pad at the Jiuquan Satellite Launch Center in northwest China's Gansu Province, Nov. 1, 2011. Credit: Xinhua/Li Gang

The historic docking of Shenzhou-8 with Tiangong-1 will be a highly significant achievement and is set to take place after the capsule catches up with the module in two days time. Tiangong-1 has been orbiting Earth since it was launched a month ago from the same launch site.

“The Launch of Shenzhou 8 has been a great success !”, announced Gen. Chang Wanquan, the Commander in Chief of China’s manned space program known as the China Manned Space Engineering (CMSE) Project. Chang, dressed in his military uniform, is Commanding Officer of Tiangong 1/Shenzhou 8 Rendezvous and Docking Mission Headquarters, and director of the PLA (Peoples Liberation Army) General Armaments Department.

Shenzhou-8 blasted off on Nov.1 from Jiuquan Satellite Launch Center. Credit: CMSE

“The Shenzhou 8 spaceship has entered at 6:07:53 its operating orbit with a perigee height of 200 km and apogee height of 329 km.”

The unmanned Shenzhou capsule entered orbit 585 seconds after liftoff while flying over the Pacific Ocean and placed the spacecraft into an initial elliptical orbit.

Shenzhou-8 will conduct five orbital maneuvers by firing its on board thrusters to match orbits and close in Tiangong-1 over the next two days and is on course for the linkup. Each vehicle weighs about 8 tons.

The two vehicles will remain docked for 12 days. Shenzhou-8 will then undock and separate and attempt another practice docking.

After several more days of joint operations the Shenzhou-8 capsule will depart and reenter the earth as though it had a crew.

Shenzhou-8 is fully equipped to carry an astronaut crew and even food and water are stored on board.

Today’s success sets the stage for two Chinese manned missions to follow in 2012, namely Shenzhou 9 and Shenzhou 10. They will each carry two or three astronauts.

Schematic of Shenzhou-8 (left) and Tiangong-1 space station module (right) accomplishing historic first Chinese docking in Earth orbit. Credit: CMSE

The Tiangong-1 target module was launched from Jiuquan on September 29 and is functioning perfectly. Its orbit was already lowered and the ship was rotated 180 degrees in anticipation of today’s liftoff.

The Long March 2F booster is the tallest, heaviest and most powerful in China’s rocket arsenal.

China’s state run CCTV carried the launch live and provided excellent and informative commentary that harkened back to the glory days of NASA’s Apollo moon landing project. The Chinese government and people take great pride in the accomplishments of their space program which is vaulting China to the forefront of mastering technologically difficult achievements.

Long range tracking cameras and on board cameras captured exquisite views of Shenzhou-8 maneuver all the way to orbit, including separation of the first stage booster, jettison of the payload fairing, firing of the 2nd stage engines, deployment of the twin solar arrays, live shots inside the capsule and beautiful views of mother Earth some 200 kilometers below.

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1

Shenzhou 8 spaceship and its launch vehicle Long March 2F/Y8 were transferred to the Jiuquan launch pad. Liftoff is scheduled for Nov. 1. China’s VAB in the background. Credit: CMSE

[/caption]

China’s Shenzhou-8 capsule and the Long March booster rocket have been rolled out to the Gobi desert launch pad and will blast off early on November 1 bound for the 1st orbiting Chinese prototype space station – named Tiangong-1 (which translates as Heavenly Palace-1).

If successful, the Shenzhou -8/Tiangong -1 combined orbital complex will certainly be a ‘great leap forward’ for China’s space program ambitions and technological prowess while NASA’s current and future ambitions are being significantly curtailed by relentless budget cuts directed by politicians in Washington, D.C. – a fact noted by Chinese media.

Shenzhou-8, an unmanned spacecraft, and its carrier, Long March 2-F, are transported to the launch pad at the Jiuquan Satellite Launch Center in Northwest China's Gansu province. It is expected to perform China's first space docking with Tiangong-1, a lab module that went up in September from the same facility. Credit: Su Dong/China Daily

The unmanned Shenzhou- 8 capsule will lift off at 5:58 a.m. local time from the Jiuquan Satellite Launch Center located in Gansu province in northwest China.

Propellants are being loaded into the upgraded Long March 2F/Y8 carrier rocket today (Oct. 31). All launch preparations and tests are proceeding on schedule according to to the China Manned Space Engineering (CMSE) office – the state run government agency responsible for China’s human spaceflight program.

Prelaunch exercises are being coordinated by the Beijing Aerospace Flight Control Center, the command center for the Chinese space program.

The fully assembled vehicles were vertically transported some 1500 meters over about 2 hours along rail tracks from China’s version of NASA’s VAB, or the Vehicle Assembly Building.

The 8 ton Tiangong-1 target module was launched from Jiuquan on September 29 and is functioning perfectly

The Shenzhou VIII spacecraft is assembled with the Long-March II-F rocket at the Jiuquan Satellite Launch Center in Northwest China's Gansu province on Oct 23, 2011. Credit: CFP

The Long March 2F booster is the tallest, heaviest and most powerful in China’s arsenal of rockets.

Tiangong-1 has been maneuvered to rotate 180 degrees in orbit in anticipation of the upcoming launch according to CMSE.

The emergency escape tower is hoisted to Shenzhou-8 at the Jiuquan Satellite Launch Center on Oct 23, 2011. Credit: CFP

Shenzhou is China’s human rated capsule but is flying in an unmanned configuration for this flight – #8 – which will be China’s first ever attempt at critical Rendezvous & Docking maneuvers in earth orbit that are required to construct a Space Station- China’s long term goal by 2020 .

Shenzhou-8 will conduct at least two docking practice tests. After the first docking, the two ships will remain joined for about 12 days and then separate to carry out another docking.

So far China has conducted 3 manned flights, the first in 2003. Currently the US has no capability to launch astronauts to earth orbit and the ISS and is totally reliant on Russian Soyuz rockets and capsules to hitch a ride to space.

Two crewed flights to Tiangiong-1 are planned for 2012. The multi-person crews aboard Shenzhou 9 & Shenzhou 10 are likely to include China’s first woman astronaut. The chinese crews would float into Tiangong 1 from their capsules and remain on board for short duration missions of a few days or weeks. They will check out the space systems and conduct medical, space science and technology tests and experiments.

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

Boeing To Use Shuttle Hangar for CST-100 Space Taxi

Boeing has selected Florida to be the base for its commercial crew program office. Image Credit: Boeing

[/caption]
CAPE CANAVERAL, Fla – NASA hosted an event on Monday, Oct. 31, at 10 a.m. EDT at Kennedy Space Center’s Orbiter Processing Facility-3 (OPF-3) to announce a new partnership between NASA, Space Florida and Boeing. Space Florida in turn will lease OPF-3 to Boeing. Under the terms of this arrangement, Boeing will use OPF-3 to manufacture and test Boeing’s “space taxi” the CST-100.

Boeing will use OPF-3 as the firm’s commercial crew program office. The OPF, essentially a hangar, will be converted to construct Boeing’s CST-100 space capsule, which is currently being developed to deliver astronauts to low-Earth-orbit (LEO).

In the past Boeing has issued imagery that displayed its CST-100 launching from a variety of different launch vehicles which call Florida's Space Coast their home. Photo Credit: Boeing

This new partnership was developed following a Notice of Availability that the space agency issued at the beginning of this year. The notice was used to identify interest from industry for space processing and support facilities at Kennedy. With NASA’s fleet of orbiters being decommissioned, NASA was seeking ways to effectively use its existing facilities.

It is hoped that this, and similar partnerships will help create jobs in the region as well as to help the U.S. regain leadership in the global space economy.

Boeing's CST-100 is called a "space-taxi" and is being designed to carry both crew and cargo to both the International Space Station as well and other low-Earth-orbit destnations. Image Credit: Boeing

The CST-100 is currently proposed as a reusable spacecraft that is comprised of two parts – a crew module and service module. It is designed to house up to seven astronauts, but it can also be used to ferry both people and cargo to orbit.

With the space shuttle fleet retired, NASA is completely reliant on Russia for access to the International Space Station. Russia charges the space agency about $63 million a seat on its Soyuz spacecraft.

“Only Congress can determine when we will stop the investment of our nation’s tax dollars into the purchase of continued space transportation services from the Russians – and invest instead in the U.S. work force and commercial industry capabilities,” said Space Florida’s President Frank DiBello.

During the final launch of the shuttle era, Boeing had both a mock-up as well as this test article on display. Photo Credit: Jason Rhian

NASA has worked to keep the public apprised about its efforts to open its doors to private space companies. The space agency held press conferences to announce both the Space Act Agreement (SAA) that NASA had entered into with Alliant Techsystems (ATK) and EADS Astrium concerning the Liberty launch vehicle, as well as the release of the design of the Space Launch System (SLS) heavy-lift rocket (which was announced on the following day).

“Thanks so much John and John, I love what you have done with the place!” said NASA Deputy Administrator Lori Garver referring to OPF-3.

The CST-100 has been proposed as a means of transportation to other future destinations in low-Earth-orbit such as one of the inflatable space station's currently under development by Bigelow Aerospace. Image Credit: Boeing

Space Florida is the organization that works to maintain and cultivate the aerospace industry within the State of Florida. The purpose of NASA’s Commercial Crew Program is to develop U.S. commercial crew space flight capabilities. It is hoped that they will one day allow the U.S. to achieve reliable, safe and cheap access not to just the space station – but other destinations in LEO as well.

“If we’re going to find a way to fund exploration beyond the vicinity of Earth, particularly in today’s fiscally-constrained environment – we’ve got to find a way to do the job of transporting crew to the International Space Station in a more affordable manner,” said Boeing’s John Elbon. “That’s one of the primary purposes of the commercial crew program – to provide affordable access to low-Earth-orbit so that we can use the International Space Station as the great laboratory that it is.”

Through an agreement with Space Florida, NASA will lease Orbiter Processing Facility-3 (OPF-3) to Boeing for its CST-100 space taxi. It is hoped that this and efforts like this one will eventually reduce the cost of sending crews to the International Space Station. Photo Credit: NASA

Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann

[/caption]

Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann
Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann
Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track

The unpiloted ISS Progress 45 cargo craft launches from the Baikonur Cosmodrome in Kazakhstan. Credit: NASA TV

Video caption: Liftoff of unmanned Russian Progress craft atop Soyuz booster on Oct. 30, 2011 from Baikonur Cosmodrome. Credit: NASA TV/Roscosmos.
Photos and rocket rollout video below

The very future of the International Space Station was on the line this morning as the Russian Progress 45 cargo ship successfully launched this morning from the Baikonur Cosmodrome in Kazakhstan at 6:11 a.m. EDT (4:11 p.m. Baikonur time) on Oct. 30, 2011, bound for the ISS.

Today’s (Oct. 30) blastoff of the Soyuz rocket booster that is used for both the Progress cargo resupply missions and the Soyuz manned capsules was the first since the failure of the third stage of the prior Progress 44 mission on August 24 which crashed in Siberia.

[/caption]
The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

Today’s success therefore opens up the door to resumption of crewed flights to the ISS, which were grounded by Russia after the unexpected loss of the Progress 44 mission.

If this Progress flight had failed, the ISS would have had to be left in an uncrewed state for the first time since continuous manned occupation began more than 10 years ago and would have significantly increased the risk for survival of the ISS in the event of a major malfunction and no human presence on board to take swift corrective action.

Liftoff of Soyuz rocket with Progress 45 to ISS from Baikonur Cosmodrome in Kazakhstan.
Credit:RIA Novosti

NASA issued the following statement from Bill Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington, about the launch of the Progress 45 spacecraft.

“We congratulate our Russian colleagues on Sunday’s successful launch of ISS Progress 45, and the spacecraft is on its way to the International Space Station. Pending the outcome of a series of flight readiness meetings in the coming weeks, this successful flight sets the stage for the next Soyuz launch, planned for mid-November. The December Soyuz mission will restore the space station crew size to six and continue normal crew rotations.”

Progress 45 is carrying nearly 3 tons of supplies to the ISS, including food, water, clothing, spare parts, fuel, oxygen and science experiments for use by the resident crews.

The resupply vehicle achieved the desired preliminary orbit after the eight and one half minute climb to space and deployed its solar arrays and communications antennae’s.

After a two day chase, Progress 45 will automatically link up with the ISS at the Pirs Docking Compartment on Nov. 2 at 7:40 a.m (EDT) and deliver 1,653 pounds of propellant, 110 pounds of oxygen and air, 926 pounds of water and 3,108 pounds of spare parts, experiment hardware and other supplies for the Expedition 29 crew.

Progress 45 atop Soyuz-U booster awaits liftoff from Baikonur Cosmodrome in Kazakhstan.
Credit: Roscosmos

The successful launch sets the stage for the launch of the station’s next three residents on Nov. 13. NASA’s Dan Burbank and Russia’s Anton Shkaplerov and Anatoly Ivanishin will arrive at the station Nov. 16, joining NASA’s Mike Fossum, Russia’s Sergei Volkov and Japan’s Satoshi Furukawa for about six days before Fossum, Volkov and Furukawa return home.

Liftoff of Burbank’s crew was delayad from the original date on September 22 following the Progress failure in August. Because of the delayed Soyuz crew launch, the handover period from one crew to the next had to be cut short.

Since the forced retirement of the Space Shuttle, the US has absolutely no way to send human crews to orbit for several years to come at a minimum and is totally reliant on Russia.

The survival of the ISS with humans crews on board is therefore totally dependent on a fully functioning and reliable Soyuz rocket.


Video caption: Rollout of Soyuz rocket and Progress cargo craft to Baikonur launch pad.

Read Ken’s continuing features about Soyuz from South America here:
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Russia Fuels Phobos-Grunt and sets Mars Launch for November 9

The Phobos-Grunt spacecraft is scheduled blastoff on November 9, 2011 from Baikonur Cosmodrome. It will reach Mars orbit in 2012 and eventually land on Phobos and return the first ever soil samples back to Earth in 2014. Credit Roscosmos

[/caption]

Russia’s Space Agency, Roscosmos, has set November 9 as the launch date for the Phobos-Grunt mission to Mars and its tiny moon Phobos. Roscosmos has officially announced that the audacious mission to retrieve the first ever soil samples from the surface of Phobos will blastoff from the Baikonur Cosmodrome in Kazakhstan atop a Zenit-2SB rocket at 00:16 a.m. Moscow time.

Roscosmos said that engineers have finished loading all the propellants into the Phobos-Grunt main propulsion module (cruise stage), Phobos lander and Earth return module at Facility 31 at Baikonur.

Phobos-Grunt is Russia’s first mission to Mars in almost two decades and a prelude to an ambitious program of even more interplanetary Russian science flights.

Russian Phobos-Grunt spacecraft is set to launch to Mars on November 9, 2011.
L-shaped soil sample transfer tube extends from Earth return module ( top -yellow) and solar panel to bottom (left) of lander module. 2 landing legs, communications antenna, sampling arm, propulsion tanks and more are visible. Credit Roscosmos

Technicians also fueled the companion Yinghou-1 mini-satellite, provided by China, that will ride along inside a truss segment between the MDU propulsion module and the Phobos-Grunt lander.

The 12,000 kg Phobos-Grunt interplanetary spacecraft is being moved to an integration and test area at Facility 31 for integration with the departure segments of the Zenit rocket.

The next step is to enclose Phobos-Grunt inside the protective payload fairing and transport it to Facility 42 for mating atop the upper stage of the stacked Zenit-2SB booster rocket.

After about an 11 month journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The goal of the bold mission is to retrieve up to 200 grams of soil and rock from Phobos and return them to Earth in August 2014. The samples will help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System.

Scientists hope that bits of Martian soil will be mixed in with Phobos soil.

Phobos-Grunt is equipped with a powerful 50 kg payload of some 20 international science instruments.

The 110 kg Yinghou-1, which translates as Firefly-1, is China’s first spaceship to voyage to Mars. It will be jettisoned by Phobos-Grunt into a separate orbit about Mars. The probe will photograph the Red planet with two cameras and study it with a magnetometer to explore Mars’ magnetic field and science instruments to explore its upper atmosphere.

Earth’s other mission to Mars in 2011, NASA’s Curiosity rover, is set to blast off for Mars on Nov. 25

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here::
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA Issues Report On Commercial Crew as SpaceX’s CEO Testifies About SpaceX’s Progress

NASA has released its third status report concerning the progress of the Commercial Crew Development program (CCDev). Photo Credit: SpaceX

[/caption]
NASA has recently posted the latest update as to how the Commercial Crew Development 2 (CCDev2) program is doing in terms of meeting milestones laid out at the program’s inception. According to the third status report that was released by NASA, CCDev2’s partners continue to meet these objectives. The space agency has worked to provide regular updates about the program’s progress.

“There is a lot happening in NASA’s commercial crew and cargo programs and we want to make sure the public and our stakeholders are informed about the progress industry is making,” said Phil McAlister, NASA’s director of commercial spaceflight development. “It’s exciting to see these spaceflight concepts move forward.”

One of the primary objectives of the Commercial Crew Development program is to cut down the length of time that NASA is forced to rely on Russia for access to the International Space Station. Photo Credit: NASA

Reports on the progress of commercial crew are issued on a bi-monthly basis. The reports are directed toward the primary stakeholder of this program, the U.S. taxpayer. NASA has invested both financial and technical assets in an effort to accelerate the development of commercial access to orbit.

This report came out at the same time as Space Exploration Technologies’ (SpaceX) CEO, Elon Musk, testified before the U.S. House Science, Space, and Technology Committee regarding NASA’s commercial crewed program.

Elon Musk testified before the U.S. House Science, Space, and Technology Committee regarding his company's efforts to provide commercial access to the International Space Station. Photo Credit: SpaceX

SpaceX itself has been awarded $75 million under the CCDev program to develop a launch abort system, known as “DragonRider” that would enable the company’s Dragon spacecraft to transport astronauts. SpaceX was awarded $1.6 billion under the Commercial Orbital Transportation Services or COTS contract with NASA. Under the COTS contract, SpaceX must fly three demonstration flights as well as nine cargo delivery flights to the orbiting outpost. SpaceX is currently working to combine the second and third demonstration flights into one mission, currently scheduled to fly at the end of this year.

During Musk’s comments to the House, he highlighted his company’s efforts to make space travel more accessible.

“America’s endeavors in space are truly inspirational. I deeply believe that human spaceflight is one of the great achievements of humankind. Although NASA only sent a handful of people to the moon, it felt like we all went,” Musk said in a written statement. “We vicariously shared in the adventure and achievement. My goal, and the goal of SpaceX, is to help create the technology so that more can share in that great adventure.”

SpaceX's Falcon 9 launch vehicle is currently being readied for a liftoff date later this year. Photo Credit: Alan Walters/awaltersphoto.com

To date, SpaceX is the only company to have demonstrated the capacity of their launch vehicle as well as a spacecraft. The company launched the first of its Dragon spacecraft atop of its Falcon 9 rocket this past December. The Dragon completed two orbits successfully before splashing down safely off the coast of California.

NASA is relying on companies like SpaceX to develop commercial crew transportation capabilities that could one day send astronauts to and from the International Space Station (ISS). It is hoped that CCDev2 will help reduce U.S. dependence on Russia’s Soyuz spacecraft for access to the ISS. Allowing commercial companies to take over the responsibility of sending crews to the ISS might also allow the space agency focus on sending astronauts beyond low-Earth-orbit for the first time in four decades.

SpaceX's Dragon spacecraft recently arrived at the firm's hangar located at Cape Canaveral Air Force Station's Space Launch Complex-40 (SLC-40). Photo Credit: Alan Walters/awaltersphoto.com

Aerojet: Small Space Firm Has Big Space History

In this image an Orion MultiPurpose Crew Vehicle jettison motor or JM, which is produced by Aerojet is test-fired. Photo Credit: Aerojet

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.