NASA to Burn Sponsor Logos into the Surface of Mars

advertising.thumbnail.jpg

NOTE: This was the Universe Today’s contribution to April Fools Day (April 1st), but it isn’t all a joke… International efforts in space are being seriously hindered by budget cuts, forcing agencies to think up alternative methods to raise money. The following article could be a possibility…

In an effort to raise additional funds, NASA has announced new partnerships with corporate sponsors. It is becoming increasingly difficult for government-backed space agencies to support the vast range of missions currently exploring the solar system, so urgent measures are being taken. Planetary missions in particular, such as the Mars Exploration Rover project, have fallen on tough times. As already demonstrated by research groups in the UK, funds from private companies are essential for survival and some weird and wonderful methods to capture public interest have already been exploited.

Now it is the perfect time for the biggest marketing stunt yet: tattoo Mars with corporate logos for orbiting spacecraft and ground-based telescopes to observe…

With millions of dollars being injected into the commercial space market, companies such as Virgin Galactic, Astrium and XCOR are all beginning to dominate the fledgling space flight industry. Where government space agencies such as NASA and ESA have spearheaded technological advancement, the void left behind is slowly being filled by space tourism companies all competing for short trips into space and, eventually, tours to the Moon with the prospect of Mars in a few decades time.

But what about all the robotic missions exploring the solar system now? Who pays for them? Well, that is up to government funding and initiatives. As recently highlighted by the UK’s £80 million ($160 million) research budget shortfall, and the attempt to cut $4 million from the NASA Mars rovers, there appears to be international pressure on government-funded groups to think “out of the box” where money is concerned. After all, scientific research (on the whole) is not political, but scientific funding is.

The Lovell Telescope at Jodrell Bank (credit: Jodrell Bank)

So, in an unprecedented move, UK astronomers carried out an unorthodox measure and transmitted Doritos ads into space to help fund the beleaguered Jodrell Bank Telescope in Cheshire currently under threat from closure due to funding cuts. This might sound silly, but the undisclosed advertising revenue was much needed.

Although there is a slim-to-no-chance of aliens picking up the interstellar ad, NASA was obviously paying attention. Today, the space agency has announced an offbeat plan of their own: to burn sponsor logos into the surface of Mars. It’s not quite as reckless as it sounds, but existing technology on board the Mars Reconnaissance Orbiter (MRO) will be used to etch sponsor logos into the top layers of the Martian regolith. The stunt is expected to have minimal effect on the planet, as winds and dust storms will erase the ads within a couple of sols (Martian days).

Just think, 3 years ago, we wouldn’t have the optical capabilities to spot an advertisement from orbit. But now, with the Mars Reconnaissance Orbiter, and its ability to resolve objects as small as half a meter, we’ll be able to see our sponsors ads clearly etched into the Martian surface.” – Dr. Francis Rae, NASA Outreach Spokeswoman.

The MRO has a laser-ranging instrument on board that usually takes highly accurate measurements of landscape features. Scientists have modified the laser to emit a higher powered beam so small areas of Martian regolith can be fused together. It is expected to use the surplus power available from the ultra-efficient solar panels on the satellite. After a few orbits, corporate logos and other ads may be constructed, creating logos spanning small 5×5 meter areas of Mars plains and crater bottoms. Of course, the logos created will be crude, and will only be available in shades of red, but the marketing and psychological impact will be huge. It is hoped the advertising revenue will follow suit.

An artists impression of what a large-scale logo may look like from space (credit: NASA)

This is only for starters. If all goes well, huge areas of the surface may be used, possibly allowing Earth-observable logos. Doritos, famed with the UK’s ad transmission into space, has already backed NASA’s plans and fully intends to support any marketing campaign carried out by the robotic explorers. An excerpt from a Pepsi Co, Inc. statement reads, “…the Doritos snack division of our corporation is always looking for new and novel ways to promote our products, branding an alien planet with our logo will not only be historic, it will revolutionize product marketing.” They add at the bottom of the press release, “Besides, it will be very cool.” An artists impression of a huge Doritos logo next to a crater observed by the MRO (HiRISE instrument) has also been released (pictured).

Other Mars missions are now being evaluated for their potential marketing skills, and an obvious mission that comes to mind are the Mars rovers, Spirit and Opportunity. Easier than tattooing the planet from orbit, the rovers could quickly create tire tracks into shapes that can be observed from space.

Tracks from Opportunity are clearly seen from orbit by the HiRISE camera (credit: NASA)

When asked whether the Phoenix lander had any such capability, Rae commented, “I really wish we’d thought that through better.” The lander will only be able to dig crude shapes into the regolith should it be called into fund-raising action. It seems doubtful that sponsors would be interested in this mission which is arriving at the Red Planet in May.

This leads to the question: Will a NASA mission be measured more for its revenue building ability, or for its scientific merit? “I doubt it will come to that, we’re not a private enterprise, science is our priority,” Rae added.

Other marketing tools are at mission planners’ fingertips. Some fun options include:

  • Physically moving rocks around the Martian landscape by future advanced rovers to assemble messages, take photos and send them back to Earth – the ultimate personal postcard message!
  • The future of terraforming the planet could include growing lichen in the shape of sponsor logos (imagine how much Pizza Hut would pay to have the very first life on Mars growing in the shape of their hut logo!)
  • Send a personal item on a Mars-bound mission and get the lander to place it on the planet, take a photo and pay for the pleasure of seeing something you own in the Martian dirt! Just don’t expect it back… (An orbital version has already been done by Bigalow Aerospace…)

Source: NASA Press Release

What is Phoenix? It’s a Mars Mission Question on Jeopardy!

jeopardy.thumbnail.jpg

The answer was: “A NASA Mars lander has this mythic name because it was made of parts from a scrapped 2001 mission,” and the correct question was “What is Phoenix?“. The Mars mission currently en-route to Mars hasn’t only set the science world alight, it appears to be growing into the public mindset. Appearing as the subject for one of the questions on the highly popular US gameshow Jeopardy! before it has even arrived at Mars, I wonder how popular it will become when the mission actually begins…


It seems that even gameshows consider the next Mars mission to be significant enough for their contestants to answer.

Getting space science missions into the public domain is never an easy task – there needs to be a certain balance between how much science and information is released to make the mission accessible to non-specialists. Personal experience of this includes giving my first public outreach lecture on physics and astronomy in the Arctic where I chatted all about the “cool” physics we were doing up there (including plasma physics, particle dynamics and some magnetohydrodynamic interactions in the magnetosphere thrown in for good measure… eh?). I later found out that I hadn’t connected with my audience at all (surprise), just because I found it exciting didn’t mean everyone else would. In future presentations I focused on what you could see up there (I mean, a huge picture of the aurora was a good starting point) and the fact we had to travel to the frozen observatories with rifles (not to hijack the telescope, but to protect us from polar bears) engaged my audience far more effectively. The science could then be related much better, giving it a meaning and an importance.

So this brings me to NASA’s Phoenix Mars mission. Not only does the mission have one of the best research/mission websites out there (hosted not by NASA but by the University of Arizona, Phoenix), I’ve noticed with each news release there is a genuine and informed effort to get people excited about this superb mission. And people not familiar with planetary missions are taking note.

One indicator is that the long-running US TV show Jeopardy! featured a question on the Phoenix mission due to arrive at Mars on May 25th. The clue was “A NASA Mars lander has this mythic name because it was made of parts from a scrapped 2001 mission,” and the answer was “What is Phoenix?” (note: for those outside the US or those not familiar with the show, the “answer” is stated and the “question” to that “answer” must be guessed by the contestants).

It’s not clear from the Phoenix news release whether it was answered correctly or not, but what is significant is that it was chosen as a question on a non-specialized TV show (a prime-time show at that) in the first place. Obviously the Phoenix mission public outreach guys are doing a great job, beginning to make the Phoenix Mars Mission a household name…

Roll on May 25th!

Credit: Phoenix Mars Mission

NASA U-Turn Over Mars Rover Funding

rover_cartoon.thumbnail.jpg

No sooner had news hit the web that NASA had cut funding to the Mars Exploratory Rovers (MER), NASA took a huge U-turn and voided the letter that was sent to MER mission scientists. Apparently both Spirit and Opportunity can continue to roll around the Mars landscape as if nothing had ever happened; in fact the two robots will probably be unaware of the drama that unfolded here on Earth in the last 24 hours. Talk about a storm in a teacup…

But what caused the change of heart? What was behind all this funding craziness? Unfortunately, this ordeal highlights the pressures government-funded space agencies are under, and it is unlikely this will be the end of it…


You could almost hear the news sites and blogs rumble to life last night as the news surged through the web about NASA needing to cut $4 million from the MER program. Reports flooded in that the rover scientists were shocked and saddened by this surprise turn of events, the whole world seemed to react. Every other story on Digg.com showed a new article about the budget cut, and looking through the comments, most reactions were of shear disgust about the short-sightedness of the government funded space agency. After all, Spirit and Opportunity represent the most successful robotic planetary mission ever; to simply switch one of them off seemed like a crime. Rushing to the keyboard I posted my five cents worth on the Universe Today, thinking to myself “this is insane”, but wondering why it was happening.

Spirit and Opportunity landed on the Red Planet in 2004 and were only expected to live for a few months. The previous successful rover, Sojourner (of NASA’s Pathfinder mission in 1997), was expected to last for a couple of weeks, it survived for three months. So expectations were high for the MER program. Not only did the 2004 mission surpass the few months the rovers were designed for, they have both independently survived the last four years and the science they are carrying out has surpassed even the most extreme predictions. Every day we read about new discoveries coming from our intrepid explorers on Mars, they have been embraced by the international community, and they are as popular as ever.

So it is understandable that when it is announced that Spirit will need to be “turned off” for a few weeks and Opportunity will be on a “go slow”, the news sites should go crazy. I spotted several commenters and blogs requesting a petition to be sent to Congress.

The disappointment extends beyond the two rovers, what about the 300+ highly trained scientists in the Californian Jet Propulsion Lab (JPL)? Where would they go? Would they be transferred or laid off? The worry was obvious when MER principal investigator, Steve Squyres, gave a statement: “It’s very demoralizing for the team […] we would have to make some very tough decisions about which one we would hibernate and which one we would keep active. That’s a situation I do not want to face … but that’s a future worry.”

The reasons for this false alarm have been attributed to the “unexpected” long overrun of the MER mission and the ever increasing bill for the future Mars Science Laboratory Mission; a cut of $4 million was therefore inevitable.

But why the turnaround? Did NASA change its mind after being shocked by the outpouring of shock from the public? It is hard to say. So far, the only piece of extra information I have found is from the Associated Press where a letter was sent to JPL instructing mission scientists of the budget cut, but the letter was not approved by NASA Administrator Michael Griffin. When the cut was announced at JPL, NASA withdrew the letter and instructed the MER team to continue as if the letter was never sent.

I’m sure there are some questions as to why an unapproved financial letter was ever sent to JPL in the first place (I personally think NASA needs to get its paperwork in order).

So the Mars rovers can breathe a sigh of relief. However, the fact remains that NASA is under increasing pressure to save money, and an overrunning rover mission on Mars (although a massive success) still costs millions in research funding.

Original Source: AP

Genesis Scientists Finally Have Some Luck: Clues to Oxygen Content of Solar Wind

genesis2.thumbnail.jpg

As the parachute failed on re-entry, a man hanging out of a helicopter wielding a big hook didn’t have chance to grab the falling object. Instead, it entered the atmosphere and thudded into the crusty layer of sand in the Utah Desert. This isn’t some Monty Python sketch, it was the demise of the Genesis sample return probe as the descent mechanism failed to release its parachutes on September 8th 2004. Hope to analyze any of the pristine samples of the Sun’s atmosphere quickly dissipated as scientists realized the precious cargo was likely destroyed and contaminated. But now, with a bit of luck and a lot of patience, mission scientists have recovered some samples from the wreckage and hope most of the Genesis mission goals will be accomplished regardless…

Launched from Earth on August 8th 2001, the Genesis spacecraft was sent on its way to the Earth-Sun First Lagrangian (L1) point to collect solar wind particles in the aim of understanding our Sun and solar system development. All was going very smoothly for this Discovery-class NASA mission (consisting of a spacecraft and sample return probe piggybacking) and the probe collected solar wind particles from December 2001 to April 2004 by exposing an array of sample collectors.

Task accomplished, the spacecraft returned toward Earth and the sample return probe separated from the Genesis “bus”. The probe fell through the atmosphere to begin its parachute deployment. It should have deployed the parachute as sensors detected a sudden deceleration as the Earth’s atmosphere thickened. But due to a technical fault, this didn’t happen. The parachute should have allowed the probe to glide slowly through the atmosphere, and using a unique helicopter capture technique (guy with a hook hanging out of a helicopter swooping down to collect the probe mid-glide), there would be very little impact the probe would experience. The smaller the force of impact, the better the chance of retrieving the very delicate solar wind particles.

But to their horror, Genesis scientists could only watch as the 600lb sample return probe thudded into the Utah desert at 193 miles per hour.

Surprisingly, the probe wasn’t totally destroyed and much of the contents were protected on impact as the soft mud and sand of the desert lessened the blow. Also, the collector arrays allowed solar wind particles to be deeply embedded within the material, keeping them clear of any terrestrial material that may have contaminated the samples as the probe crashed. Still, the outlook looked bleak for any analysis of the samples the $264 million mission hoped to bring back in one piece.

Fortunately, the Genesis mission was lucky – there are enough samples left uncontaminated by terrestrial debris and these tiny solar particles are beginning to help scientists understand the particles existing in the ultimate clean room: interplanetary space. Not only that, these particles hold the key to the development of our solar system (hence the “Genesis” mission name) and provide clues to the development of stars, nebulae and planets in other systems.

One would not normally characterise the Genesis mission as being lucky, but in this case we were.” – Kevin McKeegan, UCLA

Of particular interest will be the measurement of the primordial form of oxygen as it is emitted from the Sun in the solar wind. If we can measure the quantities of oxygen isotopes in the solar wind, we will have a starting point from which other oxygen isotopes are formed from. The Earth, Moon and meteorites have vastly differing quantities of oxygen-16, oxygen-17 and oxygen-18. Why this is the case is a mystery to scientists. Using the Genesis data as a foundation to this work will help us understand how the oxygen isotopes evolved so differently in different parts of the solar system.

Source: BBC

Orion Crew Module to Begin Testing in Run-up to 2020 Mission (Gallery)

orion-sim.thumbnail.jpg

The first tests of Constellation Program technology will start toward the end of 2008. In the first tests, a mock-launch will demonstrate the safety measures worked into the design. The crew module will blast away from the rocket boosters and take the (unmanned) capsule away to safety from the launch pad. This is an important design implication as NASA demonstrates the Constellation Program’s safety measures should the crew inside Orion get into difficulty as man is launched back into space, to the Moon and Mars, starting in 2020…

The Constellation Program is NASA’s vision for the future of space exploration. The Orion module has been developed over many years, and now the module is set for extensive testing, beginning at the end of this year. The Orion module, intended for a four to six-person crew, will be launched by an Ares 1 rocket and sent into Earth orbit, lunar expeditions and, ultimately, Mars missions. It is also expected to become NASA’s principal “shuttle” to and from the International Space Station. Although 2020 is the projected launch date of a Constellation manned mission, preparations need to be started as soon as possible. All areas of the new Constellation technology will need to be tested here on Earth before an astronaut sets foot inside the new space vehicle.

Gallery: The development of the Orion module mock-up being readied for tests in New Mexico.

First up are safety tests on a mock-up Orion module. The module will be launched during a 90-minute “Pad Abort-1” test to test the effectiveness of an ejection system where the Orion module will be blasted clear of the booster rockets during this critical phase of any space mission – when the rocket tanks are full of fuel prior to blast off. This will allow the safe return of astronauts should there be any problems before launch. These first tests will stay within the atmosphere above the U.S. Army’s White Sands Missile Range in New Mexico, firing the dummy Orion module a mile high and a mile wide of the launch pad.

The mock-up cone-shaped Orion module is almost complete and awaits the installation of all its systems before testing begins.

The next step is to ship the completed crew module simulator to Dryden, where they will outfit it with the smarts — the computers, the electronics, the instrumentation — all the systems that need to work in conjunction with the structure.” — Phil Brown, Manager, Langley Orion Flight Test Article Project.

Once the module is kitted out, it will be shipped to White Sands some time during the summer so it can be mounted on the Pad Abort-1 tower with escape rocket motor and a guiding rocket motor that will be used to steer Orion clear. This test bed will be fine-tuned and optimized for use when Orion and the Ares rocket go into operation at the end of the next decade.

Source: NASA Constellation Project

Traffic Jam at the Space Station

Space traffic control will be needed at the International Space Station as a busy timeframe of missions and resupply flights continue for our home port in space. In a choreographed ballet of spaceships, ESA’s first Automated Transfer Vehicle (ATV) resupply ship and NASA’s Space Shuttle Endeavour are scheduled to liftoff on March 9 and 11, respectively, to dock with the ISS, while a third – Russia’s Soyuz – is due to arrive early in April. The heavy traffic comes just a few weeks after Space Shuttle Atlantis left the ISS on February 18, delivering the Columbus science lab to the station. With Endeavour scheduled to be docked to the ISS from March 13 – 24, the ATV must patiently wait in a “parking orbit,” travelling in a holding pattern below the station, and will then dock after the shuttle leaves.

As of now, everything is “go” for all three flights. Endeavour will ferry Japan’s Kibo science lab to the ISS, along with the Canadian Space Agency’s two-armed robotic system called Dextre. STS-123 is commanded by Dominic Gorie with Greg Johnson serving as pilot. The crew also includes Mission Specialists Rick Linnehan, Robert Behnken, Mike Foreman, Garrett Reisman and Japanese astronaut Takao Doi. Reisman will stay aboard the station, trading places with ESA astronaut Léopold Eyharts, who has been on board since Atlantis’ February mission to the ISS.

But in the meantime, the ATV will be waiting in the wings to deliver its cache of supplies to the station. “After launch, we will have an opportunity to show and demonstrate to our ISS partners exactly what the ATV is capable of doing,” said Alberto Novelli, ESA’s Mission Director for the ATV. “And we can place ATV in a holding orbit for an extended period, if necessary, before doing the final, actual docking,”.

Space Traffic Control.  Image Credit:  ESA
The ATV is scheduled to dock on March 29. However, if there are any slips or technical issues to delay the ATV’s docking, there are only four subsequent days on which the actual docking can take place. One limitation causing this is illumination conditions: astronauts on board the station must not be blinded by sunlight while monitoring the approaching vehicle’s progress.

Another limitation is caused by more traffic: Russia’s Progress M-63, docked since February 7, will undock on April 7 and a new Soyuz arrival and docking is scheduled for April 10. Additional limitations on the ATV docking window could come about if Endeavour’s launch is delayed or if its docked phase extends past March 27. For example, last month, Atlantis’ docked phase was extended by one day to facilitate the installation of Columbus.

“It’s an extraordinary time. While we face a tight window, the intense activity at the ISS these weeks – with European, American, Russian, Canadian and Japanese payloads or vessels in flight – highlights the fantastic international character of the Station,” said Bob Chesson, ESA’s manager for Human Spaceflight Operations.

Check out the ATV blog to follow the mission live, and NASA’s STS-123 launch blog.

Original News Source: ESA Press Release

Planet Hunter Prepped for Tests

kepler_chip5_6_05big.thumbnail.jpg

If you think the discoveries made by planet hunters is exciting already, just you wait. There are some missions in the works that are going multiply the number of planets discovered, and zoom in on the holy grail of finding habitable planets around other stars. The next planet hunter being readied for launch is NASA’s Kepler Mission. This week engineers conducted a series of tests on its image detectors – will it really be able to see planets?

Scheduled for launch in 2009, Kepler will detect planets using the transit method. This is where a planet passes in front of its parent star, briefly dimming the amount of light we see here on Earth. This has been done to detect Jupiter-scale planets, but nothing Earth-sized… yet.

Kepler will have sensitive enough instruments to be able to detect those slight variations in brightness, and determine just how many stars have planets in their habitable zones.

At the Ames Research Center, researchers have developed a Kepler Technology Demonstration test bed. This generates a field of stars that matches the part of the sky where mission scientists are planning to search for transits. The testing engineers can then modify the brightness of the artificial stars to mimic how transiting planets would look as they passed in front of stars.

“This is a major milestone for the Kepler mission,” said David Koch, deputy principal investigator for the Kepler Mission. “We will use hardware identical to what we will be flying on Kepler in the test bed at Ames. We will have the ability to create transits of a star so that we can see the change in the star’s brightness. By simulating transits, we will be able to demonstrate that the flight hardware will work,” Koch explained.

In the final mission, Kepler will be equipped with 42 CCD cameras attached to the spacecraft’s telescope. They make up a 30-cm square (1-foot) array; the largest that will have been flown in space to date. The spacecraft will be able to scan a region of the sky 30,000 times larger than Hubble is able to search.

This month’s test at AMES will have only a single CCD detector, measuring 2.5 cm by 5 cm (1-inch by 2-inches).

I’ll give you an update once the tests are run. Those habitable planets can’t hide forever.

Original Source: NASA News Release

Name That Satellite

173658main_glastimage2lg.thumbnail.jpg

Have you ever named a space mission? Well, here’s your chance. NASA announced today that they’re looking for help from the public to rename their upcoming Gamma-ray Large Area Space Telescope (GLAST) before it launches in mid-2008.

Think you’ve got a good idea for a name? Here’s what the mission’s going to be doing:

– Explore the most extreme environments in the universe, where nature harnesses energies far beyond anything possible on Earth
– Search for signs of new laws of physics and what composes the mysterious dark matter
– Explain how black holes accelerate immense jets of material to nearly light speed
– Help crack the mysteries of the stupendously powerful explosions known as gamma-ray bursts
– Answer long-standing questions about a broad range of phenomena, including solar flares, pulsars and the origin of cosmic rays

So, come up with a name that’s very high-energy. Send in the name along with a statement of 25 words on why you like your idea to NASA’s “Name That Satellite”.

Click here to access the website.

You’ve got until March 31, 2008, so get thinking.

Original Source: NASA News Release

A View of Mercury’s Far Side

messenger-1.thumbnail.png

Images and data are arriving from MESSENGER’s recent flyby of Mercury. Scientists from NASA and the Johns Hopkins Applied Physics Lab are pouring over high resolution images of the side of the planet that has never before been imaged by a spacecraft. From these images, planetary geologists can study the processes that have shaped Mercury’s surface over the past 4 billion years. Let’s take a look at some of the images snapped by MESSENGER on January 14:

This image was taken just 21 minutes after MESSENGER’s closest approach to Mercury, at a distance of only 5,000 kilometers (3600 miles). It shows a region about 170 km (100 miles) across. Visible are a variety of surface features, including craters as small as about 300 meters (about 300 yards) across. But the most striking part of the image is one of the highest and longest cliffs yet seen on Mercury. About 80 km (50 miles) long, it curves from the bottom center up across the right side of this image. Scientists say that great forces in Mercury’s crust must have thrust the terrain occupying the left two-thirds of the picture up and over the terrain to the right. An impact crater has subsequently destroyed a small part of the cliff near the top of the image.

MESSENGER at Mercury.  Image Credit:  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This image shows a previously unseen crater with distinctive bright rays of ejected material from the impact extending outward, providing a look at minerals from beneath Mercury’s surface. A chain of craters nearby is also visible. Studying impact craters provides insight into the history and composition of Mercury. The width of the image is about 370 kilometers (about 230 miles), and was taken about 37 minutes after MESSENGER’s closest approach. This image is the 98th in a set of 99 images that were taken to create a large, high-resolution mosaic of this region of Mercury. Hopefully this anticipated mosaic will be released at a planned press conference on January 30.

MESSENGER at Mercury.  Image Credit:  Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
As MESSENGER approached Mercury on January 14, 2008, about 56 minutes before the spacecraft’s closest encounter, the Narrow-Angle Camera captured this view of the planet’s rugged, cratered landscape illuminated by the Sun. Although this crater has been imaged before by Mariner 10, MESSENGER’s modern camera has revealed detail that was not well seen by Mariner including the broad ancient depression overlapped by the lower-left part of the Vivaldi crater. Its outer ring has a diameter of about 200 kilometers (about 125 miles). The image shows an area about 500 km 9300 miles) across and craters as small as 1 kilometer (0.6 mile) can be seen. It was taken from a distance of about 18,000 km (11,000 miles.)

The MESSENGER (Mercury Surface Space Environment Geochemistry and Ranging) Science Team has begun analyzing these high-resolution images to unravel the history of Mercury, as well as the history of our solar system.

Original News Source: MESSENGER Website

A Winged MESSENGER Flies By Mercury

messenger-mercury.thumbnail.jpg

On January 14 the MESSENGER spacecraft skimmed just 200 kilometers (124 miles) above the surface of Mercury in the first of three flybys of the planet. Today (Jan. 15) the spacecraft will turn back towards the Earth to start down-linking the on-board stored science data it acquired during the flyby. The probe’s equipment gathered data on the mineral and chemical composition of Mercury’s surface, its magnetic field, its surface topography and its interactions with the solar wind. “This was fantastic,” said Michael Paul, a mission engineer. “We were closer to the surface of Mercury than the International Space Station is to the Earth.”

The closest approach was on the planet’s night side, the side facing away from the sun, and the spacecraft flew in the region along the equator. The scientific results will be available for the public at the end of January.

“The engineers and operators pulled off a tremendous feat, acquiring and locking onto the downlink signal from the spacecraft within seconds, providing the necessary Doppler measurements for the Radio Science team.” said MESSENGER Mission Systems Engineer Eric Finnegan, of the Applied Physics Lab in Laurel, Maryland. “The spacecraft is continuing to collect imagery and other scientific measurements from the planet as we now depart Mercury from the illuminated side, documenting for the first time the previously unseen surface of the planet.”

The signal from the spacecraft is tracked by the Deep Space Network, an international network of antennas that supports space missions.

In addition to Monday’s rendezvous, MESSENGER is scheduled to pass Mercury again this October and in September 2009, using the pull of the planet’s gravity to guide it into position to begin a planned yearlong orbit of the planet in March 2011. By the time the mission is completed, scientists also hope to get answers on why Mercury is so dense, as well as determine its geological history and the structure of its iron-rich core and other issues.

MESSENGER stands for Mercury Surface, Space Environment, Geochemistry and Ranging. Launched in 2004, it already has flown past Venus twice and Earth once on its way to Mercury.

Only one spacecraft has previously visited Mercury. Mariner 10 flew past the planet three times in 1974 and 1975, and mapped about 45 percent of its surface.

With Pluto now considered a dwarf planet, Mercury is the solar system’s smallest planet, with a diameter of 3,032 miles, about a third that of Earth.

A surface feature of great interest to scientists is the Caloris basin, an impact crater about 800 miles in diameter, one of the biggest such craters in our solar system. It likely was caused when an asteroid hit Mercury long ago. Scientists hope to learn about the subsurface of the planet from studying this crater.

True to its name, temperatures on the closest plant to the sun are quite “mercurial,” as Mercury experiences the largest swing in surface temperatures in our solar system. When its surface faces the sun, temperatures hit about 800 degrees Fahrenheit (425 Celsius), but when its faces away from the sun they can plummet to minus-300 Fahrenheit (minus-185 Celsius).

Original News Source: Reuters