It Really Looks Like Ice on Mars

Take a look at this image sent back from the Phoenix lander. On Friday, Phoenix scientist Ray Arvidson said there may be ice directly under the Phoenix lander, exposed in the blast zone by the retrorockets used for Phoenix’s soft landing. Friday’s image showed a small portion of the exposed area that looks brighter and smoother than the surrounding soil. On Saturday, Sol 5 for Phoenix on Mars, a new image shows a greater portion of the area under the lander. Scientists say the abundance of excavated smooth and level surfaces adds evidence to a hypothesis that the underlying material is an ice table covered by a thin blanket of soil. This is just what the Phoenix mission was hoping to find, and how incredible to land directly over your goal.

The bright-looking surface material in the center, where the image is partly overexposed, may not be inherently brighter than the foreground material in shadow. But the scientists are calling this area “Holy Cow.” Reportedly (via Emily at the Planetary Society) that’s exactly the phrase exclaimed when this image was returned. More pictures of this feature will be imaged using different exposures in an effort to determine if this really is ice.

The other interesting aspect of this image is that the retrorocket nozzles are visible right at the top of the image.

We’ll keep you posted when there’s more information and data available on the area under the lander.

Sources: Phoenix, Planetary Blog

Phoenix Spies Possible Ice; TEGA Short Circuit Likely

Scientists from the Phoenix mission say the lander may have exposed ice just beneath Mars surface when soil was blown away as the spacecraft landed last Sunday, May 25. The possible ice appears in an image the robotic arm camera took underneath the lander, near a footpad. The robotic arm was moved so the camera could peer beneath the lander to make sure Phoenix’s footing is secure before any digging operations start. In the top center of the image above is the area in question.


“We could very well be seeing rock, or we could be seeing exposed ice in the retrorocket blast zone,” said Ray Arvidson of Washington University, St. Louis, Mo., co-investigator for the robotic arm. “We’ll test the two ideas by getting more data, including color data, from the robotic arm camera. We think that if the hard features are ice, they will become brighter because atmospheric water vapor will collect as new frost on the ice.”

Arvidson said in today’s Phoenix press conference that Phoenix will provide full confirmation of what lies below the lander when it excavates and analyzes layers in the nearby landscape.

One bad piece of news for the nearly flawless mission, however. The Thermal and Evolved Gas Analyzer (TEGA) instrument that “bakes and sniffs” samples to identify the chemical make-up of the soil might have a short circuit. In a test conducted on Thursday, the instrument exhibited electrical behavior consistent with an intermittent short circuit in the spectrometer portion. The team is currently developing diagnostic steps that will be sent to the lander in the next few days. TEGA includes a calorimeter that tracks how much heat is needed to melt or vaporize substances in a sample, plus a mass spectrometer to examine vapors driven off by the heat.

“We have developed a strategy to gain a better understanding of this behavior, and we have identified workarounds for some of the possibilities,” said William Boynton of the University of Arizona, Tucson, lead scientist for the instrument.

The latest data from the Canadian Space Agency’s weather station shows another sunny day at the Phoenix landing site with temperatures holding at minus 30 degrees Celsius (minus 22 degrees Fahrenheit) as the sol’s high, and a low of minus 80 degrees Celsius (minus 112 degrees Fahrenheit). The LIDAR instrument was activated for a 15-minute period just before noon local Mars time, and showed increasing dust in the atmosphere.

If you’d like to download this Phoenix weather widget for your desktop, check HERE.

“This is the first time LIDAR technology has been used on the surface of another planet,” said the meteorological station’s chief engineer, Mike Daly, from MDA in Brampton, Canada. “The team is elated that we are getting such interesting data about the dust dynamics in the atmosphere.” HERE is an animation of the LIDAR

The mission passed a “safe to proceed” review on Thursday evening, meeting criteria to proceed with evaluating and using the science instruments.

“We’re still in the process of checking out our instruments,” Phoenix project scientist Leslie Tamppari of JPL said. “The process is designed to be very flexible, to respond to discoveries and issues that come up every day. We’re in the process of taking images and getting color information that will help us understand soil properties. This will help us understand where best to first touch the soil and then where and how best to dig.”

And finally, here’s the latest version of Phoenix’s panorama, compiled of images from Phoenix’s Stereo Surface Imager (SSI) camera that were taken on sols 1 and 3. The top portion has been stretched eight fold to show details of features in the background. Phoenix’s parachute, backshell, heatshield, and impact site can also be seen.

Phoenix News & Weather; Full Panorama Complete, Arm “Raring To Go”

Phoenix’s Surface Stereo Imager (SSI) has finished its initial survey of the area surrounding the Phoenix lander, and returned the images to Earth for completion of the first panorama, seen above. “The panorama takes your around the entire scene,” said Phoenix Principal Investigator Peter Smith. “We see this “hummocky” terrain, with troughs in between the hummocks. In the background we can see the backshell and parachute.” Also visible are disturbances in the soil caused by the landing. And one of the most important aspects of the image shows the robotic arm now up and off the lander, with its scoop in the ready position. Flight Software Lead Matt Robinson reported, “The arm is busted loose now and is raring to go!”

Robinson said the arm is now unstowed out of all its launch restraints, and it required movement from all four of the joints to break loose of the bio-barrier that covered the arm during its journey from Earth. However, it will probably be next week before any digging is done with the arm. The team will first need to determine the stability of the lander. The camera on the end of the arm will look up under the lander to make sure everything is stable, and that each footpad is secure.


Smith said the rocks in the area are fist size, and there are ample places between the rocks to dig down to look for the ice layer thought to lie beneath the Martian surface. Data from the Odyssey spacecraft has indicated water in the form of ice lies beneath the Mars arctic region. Smith added that smaller rocks can be moved by robotic arm, if necessary, to get a good place to dig.

As customary, the science team has begun naming the rocks in the area to help distinguish them, and are using themes from fairy tale characters from Humpty Dumpty, The Legend of sleepy hollow, and Alice in Wonderland.


The “scoop” on the end of Phoenix’s robotic arm is now up and off the lander.

Science team is looking at the patterns in the rocks, and patterns in how they are distributed around the hummocks and troughs. “We do not have a full spectral analysis of any of the rocks, so its early to say anything about their composition,” Smith said. “That’s high on our list of things to do.” He added that the 12 spectroscopic filters on the SSI should be able to tell us if they are the same as the five other locations we’ve studied on Mars. He also offered a couple of clues about the rocks: Many are flat like paving stones, which may be a clue to their origin, and the rocks seem to be brighter than the surface rather than darker.

The SSI can also be used to create stereoscopic images that allow them to get elevation information. Additionally, the camera on the end of the arm, while not stereoscopic, can take one image and then be moved slightly to create stereoscopic images. The suite of science instruments on the arm also includes a microscopic imager with resolution 6 times better than the MER instruments.

Asked how he thought the mission has been going so far, Phoenix project manager Barry Goldstein said, “We’ve exceeded even our optimistic goals.”

And now, here’s the latest weather report from the Phoenix landing site:

Quicktime hi-res movie of the terrain to the northwest of the Phoenix lander.

Link for Mars Weather Widget — Get Mars Weather on your desktop!
Image sources: Phoenix Gallery

Listen to Phoenix Descend

Europe’s Mars Express orbiter picked up the signal that Phoenix was transmitting as it descended to Mars’ surface on May 25. The data from the Mars Express Lander Communication system (MELACOM) tracked Phoenix and the signal was received on Earth soon after the Phoenix landing. The Mars Express Flight Control Team has now processed the signals, and the sounds of Phoenix descending are audible, loud and clear. ESA says the signal was tracked successfully, even during the expected transmission blackout window of the descent, until the lander was out of Mars Express’s view. The transmission blackout window is caused because of ionization around the probe, which builds up as the lander descends through the atmosphere and only very weak signals come through.

The closest Mars Express got to Phoenix was 1550 km. Then, as Mars Express flew away, the lander deployed its parachute, separated from it and landed. Then the signal from the lander was cut off.

Listening to the recording, you’ll notice the Doppler effect, which is very similar to what we hear when listening to the whistle of a passing train, of Phoenix and Mars Express getting closer and then farther away from each other.

Link to the sound recording.

The rest of the recording, the start and the end, contains background noise generated by Mars Express itself.

During the descent, all of the capabilities of Mars Express were focussed on tracking Phoenix with MELACOM. Unfortunately, the science observations carried out during the descent did not lead to the anticipated results.

Over the next few days, Mars Express will monitor Phoenix using MELACOM 15 more times; at least one of these will be used to demonstrate and confirm that the ESA spacecraft can be used as a data relay station for NASA, receiving data from the surface and transmitting test commands to the lander, which may be important if any issues remain with the communication troubles between Phoenix and the Mars Reconnaissance Orbiter.

Source: ESA

Comm Glitch Resolved; New Raw Images from Phoenix

The UHF radio on the Mars Reconnaissance Orbiter that had gone into standby mode yesterday was successfully restarted. The orbiter was then able to receive information from the Phoenix Mars Lander late Tuesday evening and relay the transmission to Earth, which included images and other data collected by Phoenix during the mission’s second day after landing on Mars. The radio system used by the orbiter to communicate with the lander experienced an undetermined “transient event” early Tuesday and shut itself off. This prevented sending Phoenix any new commands from Earth on Tuesday. Instead, the lander carried out a backup set of activity commands that had been sent Monday, which included taking additional pictures of itself and the landing site. Above is one of the raw, unprocessed image the lander took of itself.


We’ve gotten used to the panoramic images of Mars from the Mars Exploration Rovers, and we can expect more of the same from Phoenix. Above is the beginnings of a panoramic view of the lander and its surroundings. The Surface Stereo Imager is in the process of taking multiple images, which the imaging team will process and piece together to form a a large color panorama.

And how do these raw, black and white images become colorful photos and panoramas? At left is a calibration target on Phoenix. It has grayscale and color dots. Before launch, the calibration targets are imaged and measured very accurately, so that the imaging team back on Earth knows what the colors and different shades of grey are.

Once on Mars, a picture is taken of the target. The picture will be processed through the software they use, and if it comes out looking the same as the pictures taken of the target before launch, the imaging team knows they have processed the picture correctly. They then use the same technique to process the images of Mars surface, and produce images that are as close as possible to the “real” colors on Mars.

Here’s one more raw image, the beginnings the panorama of the entire spacecraft, of the SSI camera looking down on the spacecraft itself.

Image Source: Phoenix Gallery

Communication Glitch for Phoenix, MRO

The UHF communications radio on board the Mars Reconnaissance Orbiter has switched to standby and was unable to relay instructions to the Phoenix lander for its activities for sol 2, which included unstowing its robotic arm. The problem arose at 0608 PDT on Tuesday. MRO did receive the sol 2 sequence from Earth – meaning the communications link between Earth and MRO continues to operate normally. But subsequently MRO reported that there had been a “problem with the handshake between MRO and Phoenix,” said Fuk Li, manager of NASA’s Mars Exploration Program. A ‘handshake’ is the set of signals the radios on the two spacecraft send each other to establish a data-communications link.

“All this is is a one-day hiccup in being able to move the arm around, so it’s no big deal,” said Ed Sedivy, Phoenix program manager at Lockheed Martin Space Systems.

The next opportunity to send commands to Phoenix will occur on Wednesday morning, when Mars Odyssey, the other spacecraft used to communicate with Phoenix, passes over the landing site. At that time, the commands that failed to reach the lander today will be transmitted. We’ll keep you posted.

Also, we’ll take this opportunity to share a couple of other tidbits about Phoenix. The image above was taken on sol 1, and shows Phoenix’s backshell off in the distance.


On board Phoenix is a weather station, contributed by the Canadian Space Agency and University of Aarhus in Denmark. The weather station was activated in the first hour after landing on Mars. Measurements are being recorded continuously. Skies were clear and sunny on Sol 1 on Mars. The temperature varied between minus 112 degrees Fahrenheit in the early morning and minus 22 degrees Fahrenheit in the afternoon. The average pressure was 8.55 millibars, which is less than a 1/100th of the sea level pressure on Earth.

This image shows the spacecraft’s robotic arm in its stowed configuration, with the a biobarrier, a shiny, protective film, that covers the arm on landing day, or Sol (Martian day) 0, and then the biobarrier was removed during lander’s first full day on Mars, Sol 1.

The “elbow” of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars. After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft’s Surface Stereo Imager.

News Sources: Astrobiology Magazine, JPL Phoenix News

First Images from Phoenix

Phoenix sent its first images of itself and Mars’s surface, which indicate that all is well with the spacecraft. The lander is stable, the solar arrays have deployed, and Phoenix appears to be sitting on a smooth, landscape that is just what the scientists were hoping for. “It looks like a good place to start digging!” said Dan McCleese from JPL.


This image of Phoenix’s solar arrays indicates that the arrays have deployed fully. Data indicates the batteries are fully charged as well, meaning the solar arrays are working perfectly.


This image shows the lander’s footpad planted quite nicely, not sunk into the surface at all. This indicates great stability for Phoenix.


This is a second, and not quite complete landscape image that Phoenix sent back to Earth of its surroundings.

Welcome Back to Mars: Phoenix Lands Successfully!

The Phoenix spacecraft successfully made a soft touchdown on the northern polar region of Mars. The events of entry, descent and landing unfolded in textbook fashion, and according to telemetry sent back by the spacecraft, Phoenix sits almost perfectly level on Mars’ surface, tilted only a quarter of a degree, situated in an east to west orientation. “Everything went absolutely flawlessly,” said Doug McCuistion, NASA’s Mars exploration program director. “Things ticked off within seconds of when they should have, and the signal never went away completely even through peak heating. This spacecraft has been a flawless performer since launch. An unbelieveable performance.” NASA now has a record three operating spacecraft on the surface of Mars.

Phoenix will provide the first close-up glimpse of the Mars tundra, and with its robotic arm dig under the planet’s surface to give insight into the water and climate history of the Red Planet.

Phoenix’s fiery descent through the atmosphere and propulsive touchdown was the first non-airbag landing in since the Viking Landers in 1976. The spacecraft entered the Martian atmosphere traveling 21,000 km/hour (13,000 mph), and slowed to under 8 kph (5 mph) using aerobraking, a parachute and retro-rockets to softly touch down on the surface of Mars. The mission control center reported the helium on board the spacecraft has also successfully vented.

It was beautiful to watch the perfection and performance of the spacecraft and the reaction of the people involved with the mission. Project Manager Barry Goldstein was asked if he thought landing operations would go as well as it did. “Not in my dreams,” he said. “I’m in shock. We had all the signals, everything. We could have scripted it. We had rehearsed all the failure cases, and never in rehearsal did it go this well. This was by far the hardest part to get through. We have contingencies and multiple tries for opening the solar rays, but for EDL it has to go and it has to go on time. I’m speechless. But we have the best team in the world.”

Five years of building and testing the Phoenix spacecraft has seemingly paid off. The first telemetry returned from the spacecraft indicates that all systems are nominal. The team will make sure the solar arrays have deployed and by later this evening the first pictures should be returned. First pictures will be of the lander itself, of the solar arrays to make sure they have deployed.

Principal Investigator Peter Smith said the science team is ready. “We’ll start surface operations right away,” he said. “We’ll get that first picture to make sure the spacecraft is healthy. We’re looking forward to great science and maybe even an extended mission (past the expected 90 day mission)! This is a world mission. We are doing this for everybody.”

Spirit Unearths Former Yellowstone on Mars

Spirit’s gimpy right front wheel has turned out to be a blessing in disguise. The Mars Exploration Rover traversing around the Gusev Crater region on Mars has been forced to drive in reverse, dragging the jammed wheel behind. But that wheel gouged a trench a few inches deep through the Martian soil, revealing deposits of nearly pure silica that scientists believe formed when volcanic steam or hot water (or maybe both) percolated through the ground. Such deposits are found around hydrothermal vents like those in Yellowstone National Park, and when active, usually teem with life.

The silica, discovered in 2007 and announced briefly then by NASA, has now been further examined by the rover’s Miniature Thermal Emission Spectrometer and the Alpha Particle X-Ray Spectrometer. A new paper in the journal Science describes the findings, lead by Steven Squyres, principal investigator for the rover science payload.

The silica finding turns a spotlight on an important site that may contain preserved traces of ancient Martian life. But since the rovers don’t carry instruments that can detect microscopic life, for now the site can only be classified as a once habitable environment where liquid water and the energy needed for life were present. This area would be a prime location for a future mission capable of searching for ancient biological evidence.

Although the trench was created and briefly studied last year, further examination of the site and the surrounding area had to wait while Spirit entered a hibernation mode for a few months in an attempt to survive its second Martian winter. The rover spent those months on the edge of a football-field-size feature called Home Plate.

Now that Spirit has been moving around again, the rover has found the silica in a wide area.
“It’s not just the soil in a trench in one place,” said Steve Ruff, a co-author of the paper. “It’s a broader story of outcrops that extend 50 meters [about 150 feet] away from Home Plate. It’s not a small scale, modest phenomenon.”

In some areas the soil is nearly 90% silica.

Making such pure silica requires a lot of water, says Ruff. “On Earth, the only way to have this kind of silica enrichment is by hot water reacting with rocks.” In other words, a Yellowstone-like environment that would include a combination of geothermal heat and water produced by a hydrothermal system like the one which powers the hot springs, geysers, mudpots, and fumaroles (steam vents) of Yellowstone National Park.

Astrobiologist Jack Farmer explains that hydrothermal systems generally precipitate silica and other minerals as heated groundwater rises, cools, and gives off dissolved gases. “If there were organisms living there,” he says, “our terrestrial experience shows that microbes can easily be entrapped and preserved in the deposits.” Silica, he notes, is an excellent medium for capturing and preserving traces of microbial life.

NASA landed the two Mars rovers, Spirit and Opportunity, on opposite sides of the planet in January 2004 to look for rocks showing the presence of water. As of now, the rovers are more than four Earth years into a mission designed to last just three months. Despite dust collecting on their solar panels and mechanical wear-and-tear, both are continuing to explore.

Original News Source: ASU

7 Minutes of Terror for Phoenix Spacecraft (Video)

Are you ready for the Phoenix spacecraft to land on Mars? At the Jet Propulsion Laboratory, the Entry, Descent and Landing team for Phoenix has been hard at work getting ready, performing simulations to prepare for the real landing, scheduled for May 25, 2008 in a region above Mars’ Arctic Circle. Emily Lakdawalla at the Planetary Society has an excellent post about Phoenix’s landing elipse, with some great information from JPL’s Rob Manning about all the variables the EDL team has to take into account for the landing, such as the spacecraft itself, its entry point, and the properties of the atmosphere. But if you’re a more visual-type person, JPL has also put together a couple of videos about the 7 minutes of terror the spacecraft (and the EDL team!) endures from when the vehicle hits the top of the atmosphere, through parachute deploy, to touching down on Mars surface. The amount of anxiety is an upgrade from the six minutes of terror the Mars Exploration Rovers experienced, and it really is a scary time!

This video includes commentary from the engineers at JPL, describing all the events that take place during EDL:

And this video is visual only, no audio of EDL: