It Looks Like it’s Working! NASA InSight’s Mole is Making Progress Again Thanks to the Arm Scoop Hack

The scoop on InSight's instrument arm exerting pressure on the Mole. This may supply the necessary friction to get the Mole going again. Image Credit: NASA/DLR

NASA and the DLR are making some progress with the Mole. The Mole has been stuck for months now, and NASA/DLR have been working to get it unstuck. After removing the mole’s housing to get a better look at it with InSight’s cameras, the team came up with a plan.

Continue reading “It Looks Like it’s Working! NASA InSight’s Mole is Making Progress Again Thanks to the Arm Scoop Hack”

Hayabusa 2 Has Sent its Last Rover to Ryugu

Artist's impression of the Hayabusa2 taking samples from the surface of the asteroid Ryugu. Credit: Akihiro Ikeshita/JAXA

Japan’s Hayabusa 2 mission to asteroid Ryugu has reached one of its final milestones, if not its climax. The sample-return spacecraft has launched the Minerva-II2 rover at the asteroid. This is the last of four rovers that Hayabusa 2 is deploying on Ryugu.

Continue reading “Hayabusa 2 Has Sent its Last Rover to Ryugu”

Here’s NASA’s New Plan to Get InSight’s Temperature Probe Into Mars

The mole with its wiring harness, and the scoop. Image Credit: NASA/JPL-Caltech

The mole is still stuck.

The mole is the name given to the Heat Flow and Physical Properties Package (HP3) instrument on NASA’s Mars InSight lander. It’s job is to penetrate into the Martian surface to a depth of 5 meters (16 ft) to measure how heat flows from the planet’s interior to the surface. It’s part of InSight’s mission to understand the interior structure of Mars, and how it formed.

But it’s stuck at about 35 centimers (14 inches.) The mole can do science shy of its maximum depth of 5 meters, but not this shallow. And NASA, and the DLR (German Aerospace Center) who provided the mole, have a new plan to fix it.

Continue reading “Here’s NASA’s New Plan to Get InSight’s Temperature Probe Into Mars”

Juno is Afraid to Death of Jupiter’s Shadow. So it Fired its Thruster for Over 10 Hours to Avoid It.

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

In a death-defying maneuver for the spacecraft, NASA’s Juno has completed an unprecedented and unplanned engine burn. The purpose? To save the spacecraft’s “life,” or at least the rest of its mission to Jupiter.

Jupiter casts a deep, dark shadow. Dark enough, in fact, to effectively kill Juno if it flies through it. Rather than let the spacecraft spend 12 battery-draining hours in Jupiter’s shadow, and then attempt a risky resuscitation on the other side, NASA took another course of action: a 10.5 hour burn of Juno’s reaction thrusters that will steer it clear of Jupiter’s life-draining shadow.

via Gfycat

Continue reading “Juno is Afraid to Death of Jupiter’s Shadow. So it Fired its Thruster for Over 10 Hours to Avoid It.”

India’s Crashed Lander is In This Picture, Somewhere

The Chandrayaan-2 lander, Vikram, attempted a landing September 7th (Friday the 6th in the United States), on a small patch of lunar highland smooth plains between Simpelius N and Manzinus C craters. Unfortunately the landing was not successful and location of the spacecraft has not been announced. The scene above was captured from an LROC Quickmap fly-around of the site, image width is about 150 kilometers across the center [NASA/GSFC/Arizona State University].

This image of the lunar highlands is from NASA’s Lunar Reconnaissance Orbiter. You’d need superhuman eyesight to spot it, but India’s crashed Vikram lander is in there somewhere. The lander attempted to land on the Moon on September 6th, but when it was only 2.1 km above the surface, within reach of its objective, ISRO (Indian Space Research Organization) lost contact with the spacecraft.

Continue reading “India’s Crashed Lander is In This Picture, Somewhere”

Mars 2020 Rover Gets its Helicopter Sidekick

An engineer works on attaching NASA's Mars Helicopter to the belly of the Mars 2020 rover - which has been flipped over for that purpose - on Aug. 27, 2019, at the Jet Propulsion Laboratory in Pasadena, California. Credit: NASA/JPL-Caltech.

Work on the Mars 2020 Rover is heating up as the July/August 2020 launch date approaches. Mission engineers just attached the Mars Helicopter to the belly of the rover, where it will make the journey to Mars. Both the solar-powered helicopter and the Mars Helicopter Delivery System are now attached to the rover.

NASA’s Mars Helicopter will be the first aircraft to fly on another planet. The small rotor-craft only weighs 1.8 kg (4 lbs.) and is made of lightweight materials like carbon fiber and aluminum. It’s largely a technology demonstration mission, and is important to NASA. The overall mission for the Mars 2020 rover won’t depend on the helicopter, but NASA hopes to learn a lot about how to proceed with aircraft on future missions by putting the Mars helicopter through its paces on Mars.

Continue reading “Mars 2020 Rover Gets its Helicopter Sidekick”

Even Though it Hasn’t Launched Yet, JUICE Took its First Images of Jupiter and its Moons

This is the first glimpse of JUICE's eventual destination captured by the spacecraft's NavCam during ground testing. Image Credit: Airbus Defense and Space.

Is there a more complicated and sophisticated technological engineering project than a spacecraft? Maybe a particle accelerator or a fusion power project. But other than those two, the answer is probably no.

Spacecraft like the ESA’s JUICE don’t just pop out of the lab ready to go. Each spacecraft like JUICE is a singular design, and they require years—or even a decade or more—of work before they ever see a launch pad. With a scheduled launch date of 2022, JUICE is in the middle of all that work. Now its cameras are capturing images of Jupiter and its icy moons as part of its navigation calibration and fine-tuning.

“It felt particularly meaningful to conduct our tests already on our destination!”

Gregory Jonniaux, Vision-Based Navigation expert at Airbus Defence and Space.
Continue reading “Even Though it Hasn’t Launched Yet, JUICE Took its First Images of Jupiter and its Moons”

Hardy Tardigrades on Board Israel’s Beresheet Lander Probably Survived the Crash

A Full Moon, as imaged by NASA's Lunar Reconnaissance Orbiter. Credit: NASA Goddard's Scientific Visualization Studio

When SpaceIL’s Beresheet lander crashed into the Moon, it was a bitter-sweet moment for Israel’s space exploration aspirations. The privately-built spacecraft was punching above its weight class by proceeding on its journey to the Moon. Unfortunately, it crashed, ending the dream.

But Beresheet carried some unusual passengers, as part of an unusual, yet visionary, sub-mission: tardigrades.

Continue reading “Hardy Tardigrades on Board Israel’s Beresheet Lander Probably Survived the Crash”

Watch this Amazing Video of Hayabusa 2 Picking Up a Sample from the Surface of Ryugu

A screen shot from JAXA's video showing Hayabusa 2's second sample grabbing touchdown. Image Credit: JAXA

A new video shows Japan’s Hayabusa 2 sample return spacecraft collecting samples from asteroid Ryugu. The spacecraft has been at Ryugu for months now, and it’s all been leading up to this. In the video, you can clearly see airborne asteroid dust and particles swirling around in the low gravity.

Continue reading “Watch this Amazing Video of Hayabusa 2 Picking Up a Sample from the Surface of Ryugu”

India’s Chandrayaan-2 is Heading to the Moon

India's Chandrayaan-2 launching to the Moon on July 22nd. Image Credit: ISRO

ISRO (Indian Space Research Organization) has successfully launched their Chandrayaan-2 mission to the Moon. The mission, which includes an orbiter, a lander, and a rover, was launched into space on a GSLV Mk III rocket on July 22nd, after a week-long delay. On September 7th it will perform a soft-landing on the Moon.

Continue reading “India’s Chandrayaan-2 is Heading to the Moon”