GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad

GRAIL Lunar Twins hoisted to top of Launch Pad 17B at Cape Canaveral. NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida and were mated to their Delta II Heavy Booster Rocket. They are wrapped in plastic to prevent contamination outside the clean room. Launch is scheduled for Sept. 8. Credit: NASA/Kim Shiflett

[/caption]

With blastoff just 2 ½ weeks away, NASA’s GRAIL lunar twins completed a major milestone towards launch today (Aug. 18) when they were mated to the top of the Delta II Heavy rocket that will boost them to the moon. Launch is slated for Sept. 8 at 8:37 a.m. EDT.

This morning the tightly wrapped $496 Million duo took their last trip on Earth before beginning their nearly four month journey to the Moon. GRAIL A & GRAIL B were carefully transported 15 miles (25 km) from the clean room processing facility at the Astrotech Space Operation’s payload processing facility in Titusville, Fla to Space Launch Complex 17B (SLC-17B) at Cape Canaveral Air Force Station in Florida.

“The GRAIL spacecraft transportation convoy to SLC-17B departed Astrotech at 11:55 p.m. EDT on Wednesday, Aug. 17, “ said Tim Dunn, NASA’s Delta II Launch Director in an interview with Universe Today. “The spacecraft, inside the handling can, arrived at the launch pad, SLC-17B, at 4:00 a.m. this morning.”

“The spacecraft was then hoisted by the Mobile Service Tower crane onto the Delta II launch vehicle and the spacecraft mate was complete at 9:30 a.m.”

Crane lifts GRAIL A & B to the top of the Mobile Service Tower on Aug. 18. The probes are wrapped in protective plastic sheeting inside the handling can. Credit: NASA/Kim Shiflett

Technicians joined the nearly identical and side by side mounted spacecraft onto the top of the guidance section adapter of the Delta’s second stage. The Delta II was built by United Launch Alliance (ULA).

“Tomorrow, the GRAIL spacecraft team will perform functional testing on both the GRAIL A and GRAIL B spacecraft,” Dunn told me.

“The next major milestone will be performance of the Integrated Systems Test (IST) on Monday, (8/22/11).

“Today’s spacecraft mate operation was flawlessly executed by the combined ULA and NASA Delta II Team,” said Dunn.

These tests will confirm that the spacecraft is healthy after the fueling and transport operations. After further reviews of the rocket and spacecraft systems the GRAIL team will install the payload fairing around the lunar probes.

NASA’s twin GRAIL Science Probes ready for Lunar Expedition
GRAIL B (left) and GRAIL A (right) spacecraft are mounted side by side on top of a payload adapter inside the clean room at Astrotech Space Operations facility. The spacecraft await lunar launch on Sept. 8, 2011. Credit: Ken Kremer

NASA’s dynamic duo will orbit the moon to determine the structure of the lunar interior from crust to core and to advance understanding of the thermal evolution of the moon.

“We are about to finish one chapter in the GRAIL story and open another,” said Maria Zuber, GRAIL’s principal investigator, based at the Massachusetts Institute of Technology in Cambridge in a statement. “Let me assure you this one is a real page-turner. GRAIL will rewrite the book on the formation of the moon and the beginning of us.”

The GRAIL launch will be the last for a Delta II in Florida.

GRAIL A & B lunar twins arrive at Pad 17B. Credit: NASA/Kim Shiflett

Technicians hoist GRAIL A & B lunar twins inside the handling can at Pad 17B. Credit: NASA/Kim Shiflett

Read my prior features about GRAIL
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery

3 D Alien Snowman Graces Vesta

3D Snowman craters and Vesta’s Equatorial Region from Dawn. This anaglyph image of Vesta's equator with the crater feature named “snowman” (center, right) was put together from two clear filter images, taken on July 24, 2011 by the framing camera instrument aboard NASA's Dawn spacecraft. The anaglyph image shows hills, troughs, ridges and steep craters. The framing camera has a resolution of about 524 yards (480 meters) per pixel. Use red-green (or red-blue) glasses to view in 3-D (left eye: red; right eye: green [or blue]). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

An alien ‘Snowman’ on an alien World.

The ‘Snowman’ is a string of three craters and is among the most strange and prominent features discovered on a newly unveiled world in our solar system – the giant asteroid Vesta. It reminded team members of the jolly wintertime figure – hence its name – and is a major stand out in the 3 D image above and more snapshots below.

Until a few weeks ago, we had no idea the ‘Snowman’ even existed or what the rest of Vesta’s surface actually looked like. That is until NASA’s Dawn spacecraft approached close enough and entered orbit around Vesta on July 16 and photographed the Snowman – and other fascinating Vestan landforms.

“Each observation of Vesta is producing incredible views more exciting than the last”, says Dawn’s Chief Engineer, Dr. Marc Rayman of the Jet Propulsion Laboratory. “Every image revealed new and exotic landscapes. Vesta is unlike any other place humankind’s robotic ambassadors have visited.”

‘Snowman’ craters on Vesta. What is the origin of the ‘Snowman’?
The science team is working to determine how the ‘Snowman’ formed. This set of three craters is nicknamed ‘Snowman” and is located in the northern hemisphere of Vesta. NASA’s Dawn spacecraft obtained this image with its framing camera on August 6, 2011. This image was taken through the framing camera’s clear filter aboard the spacecraft. The framing camera has a resolution of about 280 yards (260 meters). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The Snowman is located in the pockmarked northern hemisphere of Vesta – see the full frame image below. The largest of the three craters is some 70 km in diameter. Altogether the trio spans roughly 120 km in length. See Image at Left

“Craters, Craters, Craters Everywhere” – that’s one thing we can now say for sure about Vesta.

And soon we’ll known a lot more about the mineralogical composition of the craters and Vesta because spectral data is now pouring in from Dawn’s spectrometers.

After being captured by Vesta, the probe “used its ion propulsion system to spiral around Vesta, gradually descending to its present altitude of 2700 kilometers (1700 miles),” says Chief Engineer Rayman. “As of Aug.11, Dawn is in its survey orbit around Vesta.”

Dawn has now begun its official science campaign. Each orbit currently last 3 days.

Dawn’s scientific Principal Investigator, Prof. Chris Russell of UCLA, fondly calls Vesta the smallest terrestrial Planet !

I asked Russell for some insight into the Snowman and how it might have formed. He outlined a few possibilities in an exclusive interview with Universe Today.

“Since there are craters, craters, craters everywhere on Vesta it is always possible that these craters struck Vesta in a nearly straight line but many years apart,” Russell replied.

“On the other hand when we see ‘coincidences’ like this, we are suspicious that it is really not a coincidence at all but that an asteroid that was a gravitational agglomerate [sometimes called a rubble pile] struck Vesta.”

“As the loosely glued together material entered Vesta’s gravity field it broke apart with the parts moving on slightly different paths. Three big pieces landed close together and made adjacent craters.”

So, which scenario is it ?

“Our science team is trying to figure this out,” Russell told me.

“They are examining the rims of the three craters to see if the rims are equally degraded, suggesting they are of similar age. They will try to see if the ejecta blankets interacted or fell separately”

“The survey data are great but maybe we will have to wait until the high altitude mapping orbit [HAMO] to get higher resolution data on the rim degradation.”

Dawn will descend to the HAMO mapping orbit in September.

Close-up View of 'Snowman' craters.
This image of the set of three craters informally nicknamed ‘Snowman’ was taken by Dawn’s framing camera on July 24, 2011 after the probe entered Vesta’s orbit. Snowman is located in the northern hemisphere of Vesta. The image was taken from a distance of about of about 3,200 miles (5,200 kilometers). The framing camera was provided by Germany. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Russell and the Dawn team are elated with the fabulous results so far, some of which have been a total surprise.

How old is the Snowman ?

“We date the age of the surface by counting the number of craters on it as a function of size and compare with a model that predicts the number of craters as a function of size and as a function of time from the present,” Russell responded.

“However this does not tell us the age of a crater. If the crater destroyed all small craters in its bowland and left a smooth layer [melt] then the small crater counts would be reset at the impact.”

“Then you could deduce the age from the crater counts. You can also check the degradation of the rim but that is not as quantitative as the small crater counts in the larger crater. The team is doing these checks but they may have to defer the final answer until they obtain the much higher resolution HAMO data,” said Russell.

Besides images, the Dawn team is also collecting spectral data as Dawn flies overhead.

“The team is mapping the surface with VIR- the Visible and Infrared Mapping Spectrometer – and will have mineral data shortly !”, Russell told me.

At the moment there is a wealth of new science data arriving from space and new missions from NASA’s Planetary Science Division are liftoff soon. Juno just launched to Jupiter, GRAIL is heading to the launch pad and lunar orbit and the Curiosity Mars Science Laboratory (MSL) is undergoing final preflight testing for blastoff to the Red Planet.

Russell had these words of encouragement to say to his fellow space explorers;

“Dawn wishes GRAIL and MSL successful launches and hopes its sister missions join her in the exploration of our solar system very shortly.”

“This year has been and continues to be a great one for Planetary Science,” Russell concluded.

Detailed 'Snowman' Crater
Dawn obtained this image with its framing camera on August 6, 2011. This image was taken through the camera’s clear filter. The camera has a resolution of about 260 meters per pixel. This image shows a detailed view of three craters, informally nicknamed 'Snowman' by the camera’s team members. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Dawn snaps First Full-Frame Image of Asteroid Vesta – Snowman at Left
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body. The Dawn mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The framing cameras were built by the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany, and the German Aerospace Center (DLR) Institute of Planetary Research, Berlin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read my prior features about Dawn
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Q&A with Brian Cox, part 2: Space Exploration and Hopes for the Future

Brian Cox. Photo by Vincent Connare

[/caption]

Professor Brian Cox is the Chair in Particle Physics at the University of Manchester, and works on the ATLAS experiment (A Toroidal LHC ApparatuS) at the Large Hadron Collider at CERN. But he’s also active in the popularization of science, specifically with his new television series and companion book, Wonders of the Universe. Universe Today had the chance to talk with Cox, and yesterday he told us about the recent advances in particle physics. Today we ask him about his favorite space missions and his hopes for the future of science.

For a chance to win a copy of the “Wonders of the Universe” book, see our contest post.

Universe Today: The Juno mission just launched to Jupiter and there are lots of other space missions going on. What are some your favorites and your hopes of what those kinds of missions will discover?

Brian Cox: The enormous question for space exploration is origin of life on other worlds. That is currently THE big question. We’ve seen discoveries recently about possible, plausible evidence of flowing water on Mars. There’s been evidence for awhile that there is perhaps subsurface water, but seeing what looks to be the signature of flowing, briny water — today — is very suggestive. On Earth, where we have water we have life, so this new finding makes Mars even more fascinating. The ExoMars project, the joint European-American mission to Mars to look for life is going to be one of most exciting missions yet, because there’s a good chance of finding it.

The ExoMars/Trace Gas Orbiter mission is a joint mission being developed by the European Space Agency (ESA) and NASA/JPL. This mission would be the first in a series of joint missions to Mars for ESA and NASA. Credit: NASA

Now we’re heading off to Jupiter, and Europa is actually a fascinating place for the same reason. There is a huge amount subsurface water on Europa, and there has been speculation that colored markings on the surface of Europa could be life. It looks as though there may be seasonal shifts, and that could be possible cyanobacteria in the ice. This is really speculative, but this is the kind of language people are using now, talking about finding life with real optimism.

Beyond the solar system, the search for exoplanets is going very, very well. Virtually every star we survey we find planets! Well, that might be a bit of an exaggeration, but we’ve found hundreds and hundreds of planets. We’ve begun to see Earth-like planets and so the next step is to do spectroscopy to look at light passing through the atmospheres of those planets and look for signatures of elements like oxygen. Again, if you find oxygen-rich atmospheres — which we are on the verge of looking for now — if you find that, then you’ve got pretty good evidence there is life on those planets.

So, it could be we find life on a distant planet before we find life in the solar system, which would be tremendous. But really, I do think the big discoveries will be all about life, certainly in solar system exploration.

UT : What are your hopes for the future regarding physics, technology and space?

Particle Collider
Large Hadron Collider (CERN/LHC/GridPP)

COX: I’d like to see an increase in rational thinking, which is synonymous with
scientific thinking.

Scientifically, the Large Hadron Collider is going to make a huge difference. It really is going to revolutionize our fundamental understanding of the way the universe works. Then there are these huge questions in fundamental physics, the question of why gravity is so weak, why the universe began in such an ordered way.

Then, what is 96% of the Universe made of? We know our Universe is full of something called Dark Matter and we don’t know what it is. The Universe is accelerating in its expansion, which we call Dark Energy and we don’t know what that is either. There is something fundamental going on.

I’d like to think this period of time is like the period of 1890 onwards to the turn of the 20th century. There were some small problems with things like understanding the spectrum of light, what atoms were; little problems really. But when we finally understood, it revolutionized our understanding of the Universe. Shortly after the turn of the century we got quantum theory, relativity – a complete change in our understanding. I’d like to think that maybe it’s a bit like that at the moment. There are so many little — and big — chinks in the armor of our picture of the Universe at the fundamental level. I think within the next few years, there will be big shifts, and probably, they will be led by the data from the LHC.

Tomorrow: Wonders

Find out more about Brian Cox at his website, Apollo’s Children

China To Launch Space Station Module Prototype

During a 2010 presentation at the China Academy of Space Technology a full-scale model of Tiangong 1 was on display.

[/caption]

China’s space program is in the news again, this time with unconfirmed reports that the Tiangong 1 space lab may be launching into orbit sometime this year – possibly later this month.  Previous news reports cited potential launch dates in 2010 or 2011,  so this launch isn’t too far behind schedule.

What plans does China have for their first orbital space station prototype?

The space lab, named “Tiangong” translates from Mandarin Chinese into English as “Heavenly Palace”.  Weighing just under 9 tons, the prototype module will orbit for two years. China will use the module to practice docking maneuvers and test orbital technologies during the module’s lifetime.

China plans to follow the Tiangong 1 orbital lab with two more lab launches over the next few years to continue testing systems and technologies before starting construction on their own space station in the 2020’s.  Based on China’s current plans, the Tiangong orbital labs will not be used in the Chinese space station.

Artists rendering of a Tiangong module performing a docking procedure with a Shenzhou spacecraft. Image Credit: China Manned Space Engineering Office

Many space analysts believe China’s lack of a perceived “space race” is a potential reason for the country’s slow, methodical space program build-up.  So far, China has only launched three manned space flights:  Shenzhou 5 and Shenzhou 6 ( 2003 and 2005, respectively). China’s first mission to include a spacewalk was Shenzhou 7 (2008).

While China is making great strides with their manned space program, there are no current plans to include China in the ongoing International Space Station project.  Despite several political and technological issues preventing China’s participation in the ISS, recent comments from officials at the China National Space Administration have indicated a willingness to allow other countries to visit the country’s space station once it is operational.

If you’d like to learn more, Universe Today has previous coverage (Jan. 2010) on the Tiangong mission at: http://www.universetoday.com/51506/china-to-launch-space-station-in-2010-or-2011.

You can also visit the China National Space Administration’s website at: http://www.cnsa.gov.cn/n615709/cindex.html

SpaceX: Dragon ISS Bound

The next Dragon spacecraft is prepped for its mission. If all goes according to plan this Dragon will be headed to the International Space Station. Photo Credit: Roger Gilbertson/SpaceX

[/caption]
Space Exploration Technologies (SpaceX) is preparing its next Dragon spacecraft for a trip to the International Space Station (ISS). SpaceX has worked over the last several months to make sure that the spacecraft is set for the Nov. 30 launch date that has been given to the commercial space company. If all goes according to plan, a little more than a week after launch – the Dragon will dock with the ISS.

NASA has technically agreed to allow SpaceX to combine all of the tests and demonstration activities that were originally slated to take place on two separate flights (COTS demo missions 2 and 3). SpaceX is working to further maximize the cost-effectiveness of this mission by including additional payloads in the Falcon 9’s second stage. These will be deployed after the Dragon separates from the rocket.

The Falcon 9 rocket that will ferry the Dragon spacecraft to orbit sits waiting its launch date at SpaceX's hangar at Cape Canaveral. Photo Credit: SpaceX

“SpaceX has been making steady progress towards our next launch,” said SpaceX’s Communications Director Kirstin Brost-Grantham. “There are a number of challenges associated with berthing with the International Space Station, but challenges are the norm here. With each mission we are making history.”

NASA is waiting to provide final approval of the mission’s combined objectives once any and all potential risks that are associated with the secondary payloads have been worked out.

The Dragon spacecraft needs extra electrical power to conduct station operations. That power is provided via two solar arrays, one of which is seen in this image. Photo Credit: SpaceX

There is a lot riding on the Commercial Orbital Transportation Services (COTS) contract. If crew members on the orbiting laboratory can access the Dragon’s contents and the spacecraft conducts all of its requirements properly – it will go a long way to proving the viability of NASA’s new path toward using commercial spacecraft and it could usher in a new era of how space flight is conducted.

It is hoped that private-public partnerships could lower the cost related to access-to-orbit and in so doing also help to increase the reliability, safety and frequency of space flight.

Clockwise from upper left: The Falcon 9's first stage tank, with domes and barrels for the second stage; the nine Merlin engines in a test stand, the pressure vessel for the CRS-1 Dragon spacecraft; composite interstage structure that joins the stages together. Photo Credit: Roger Gilbertson / SpaceX

SpaceX has been working from milestone to milestone in getting the next mission ready to launch. Just this week the company conducted what is known as a wet dress rehearsal or WDR of the Falcon 9 rocket out at Cape Canaveral Air Force Station’s Space Launch Complex 40 (SLC 40). The Falcon 9 was loaded with propellant and went through all of the operations that lead up to launch – right down to T-1 second. At that point, the launch team stands down and the Falcon 9 is detanked.

SpaceX last launched from SLC 40 last December, during the intervening months the company has worked to upgrade the launch pad. New liquid oxygen or LOX tanks have been installed. These new tanks should streamline loading time from 90 minutes – to under 30 minutes. It is hoped that these efforts will allow the Falcon 9 to move from the hangar to liftoff – in under an hour.

SpaceX has launched the Falcon 9 twice and the Dragon spacecraft once – each completed the primary objectives successfully and helped to establish SpaceX as a leader in the NewSpace movement. SpaceX has inked many lucrative contracts, both domestic and foreign as a result. Besides the COTS contract, SpaceX is also one of the companies that has a contract under the Commercial Crew Development contract (phase-02) or CCDev-02.

This scene might play out for real in the coming months as SpaceX prepares to launch one of its Dragon spacecraft to the International Space Station. Image Credit: SpaceX

JPL’s ‘Muscle Car’ – MSL – Takes Center Stage

JPL's 'Hot Wheels' - The Mars Science Laboratory or 'Curiosity' is being prepared to launch to mars this November. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla. – NASA is experiencing what could be dubbed a “summer of planetary exploration.” With the Juno mission to Jupiter on its way as of Aug. 5, NASA is prepping not one but two more missions – this time to terrestrial bodies – specifically the Moon and Mars.

On Sept. 8 NASA is planning to launch GRAIL (Gravity Recovery And Interior Laboratory). This mirror image spacecraft consists of two elements that will fly in tandem with one another and scan the Moon from its core to its crust. This mission will serve to expand our understanding of the mechanics of how terrestrial bodies are formed. GRAIL will provide the most accurate gravitational map of the Moon to date.

The aeroshell that will cover both the MSL rover and its jetpack landing system. Photo Credit: Alan Walters/awaltersphoto.com

When it comes to upcoming projects that have “celebrity” status – few can compete with the Mars Science Laboratory (MSL) or Curiosity. The six-wheeled rover was part of a media event Friday Aug. 12 that included the “Sky-Crane” jetpack that is hoped will safely deliver the car-sized rover the Martian surface. Also on display was the back half of the rover’s aeroshell which will keep the robot safe as in enters the red planet’s atmosphere.

Numerous engineers were available for interview, one expert on hand to explain the intricacies of how Curiosity works was the Rover Integration Lead on the project, Peter Illsley.

One fascinating aspect of MSL is how the rover will land. As it pops free of the aeroshell, a jet pack will conduct a powered descent to Mars’ surface. From there the rover will be lowered to the ground via wires, making Curiosity look like an alien spider descending from its web. Once the rover makes contact with the ground, the wires will be severed and the “Sky-Crane” will fly off to conduct a controlled crash. Ben Thoma, the mechanical lead on this aspect of the project, described how he felt about what it is like to work on MSL.

MSL is slated to launch this November atop a United Launch Alliance (ULA) Atlas V 541 rocket. If everything goes according to plan the rover will begin exploring Mars’ Gale Crater for a period of approximately two years. In every way Curiosity is an upgraded, super-charged version of the rovers that have preceded her. The Pathfinder rover tested out many of the concepts that led to the Mars Exploration Rovers Spirit and Opportunity and now MSL has incorporated lessons learned to take more robust scientific explorations of the Martian surface.

The "Sky-Crane" jetpack that will be used to slowly lower the MSL rover to the Martian surface. Photo Credit: Alan Walters/awaltersphoto.com

GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery

NASA’s twin GRAIL Science Probes ready for Lunar Expedition. GRAIL B (left) and GRAIL A (right) spacecraft are mounted side by side on top of a payload adapter inside the clean room at Astrotech Space Operations facility. The spacecraft await lunar launch on Sept. 8, 2011. Credit: Ken Kremer

[/caption]

NASA’s GRAIL twins – dubbed GRAIL-A & GRAIL-B – are ready to embark on America’s next science expedition to the moon in less than 1 month’s time from Cape Canaveral Air Force Station, Fla.

The twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have been exhaustively tested, fueled for flight and mounted side-by-side on a specially designed payload adapter inside the controlled environment of a clean room at the Astrotech Space Operations facility in nearby Titusville, Fla.

The next processing step is to encapsulate the lunar probes inside their protective payload fairing. The duo are set to be shipped from Astrotech to their Cape Canaveral launch pad next week on Aug. 16, where they will be mated to an already assembled Delta II booster.

Liftoff of the GRAIL twins is slated for Sept. 8 at 8:37 a.m. EDT by a Delta II Heavy rocket from Launch Complex 17 at Cape Canaveral for a nearly four month voyage to the moon.

After entering lunar orbit, the two GRAIL spacecraft will fly in a tandam formation just 50 kilometers above the lunar surface with an average separation of 200 km during the 90 day science phase.

Side view of twin GRAIL probes
The GRAIL spacecraft are mounted to a 3 inch high Launch Vehicle Adapter Assembly and 20 inch Payload Adapter spacer ring on top of a 30-inch high GSE stand. Credit: Ken Kremer (kenkremer.com)

GRAIL’s mission goal is to map the moon’s gravity field to high precision and thereby deduce the structure of the lunar interior from crust to core. This will also lead to a better understanding of the composition of the moon’s interior, according to Sami Asmar, GRAIL co-investigator from NASA’s Jet Propulsion Laboratory in Pasasdena, Calif., during an interview inside the Astrotech clean room at a photo opportunity for the media. A gravity experiment is also aboard the just launched Jupiter bound Juno spacecraft.

GRAIL Photo Album special taken from inside the Astrotech cleanroom facility.

Twin GRAIL lunar probes inside clean room at Astrotech. Credit: Ken Kremer
Close up of twin lunar probes, GRAIL- B (left) & GRAIL- A (right). Credit: Ken Kremer
GRAIL-B solar panels. Credit: Ken Kremer
GRAIL Science and Launch team inside clean room at Astrotech. Credit: Ken Kremer
GRAIL Co-Investigator Sami Asmar (left) from JPL and Ken Kremer discuss science objectives inside clean room at Astrotech.

In Their Own Words: Experts Talk Juno

Several scientists and experts discussed the Juno mission to Jupiter with Universe Today. Photo Credit: Alan Walters/awaltersphoto.com

CAPE CANAVERAL Fla. – Many experts took time out of their hectic schedules to talk with Universe Today in the day leading up to the launch of the Juno spacecraft. Some even took the time to talk to us just minutes before the probe was scheduled to be launched on its mission. Check out what they had to say below:

Juno Project Scientist Steve Levin was at Kennedy Space Center to watch the Juno probe begin its five-year journey to Jupiter. He took a few minutes of his time to talk about what his expectations are for this mission.

Levin has been with JPL since 1990, one of the previous projects he worked on is the Planck mission which launched in 2009.

Levin believes that Juno could fundamentally change the way we view Jupiter. He was one of many VIPs that descended on Kennedy Space Center to watch as Juno thundered to orbit atop at Atlas V rocket.

Sami Asmar is part of the science team that is working on the Juno project. He was at the rollout of the Atlas rocket to the pad. Here is what he had to say about the mission (note the Atlas rocket moving out behind him).

Bill Nye the Science Guy was a very busy man while at Kennedy Space Center. He still took the time to chat with Universe Today about his views on this mission. Unfortunately, with little time to spare, we had to conduct the interview within minutes of the first launch attempt. A good chunk of Nye’s interview – was drowned out by the lead up to the countdown!

The usual launch of an Atlas consists of the launch team coming in, pushing a button and going home – the launch vehicle is that reliable. This day, things occurred quite differently. A technical issue coupled with a wayward boat that had drifted too close to the launch pad saw the launch time slip from 11:34 a.m. EDT to 12:25 p.m. When the rocket did take off however it was a spectacular sight to behold, faster than other iterations of the Atlas, it roared off the pad, sending Juno on its way to Jupiter.

LRO to Move in For Closer Look at the Apollo Landing Sites

Artist concept of LRO in lunar orbit. Credit: NASA

[/caption]

NASA’s Lunar Reconnaissance Orbiter (LRO) is changing our view of the Moon by literally bringing it into sharper focus with its three high resolution cameras. But now, things are about to get even sharper. Today, LRO fired its thrusters to begin dipping down from its usual orbit about 50 km above the surface and moving to an orbit that will allow the spacecraft’s cameras me to image the Apollo sites from about 20 km away.

“This will allow me to obtain images of the Apollo sites that are about 4 times sharper than my current best images,” said the LRO spacecraft on Twitter.


This is just a temporary orbit and the spacecraft will take images of and around the Apollo sites between August 14 and 19, 2011. After that, the spacecraft will return to the 50-km-orbit until December.

LRO has two narrow angle cameras (NACs) and one wide angle camera (WAC).

According to Mark Robinson, LROC Principal Investigator, who spoke at the Lunar Forum at Ames Research Center last month, as of the end of July, 2011 the amount of data returned by LRO has been about 400 gigabits of data every day, which includes 371,027 high resolution images. The WAC has taken about 160,000 images, with about 90,000 in color. In total, the spacecraft has imaged the entire Moon about 20 times with the WAC, and has imaged 20 per cent of the moon with NACs, which provides a narrower but higher resolution view.

“We want to map the whole moon at 50 cm/pixel to 200 cm/pixel, and that would be LROC’s legacy for the next 100 years of lunar exploration and science,” Robinson said.

He noted that all three cameras are performing way better than he had hoped.

“We are very excited about the quality of the data,” Robinson said.

So get ready for a little more quality views of the Apollo landing sites!

Update: as commenter MoonOrBust noted, the LRO Twitter feed had an addendum later in the day, adding that there are several technical challenges associated with getting improved resolution images at the lower altitude orbit. For example, the spacecraft will not slow from its orbital speed of about 1.6 km/s (about 3,500 mph) when it gets closer to the Moon’s surface, which might cause some image blurring, particularly for the LROC Narrow Angle Camera images. “However, it will certainly be fun to compare the images from the different orbits!” the spacecraft Tweeted.

SpaceX: Mars Is Our Future

Could an image similar to this be in our near future? If Elon Musk has his way - the answer is yes. Falcon 9 Image Courtesy of SpaceX - Mars Image Courtesy of NASA

[/caption]Elon Musk is not one to rest on prior accomplishments; he likes to continue to push forward – his plans for the future of commercial space flight reflect that philosophy. He has stated his plans to begin crewed flights to Mars. Musk thinks that humans can set foot on the red planet within the next 10 to 20 years. He stated that the rationale behind mankind becoming a multi-planet species should be obvious to all.

“Ultimately, it is vital that we are on a path to becoming a multi-planet species,” said Musk. “If we don’t then our future isn’t very bright, we’ll simply be hanging out on Earth until some calamity claims us.”

SpaceX's Dragon spacecraft is set to head to the International Space Station this December. SpaceX has plans to use the spacecraft in potential Martian missions. Image Credit: SpaceX

Musk made the announcement of his intent during this month’s meeting of the American Institute of Aeronautics and Astronautics (AIAA) that was held in San Diego, California.

SpaceX would presumably utilize the Falcon Heavy rocket, which is slated to conduct its first launch either at the end of 2012 or the beginning of 2013. Whereas the Falcon 9 features nine engines in its first stage, the Falcon Heavy, being a triple-body design similar of the Delta IV Heavy – would utilize 27 Merlin engines. It is estimated that the Falcon Heavy could send 12 to 15 metric tons to orbit.

The proposed Falcon Heavy is scheduled to launch either some time next year or in the early part of 2013. Image Credit: SpaceX

The spacecraft that would fly any mission to the red planet would theoretically be an offshoot of the vehicle that SpaceX sent to orbit last December, the Dragon. In fact the craft/project has already been dubbed the “Red Dragon.”

NASA currently plans to send astronauts to an asteroid by 2025 and to Mars sometime in the 2030s. If SpaceX is successful, this would be far faster than what the space agency has stated it is capable of accomplishing.

SpaceX has had a number of successes lately. It has successfully launched two of its heavy-lift Falcon 9 rockets, the second of which carried the first of the company’s Dragon spacecraft to orbit. Shortly thereafter the company recovered the vehicle as it bobbed safely in the Pacific Ocean after returning safely to Earth. The feat of sending spacecraft to and from orbit had only been accomplished by nations before this.

The NewSpace firm is working to speed up the timeline of the Commercial Orbital Transportation Services (COTS) contract, worth an estimated $1.6 billion, that the company has with NASA. SpaceX has requested and technically received permission to send the next Dragon spacecraft to the International Space Station (ISS) this December. Originally this flight would have been a flyby of the orbiting laboratory to test out several of the spacecraft’s key operating systems. However, one of the ISS partners, Russia, has yet to sign off on this plan however.

Musk wants to see his "Red Dragon" on the surface of Mars within the next 20 years. Image Credit: SpaceX

The California-based company was also tapped to participate in NASA’s Crew Commercial Development contract (phase 2) – more commonly known as CCDev-02. SpaceX was selected along with Boeing, Sierra Nevada Corporation and Blue Origin. Each firm was awarded a different cash sum to accomplish the proposals that they had set forth.

SpaceX is a company whose scope appears to be rapidly expanding. The announcement at the AIAA by Musk appears to highlight this fact. Mars has long been the destination of choice for many within the space community. Funding and logistics woes have delayed the first manned mission from ever taking place. It remains to be explained how the mission will be flown, will it be unilateral, multi-national or some other mixture? Will private industry take the lead? For his part Musk has thrown down the gauntlet – “Red Dragon” could fly as early as 2018.

SpaceX toured the Dragon spacecraft that flew to orbit this past December around the country in order to demonstrate the company's growing capabilities. Photo Credit: Jason Rhian