Underwater Asteroid Mission Ends Early

Walking on an 'asteroid.' Takuya Onishi (JAXA) performs translations tasks on a simulated asteroid. Credit; NASA

[/caption]

NASA evacuated its crew of NEEMO underwater “aquanauts” from a deep sea laboratory off the coast of Key Largo, Florida where they were simulating a mission to an asteroid. With Hurricane Rina bearing down on the Gulf of Mexico, NASA decided to play it safe.

“Crew decompressed overnight and will return to surface shortly. Hurricane Rina just a little too close for comfort,” said the NASA_NEEMO Twitter feed early this morning.

The NASA Extreme Environment Mission Operations (NEEMO) team came to the surface and climbed aboard support boats, returning to land by about 9:00 am EDT, (1300 GMT).

Takuya Onishi (JAXA), David Saint-Jacques (CSA), Steve Squyres (Cornell), and Shannon Walker (NASA) before their NEEMO 15 mission. Credit: NASA.

The underwater mission began on Oct. 20, after an initial delay caused by another storm in the area.

The NEEMO crew — the 15th such underwater mission — conducted six underwater spacewalks and one day of scientific research inside the underwater Aquarius habitat, focusing on operational concepts that might be used in human exploration of an asteroid. The crew completed four days of scientific asteroid exploration analog operations using the deep worker submersibles that stood in for the Space Exploration Vehicle.

Screenshot of the NEEMO team during a videoconference with reporters on Oct. 24, 2011.

“This is a good way to learn techniques that we’ll need to use on other bodies in the solar system, without actually going into space,” said Commander and NASA astronaut Shannon Walker during a videoconference conversation with reporters on Monday from the underwater habitat.

The crew also included Mars scientist Steve Squyres, Principal Investigator with the Mars Exploration Rover mission.

“Asteroids are leftovers from formation of solar system, so by studying them we can learn about the building blocks of the solar system and understand how planets form,” Squyres said during the videoconference. “Going to asteroids will be a wonderful stepping stone to other destinations in the solar system, and we can flex our deep space muscles and learn how to do the things we want and need to do as we venture off of Earth.”

The six-member NEEMO crew also included Japan Aerospace Exploration Agency astronaut Takuya Onishi, Canadian Space Agency astronaut David Saint-Jacques, and James Talacek and Nate Bender of the University of North Carolina Wilmington.

Even though the mission was cut short, the remainder of NEEMO 15 will not be rescheduled. “Despite the length, we accomplished a significant amount of research,” said NEEMO Project Manager Bill Todd. “We’re already learning lessons from working in this environment.”

Astronaut Scholarship Foundation Raising Funds, Awareness With Autograph Show

A light-hearted moment is shared between Apollo 12 Lunar Module Pilot Alan Bean (standing) and Apollo 11 Lunar Module Pilot Buzz Aldrin. Photo Credit: ASF

[/caption]
CAPE CANAVERAL, Fla – It all started – with seven. The original seven Mercury astronauts that is. They wanted to give back to the nation that had allowed them to reach the heights that they had achieved, while at the same time inspiring the nation’s young to follow in their footsteps. What arose was the Astronaut Scholarship Foundation (ASF).

There are more than 80 astronauts that are working with the ASF to ensure that the United States maintains its role as leader in terms of science and technology. The ASF accomplishes this by providing scholarships to students studying engineering, science and math.

Apollo 14 Lunar Module Pilot Edgar Mitchell poses with a guest during a previous ASF astronaut autograph show. Just over his shoulder is former shuttle astronaut Fred Gregory. Photo Credit: ASF

In 1984, the then six surviving Mercury astronauts established the 501 (c) 3 organization along with the widow of the seventh (Betty Grissom, widow of astronaut Virgil “Gus” Grissom. Astronauts Malcolm Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Walter M. Schirra, Alan B. Shepard Jr., and Donald K. (Deke) Slayton were also joined by the Mercury Program’s flight surgeon William Douglas M.D. as well as a local business man, Henry Landwirth.

What started with scholarships of only $1,000 has grown to $10,000 each. Twenty-six of these scholarships are handed out every year for a grand total of $260,000. All total? The ASF has handed out $3 million in scholarships to worthy students. The ASF’s current Chairman of its Board of Directors is Apollo 16 Command Module Pilot Charlie Duke; his vice-chair is shuttle veteran Dan Brandenstein.

Apollo 15 Commander Dave Scott poses with a young guest at the ASF's astronaut autograph show. Photo Credit: ASF

The ASF raises funds by a number of means. Astronaut guest appearance, fund-raisers, donations from different entities both public and private and autograph shows. The next of these is scheduled to take place at the Kennedy Space Center Visitor Complex located in Florida from Nov. 4-6. The annual show contains a wide range of events and tours to allow guests the opportunity to learn about the location’s history while picking up a signed item from an astronaut.

Former shuttle astronaut Robert Springer flew twice on the space shuttle and is a current member of the Astronaut Scholarship Foundation. Photo Credit: NASA.gov

Universe Today recently sat down with two-time shuttle veteran Robert C. Springer about his thoughts regarding ASF. Here is what he had to say:

Universe Today: Hi Bob thanks for chatting with us today.

Springer: “My pleasure, thanks for having me!”

Universe Today: How long have you been affiliated with the ASF and how do you view its activities?

Springer: “I have been associated with the Astronaut Scholarship Foundation for the past ten years. The foundation has had phenomenal success, increasing the number of scholarships to the current level of 26 scholarships, each in the amount of $10,000 awarded annually to young men and women who are pursuing degrees in engineering and scientific fields that are related to space exploration.”

Universe Today: What do you find most rewarding or interesting regarding the ASF’s efforts?

Springer: “One of the most interesting aspects of the fund raising effort, is the diversity of individuals who have contributed to the foundation. It has been both a national and international group of individuals who truly believe that we need to continue to invest in our future by providing funding assistance to talented and motivated students to enable them to continue their studies in selected fields.”

Universe Today: So your experience with these folks is rewarding?

Springer: “They are great, but it’s really wonderful to meet the recipients of these scholarships – each year we have the opportunity to hear from some of the individuals who have been awarded the scholarships, and it is remarkable to hear their stories and to understand the kinds of contributions they are making today and have the potential to make in the future.”

Universe Today: I bet that must be really gratifying. It seems we have to wrap, but I wanted to thank you for telling us a bit about your experiences.

Springer: “It was great talking with you!”

For more information regarding the Astronaut Scholarship Foundation’s annual autograph show visit: astronautscholarship.org or call: 321-455-7016.

The ASF astronaut autograph show is normally held during the first week in November and serves to raise funds for scholarships. Photo Credit: ASF

Here There Be Dragons: SpaceX’s Spacecraft Arrives at Launch Complex 40

The next Dragon spacecraft, the one that is set to launch to the International Space Station has arrived at Cape Canaveral Air Force Station's Space Luanch Complex 41 (SLC-41) for processing. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – Space Exploration Technologies (SpaceX) welcomed a new guest to Space Launch Complex 40 (SLC-40) on Sunday – the next Dragon spacecraft that is set to launch later this year. Members of the media were invited to a photo opportunity to chronicle the Dragon spacecraft’s arrival which had been delayed a day due to issues with travel permits.

The Dragon that arrived on Sunday is destined to fly to the International Space Station (ISS). It will be the first time that a private firm docks with the space station. The COTS Demo 2 Dragon was shipped from SpaceX’s facilities in Hawthorne, California to Cape Canaveral in Florida.

SpaceX's next Dragon spacecraft, the one set to fly to the International Space Station, was delivered to Cape Canaveral Air Force Station's Space Launch Complex 40 on Sunday. Photo Credit: SpaceX

The Falcon 9 rocket, with its Dragon spacecraft payload, is currently scheduled to launch from Cape Canaveral Air Force Station’s SLC-40 on Dec. 19. If all goes as it is currently planned the Dragon will maneuver along side of the orbiting laboratory where the space station’s robot Canadarm 2 will grapple the unmanned spacecraft it and dock it with the station.

“When it comes to the launch day, NASA will determine that, we’re pushing to launch on Dec. 19, but the final “go” date is set by NASA and the range,” said SpaceX’s Vice-President for Communications Bobby Block. “We are currently working to conduct a wet dress rehearsal on November 21st.”

The Dragon spacecraft that is bound for the ISS will ride this Falcon 9 rocket to orbit. The launch date is tentatively set for Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

SpaceX recently passed a Preliminary Draft Review (PDR) of the Dragon’s Launch Abort System (LAS). This system, which pulls astronauts and their spacecraft to safety in case of some problem with the Falcon 9 launch vehicle, is unlike other systems of its type. Normal abort systems are essentially small rockets affixed to the top of the spacecraft (which is normally on top of the rocket). Not so with SpaceX’s design, dubbed DragonRider – it will be built into the walls of the spacecraft.

The reason for the difference in the abort system’s design is twofold. First, it will drive the costs down (Dragon is being developed as a reusable spacecraft) -whereas traditional abort systems are not capable of being reused. Secondly the system could one day be used as a potential means of landing spacecraft on other terrestrial worlds, such as the planet Mars.

SpaceX has been working with NASA to get the Dragon spacecraft ready for its historic mission. This will mark the first time that many of the systems have been used on an actual mission. Photo Credit: Alan Walters/awaltersphoto.com

This will mark the second demonstration flight that SpaceX will have flown to accomplish the objectives laid out in the Commercial Orbital Transportations Services or COTS contract. The $1.6 billion contract is an effort to ensure that needed cargo is delivered to the station safely and in a timely fashion.

SpaceX so far has launched two of its Falcon 9 rockets – both in 2010. The first flight occurred on June 4, 2010 with the second being launched on Dec. 8, 2010. It was on this second flight that SpaceX became the first private entity to launch a spacecraft into orbit and then safely recover it after it had successfully orbited the Earth twice. Before this only nations were capable of achieving this feat.

“This is very exciting, our last launch was about a year ago, so to have a fully-operational Dragon up-and-ready to make a historic docking to the International Space Station it’s terrifically exciting.” Block said.

SpaceX is working toward expanding the role of not only the Falcon 9 rocket - but the Dragon spacecraft as well. Photo Credit: Alan Walters/awaltersphoto.com

Bringing Satellites Out Of Retirement – The DARPA Phoenix Program

Artist's Concept of Phoenix Mission - Credit: DARPA

[/caption]

It’s the dead zone. Approximately 22,000 miles above the Earth, $300 million worth of retired satellites are simply taking up space in geosynchronous orbit. Like anything a bit elderly, they might have problems, but they’re far from useless. There are a hundred willing volunteers waiting to be retrofitted, and all they need is the wave of a magic wand to come back to life. The DARPA Phoenix program might just be the answer.

Communication satellites in geosynchronous orbit (GEO) enable vital interchanges between warfighters. When one fails, it means an expensive replacement. But what remains isn’t a burned-out shell – it’s still a viable piece of equipment which often contains still usable antennae, solar arrays and other components. The only problem is that we haven’t figured out a way to recycle them. Now DARPA’s Phoenix program is offering an answer by developing the technology necessary to “harvest” these non-working satellites and their working parts. “If this program is successful, space debris becomes space resource,” said DARPA Director, Regina E. Dugan.

However, as easy as the idea might sound, it’s going to take a lot of cooperation from a variety of applied sciences. For example, incorporating the robotics which allows a doctor to perform telesurgery from a remote location to the advanced remote imaging systems used for offshore drilling which views the ocean floor thousands of feet underwater. If this technology could be re-engineered to work at zero gravity, high-vacuum and under an intense radiation environment, it’s entirely possible to re-purpose retired GEO satellites.

“Satellites in GEO are not designed to be disassembled or repaired, so it’s not a matter of simply removing some nuts and bolts,” said David Barnhart, DARPA program manager. “This requires new remote imaging and robotics technology and special tools to grip, cut, and modify complex systems, since existing joints are usually molded or welded. Another challenge is developing new remote operating procedures to hold two parts together so a third robotic ‘hand’ can join them with a third part, such as a fastener, all in zero gravity. For a person operating such robotics, the complexity is similar to trying to assemble via remote control multiple Legos at the same time while looking through a telescope.”

Now enter DARPA’s System F6 – the master satellite. It will host affordable, smaller scale electronics and structural models that provide on-board control. These smaller units will be able to communicate with each other and the master satellite – working together to harness the potential of the retired satellite’s assets. Right now, the Phoenix program is looking for the automation technology for creating a new breed of “satlets,” or nanosatellites. These can be sent into space much more economically through existing commercial satellite launches and then robotically attached to the elderly satellites to create new systems.

Artist Concept of System F6 - Credit: DARPA

System F6 (Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft United by Information Exchange) will be fascinating in itself… a hive of wirelessly-interconnected modules capable of communicating with each other – sharing resources among themselves and utilizing resources found elsewhere within the cluster. “The program is predicated on the development of open interface standards—from the physical wireless link layer through the network protocol stack, including the real-time resource sharing middleware and cluster flight logic—to enable the emergence of a space “global commons” which would enhance the mutual security posture of all participants through interdependence.” says the DARPA team. “A key program goal is the industry-wide promulgation of these open interface standards for the sustainment and development of future fractionated systems.”

Right now the Phoenix program is looking for high tech expertise needed to develop a payload orbital delivery system. The PODS units will be needed to safely house the satlets during launch. The next step is an independent servicing station which will be placed in GEO and connected to PODS. The service module will be home to equipment such as mechanical arms and remote vision systems… the virtual “operating” center to make the DARPA Phoenix program a success.

Original News Source: DARPA News Release.
.

GAIA – A Billion Eyes On The Skies

Artist Concept of GAIA - Credit: ESA

[/caption]

Its name is GAIA and it’s perhaps the most ambitious project which has ever faced the European Space Agency. Scheduled to launch in 2013, this new breed of space telescope will stately progress to Lagrange Point 2, where it will spend the next five years. Its mission? To create the largest and most precise three dimensional chart of our Galaxy by providing unprecedented positional and radial velocity measurements for about one billion stars in our Galaxy and throughout the Local Group.

While this number represents perhaps only 1% of the Milky Way’s stellar population, the GAIA mission will be “seeing” far more than just stars. Its astrophysical information data base will work hand-in-hand with on-board multi-color photometry… providing an information set which has the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of the Milky Way Galaxy. As a result of its tracking capabilities, GAIA will also capture information on asteroids, comets, extra-solar planets and even low temperature, low mass objects. Its sensitive equipment will sweep over neighboring galaxies and reach out into space for a half million quasars. GAIA will push the boundaries of general relativity and cosmology to the limits.

What’s inside? GAIA will carry twin telescopes complete with two camera arrays incorporating charge coupled devices – each one measuring 45.0mm by 59.0mm and encompassing 1,966 pixels by 4,500 pixels. “The mounting and precise alignment of the 106 CCDs is a key step in the assembly of the flight model focal plane assembly,” said Philippe Gare, ESA’s GAIA Payload Manager.

The diminutive sensors will be placed in rows across a silicon carbide framework and span an area just slightly under half a square meter. It’s a billion little eyes ready to be turned towards the skies…

However, no optical telescope is complete without a mirror assembly and GAIA delivers. It is crafted with a set of 10 mirrors… all with outstanding physical and optical characteristics. “Since the design process began in 2006, the GAIA team has learned how to produce a set of sintered silicon carbide mirrors which is not only extremely strong and ultra-stable – with about twice the rigidity of steel – but also lightweight and with a high thermal conductivity,” said Matthias Erdmann, ESA’s GAIA Payload Systems Engineer responsible for optics and ceramics.

“Although these are not the first silicon carbide mirrors that have been made for a space mission, no mirrors as large as the GAIA primary mirror have previously been coated using the CVD process,” he added. “The degree of similarity of the mirror pairs is also quite unique. This is particularly important for GAIA , since each telescope must have similar optical capabilities, with diffraction limited viewing and minimal wavefront errors. Their outstanding optical characteristics achieve new standards that will be of great value to the development of future space observatories. As a result of this programme, the European industrial team has been able to master all of the processes required for making state-of-the-art space mirrors, and become the world leader in silicon carbide mirror technology.”

GAIA Telescope Array - Credit: ESA

But getting GAIA into space hasn’t been an overnight process. From initial approval of the project to launch encompasses 13 years – and an additional 7 to 8 to analyze the resulting data. Just consider its downlink – about 5 Mbit/s during its daily passes. While that’s comparable to a home broadband system, GAIA isn’t doing it from home. It’s transmitting from a million and a half kilometers away.

“The raw data that has to be collected is about 100 terabytes, and when all the data are processed in the archive we are talking about up to one petabyte,” says Giuseppe Sarri, Esa’s Gaia project manager. “For the analysis, a supercomputer will be needed to get out all the numbers.”

Yet, Gaia is not the first space mission to chart the heavens. In 1989, ESA also took on Hipparcos – a catalog effort well known even to the amateur community. It produced a primary catalogue of about 118 000 stars, and a secondary catalogue, called Tycho, of over 2 million stars. Even these impressive numbers will pale next to GAIA, whose mirrors will collect thirty times more light and measure a star’s position and motion two hundred times more accurately. At the end of its five-year mission, the information will fill over 30,000 CD ROMs – filled with 1000 million celestial objects – and be freely distributed to the astronomical community.

And we’ll be waiting…

For Further Reading: GAIA Mission Pages.

Book Review: The Apollo Guidance Computer

The Apollo Guidance Computer hasa lot to offer many different types of readers. Photo Credit: Springer/Praxis

[/caption]
Springer/Praxis has produced a small library’s worth of books about the Apollo Program. A recent offering from the publisher focuses in on the Apollo Guidance Computer. This topic, for the uninitiated, can be more than a little intimidating and if it is handled wrong veer off the path of a book about space flight and toward a pure “tech” book. This is not a problem that Springer/Praxis’ offering The Apollo Guidance Computer has, the book is well rounded, in-depth and easy-to-read.

Written by Frank O’Brien, The Apollo Guidance Computer is a thorough review of the computer system used during the Apollo missions. The Apollo Guidance Computer rings in at a whopping 430 pages – most readers will likely only pick out certain parts of the book to read. The book is, in a number of ways, many separate books in one – with details of the guidance computer, its development, the requirements to send astronauts to and from the Moon as well as the challenges that the engineers face in developing this revolutionary piece of equipment – all detailed within.

The book starts out by turning the clock back about 50 years to allow the reader to see what technology was like half a century ago. During this time period computers generally filled an entire room. This (obviously) was not possible in the case of Apollo’s guidance computer – and The Apollo Guidance Computer works to detail that story.

As far as O’Brien is concerned, he sees the book as something that techies, looking to learn how this computer system was developed, and space buffs who are seeking to learn the various intricacies of traveling to the Moon – can both enjoy.

While fairly primitive by today's standards, the Apollo guidance computer was revolutionary for its time. Photo Credit: NASA/Dryden

“It’s a bit different from other books that are found in spaceflight libraries, in that it is appealing to two very different groups,” said O’Brien during a recent interview. “Sometimes I joke that those interested in computers read it from the beginning till the end – whereas space enthusiasts –read it from the end to the beginning.”

For his part O’Brien acknowledges that not all parts of the book will interest all people. He is fine with that as long as readers enjoy the elements of the book that relate to them. He does hope that all readers pick up on how designers managed to pack away so much capability into a very limited structure. There was no disk, tape, or secondary storage – of any kind.

The book works to provide a link to demonstrate how the Apollo guidance computer allowed for one of the greatest accomplishments in human history. It details how difficult the actual lunar landing was and how the computer system was instrumental in accomplishing this feat.

Whereas many of Springer/Praxis’ offerings detail flight aspects of the Apollo era, this text takes a look at one of the essential elements that made those missions possible. While other books provide understanding of the Apollo Program in the broadest of strokes – this book allows readers to see the moon shot’s finest details. It also provides context into the era in which this machine was developed. Only in the 60s could an entry code be entitled BURNBABY (as in “Burn Baby Burn!”).

Frank O'Brien, the author of "The Apollo Guidance Computer" spoke to Universe Today about his thoughts on the book. Photo Courtesy of Frank O'Brien

SpaceX Completes Crucial Milestone Toward Launching Astronauts

With the completion of the fourth CCDEV milestone, Space Exploration Technologies is one step closer to launching astronauts into orbit. Photo Credit: SpaceX

[/caption]

Space Exploration Technologies (SpaceX) is now one more step closer to sending astronauts to orbit. The commercial space firm announced today that it has completed a successful review of the company’s launch abort system (LAS). SpaceX’s LAS, dubbed “DragonRider” is designed differently than abort systems that have been used in the past.

The first review of the system’s design and its subsequent approval by NASA represents a step toward the realization of the space agency’s current objective of having commercial companies provide access to the International Space Station (ISS) while it focuses on sending astronauts beyond low-Earth-orbit (LEO) for the first time in four decades.

The DragonRider launch abort system would allow astronauts to be safely pulled away from the Falcon 9 launch vehicle in the advent of an emergency. Image Credit: SpaceX

“Each milestone we complete brings the United States one step closer to once again having domestic human spaceflight capability,” said former astronaut Garrett Reisman, who is one of the two program leads who are working on SpaceX’s DragonRider program.

With the space shuttle program over and its fleet of orbiters headed to museums, the United States is paying Russia an estimated $63 million per seat on its Soyuz spacecraft. SpaceX has estimated that, by comparison, flights on a man-rated version of its Dragon spacecraft would cost approximately $20 million. Despite the dramatically lower cost, SpaceX has emphatically stated that safety is one of the key drivers of its spacecraft.

NASA, who currently lacks the capacity to launch astronauts on its own, has to pay fellow space station program partner $63 million a seat on its Soyuz spacecraft. SpaceX has estimated by comparison that flights on a man-rated Dragon would cost around $20 million. Photo Credit: NASA.gov

“Dragon’s integrated launch abort system provides astronauts with the ability to safely escape from the beginning of the launch until the rocket reaches orbit,” said David Giger, the other lead on the DragonRider program. “This level of protection is unprecedented in manned spaceflight history.”

SpaceX had already met three of NASA’s milestones under the Commercial Crew Development (CCDev) contract that the company has signed into with the U.S. space agency. With the Preliminary Design Review or PDR completed of the abort system SpaceX can now rack up another milestone that it has met.

SpaceX is currently working to see that the next flight of its Dragon spacecraft tentatively scheduled for late this year will incorporate mission objectives of both the second and third COTS demonstration flights and be allowed to dock with the International Space Station. Image Credit: SpaceX

Unlike conventional abort systems, which are essentially small, powerful rockets that are attached to the top of the spacecraft, Dragon’s LAS is actually built into the walls of the Dragon. This is not an effort just to make the spacecraft’s abort system unique – rather it is meant as a cost-cutting measure. The Dragon is intended to be reusable, as such its abort system needed to be capable of being reused on later flights as well. Traditional LAS simply do not allow for that. With every successful launch by conventional means – the LAS is lost.

SpaceX is also working to see that this system not only can save astronaut lives in the advent of an emergency – but that it can actually allow the spacecraft to conduct pinpoint landings one day. Not just on Earth – but possibly other terrestrial bodies – including Mars.

SpaceX is hopeful that if all goes well with its DragonRider system that it could one deay be developed to land future versions of the company's spacecraft on other terrestrial bodies - including the planet Mars. Image Credit: SpaceX

To date, SpaceX has launched two of its Falcon 9 launch vehicles. The first occurred on June 4 of 2010 and the second, and the first under the Commercial Orbital Transportation Services (COTS) contract took place six months later on Dec. 8. This second mission was the first to include a Dragon spacecraft, which was recovered in the Pacific Ocean off the coast of California after successfully completing two orbits.

“We have accomplished these four milestones on time and budget, while this is incredibly important, it is business as usual for SpaceX,” said SpaceX’s Vice-President for Communications Bobby Block during an interview. “These are being completed under a Space Act Agreement that demonstrates the innovative and efficient nature of what can be accomplished when the commercial sector and NASA work together.”

SpaceX's Vice-President for Communications, Bobby Block, said that the fact that SpaceX has accomplished these milestones on time and budget should show what can happen when NASA and the private industry work together. Photo Credit: Alan Walters/awaltersphoto.com

Stage Set For SpaceX to Compete for Military Contracts

NASA, the NRO and the U.S. Air Force have signed an agreement that could see smaller space firms competing for large military contracts. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
The United States Air Force has entered into a Memorandum of Understanding or MOU with the National Reconnaissance Office (NRO) and NASA to bring more players into the launch vehicle arena. On Oct. 14, NASA, the NRO and the U.S. Air Force announced plans to certify commercial rockets so that they could compete for future contracts involving Evolved Expendable Launch Vehicle, or EELVs. This means that Space Exploration Technologies’ (SpaceX) could compete for upcoming military contracts.

“This strategy will provide us with the ability to compete in the largest launch market in the world,” said Kirstin Brost Grantham, a spokeswoman with SpaceX. “There are those who are opposed to competition for space launches, they would prefer to see the status quo protected. But SpaceX has shown it is no longer possible to ignore the benefits competition can bring.”

In terms of sheer numbers of launch vehicles purchased – the U.S. Air Force is the largest customer in the world – with the U.S. taxpayer picking up the tab. Therefore it was considered to be in the Air Force’s best interest to find means to reduce this cost. The U.S. Air Force’s requirements are currently handled by United Launch Alliance (ULA) in what is essentially a monopoly (or duopoly considering that ULA is a collective organization – comprised of both Boeing and Lockheed Martin).

The two launch vehicles that ULA provides are the Delta IV and Atlas V family of rockets. Photo Credit: Alan Walters/awaltersphoto.com

“SpaceX welcomes the opportunity to compete for Air Force launches. We are reviewing the MOU, and we expect to have a far better sense of our task after the detailed requirements are released in the coming weeks,” said Adam Harris, SpaceX vice president of government affairs.

The U.S. Department of Defense (DoD) has decided to go ahead with a five-year, 40-booster “block-buy” plan with ULA – despite the fact that the U.S. General Accounting Office’s (GAO) has requested that the DoD rethink that strategy. The GAO stated on Oct. 17, that they are concerned that the DoD is buying too many rockets and at too high of a price.

Under the Evolved Expendable Launch Vehicle Plan, the DoD is set to spend some $15 billion between 2013 and 2017 to acquire some 40 boosters from ULA to send satellites into orbit. For its part, the DoD conceded that it might need to reassess the manner in which it obtained launch vehicles.

As it stand now, United Launch Alliance has a virtual monopoly on providing launch vehicles for the Department of Defense. Photo Credit: Alan Walters/awaltersphoto.com

The new strategy which is set to allow new participants in to bid on DoD and NRO contracts is an attempt to allow the free-market system drive down the cost of rockets. Recently, the price of these rockets has actually increased. The cause for this price increase has been somewhat attributed to the vacuum created by the end of the space shuttle program.

Firms like SpaceX, which seek to compete for military contracts, will have to meet requirements that are laid out in “new entrant certification guides.”
“Fair and open competition for commercial launch providers is an essential element of protecting taxpayer dollars,” said Elon Musk, SpaceX CEO. “Our American-made Falcon vehicles can deliver assured, responsive access to space that will meet warfighter needs while reducing costs for our military customers.”

Space Exploration Technologies (SpaceX) CEO Elon Musk applauded the recent announcement that could see his company competing for military contracts. Photo Credit: Alan Walters/awaltersphoto.com

Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

Russia’s Phobos-Grunt sample return spacecraft is uncrated after arriving at the Baikonur Cosmodrome on Oct. 17, 2011. Launch to Mars is scheduled for sometime in November 2011. Folded solar panels and Phobos sample return vehicle at left. Phobos Lander and Yinghou-1 Orbiter at center, right. Credit: Roskosmos.

[/caption]

Barely in the nick of time, Russia’s groundbreaking Phobos-Grunt interplanetary spacecraft to Mars finally arrived on Monday (Oct. 17) at the Baikonur Cosmodrome launch site in Kazakhstan – and today (Oct. 18) an eye-popping collection of great images (see below) was at last published by Roskosmos, the Russian Federal Space Agency.

This first-of-its-kind spaceship is due to blast off quite soon – sometime in the first half of November – although Roskosmos has yet to announce an official launch date and time is running out. The deadline to Mars is Nov. 25.

Top view of Phobos-Grunt, sample return vehicle. Credit: Roskosmos.

The explicit close-up photos show both the Phobos-Grunt orbiter/lander vehicle and her companion Yinghou-1 Mars orbiter, built by China, being uncrated from a huge shipping container, uprighted and then showcased from many revealing angles from top to bottom, tilted from side to side and looking inside her hardware stack.

The photos illustrate the solar panels, landing legs, J-shaped soil sampling tube, Earth return vehicle and descent capsule, star trackers, communications antennae, maneuvering thrusters and more.

Top view of Phobos-Grunt, sample return vehicle. Credit: Roskosmos.

The Yinghou-1 mini-satellite is clearly visible tucked inside a truss situated between the Phobos-Grunt landing ship and the MDU propulsion stage.

Phobos-Grunt was just air shipped from Moscow to Baikonur inside an Antonov An-124-100 “Ruslan” cargo plane operated by “Polyot” airline.

The cargo canister was offloaded and transported by truck to Facility 31. The spacecraft was then placed on a test stand to begin an intense period of final prelaunch payload processing activites to ready the probe for launch.

The Zenit-2SB booster rocket also recently arrived at Baikonur for ongoing prelaunch processing at nearby Building 42.

Chinese Yinghou-1 mini-satellite tucked truss at right, situated below the Phobos-Grunt lander at left. Credit: Roskosmos.

Russia’s engineers and technicians will have to work diligently in the few weeks remaining in order to complete all preflight activities to achieve a liftoff to the Red Planet before the unforgiving and narrow launch window closes for another 26 months.

Phobos-Grunt Earth return spacecraft. Close-up view of solar panels, Earth descent capsule and soil sample transfer tube. Credit: Roskosmos.
Phobos-Grunt sample collecting and sample return vehicle. Credit: Roskosmos.

Tilted view of Phobos-Grunt attached to test stand for final prelaunch processing. Credit: Roskosmos.

Earth is actually lofting two exciting science missions to Mars this November. NASA’s Curiosity Mars Science Laboratory rover is due to blastoff on Nov. 25 and her launch window extends until Dec. 18. Both spaceships missed their initially targeted launch windows in 2009 due to the need to fix unresolved technical issues.

Phobos-Grunt is a daring sample return mission whose goal is to retrieve up to 200 grams of soil and rock from the tiny Martian moon Phobos, that will help elucidate the origin and evolution of Phobos, Mars and the Solar System.

Tilted view of Phobos-Grunt attached to test stand for final prelaunch processing. Credit: Roskosmos.

Side view of Phobos-Grunt and Yinghou-1 orbiter (bottom) attached to test stand for final prelaunch processing. Credit: Roskosmos.

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter

Read Ken’s continuing Mars features about Phobos-Grunt, Curiosity and Opportunity starting here:
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater

NASA Strengthens Virgin Galactic Ties With New Contract

NASA has entered an arrangement with commercial space firm Virgin Galactic to fly experiments on board the company's SpaceShipTwo. Photo Credit: Virgin Galactic/Mark Greenburg

[/caption]
NASA has, on a number of occasions tapped the NewSpace firm Virgin Galactic to help the space agency accomplish its objectives – recently, it has done so again. This new contract will see NASA science payloads take suborbital flights on the company’s SpaceShipTwo (SS2) spacecraft. This however is not the first time that NASA has entered into an arrangement with the emerging commercial space flight firm.

NASA first began working with Virgin Galactic in 2007, when it entered into a Memorandum of Understanding to explore possible collaborative efforts to develop various equipment required to conduct space flight operations (space suits, heat shields, and other space flight elements).

Under this arrangement NASA will have one scientific mission flown aboard SpaceShipTwo with options for two additional flights. Photo Credit: Virgin Galactic/Mark Greenberg

Earlier this year, NASA selected seven different firms that either had or were developing suborbital spacecraft – one of these was Virgin Galactic. The announcement that was made Thursday, Oct. 13 is actually the culmination of the Flight Opportunities Program, which was announced on Aug. 9 of this year and established to help NASA meet its technology and research development requirements.

The agreement to fly NASA payloads on SS2 was announced about a week after former NASA Shuttle Program Manager; Mike Moses stated he was leaving the space agency to work as Virgin Galactic’s vice president of operations. Moses will be in charge of all operations at Spaceport America, located near Las Cruces, New Mexico.

On these missions, not only will a carry a scientific payload but an engineer that will monitor the payload and operate the payload. Photo Credit: Virgin Galactic/Mark Greenberg

“I’ve known Mike for a long time, from his flight controller days which led to him becoming a flight director and then moving into the shuttle program,” said Kyle Herring, a NASA public affairs officer. “I think he would be a very valuable asset to any organization that he went to. Mike’s expertise will be very beneficial in not just mission operations but ground operations as well.”

The NASA contract with Virgin Galactic is for one flight with the space agency optioning two additional flights (for a potential of three flights total). If NASA options all three flights, the total contract would be worth an estimated $4.5 million. The announcement came just four days prior to the dedication ceremony for the spaceport’s new headquarters (the dedication was on Monday, Oct. 17).

NASA will flight at least one experiment package on SpaceShipTwo, with an option to fly potentially two more. Photo Credit: Virgin Galactic/Mark Greenberg

Each of these suborbital missions will have a trained engineer on board to handle the experiments.

Virgin Galactic is an arm of the London-based Virgin Group which is owned by British billionaire Sir Richard Branson. Virgin Galactic is working to provide tourists with suborbital flights into space that will allow these space passengers to briefly experience the micro-gravity environment. The flights will launch from a spaceport which is currently under construction near Las Cruces New Mexico. Tickets have been priced at about $200,000 each.

Former Space Shuttle Program Manager Mike Moses has joined Virgin Galactic as the company's vice president of operations. The company conducted a dedication ceremony of its new spaceport, located near Las Cruces, New Mexico on Monday, Oct. 17. Photo Credit: Virgin Galactic/Mark Greenberg