Pluto Reveals Many New Details In Latest Images

These images show Pluto in the latest series of New Horizons Long Range Reconnaissance Imager (LORRI) photos, taken May 8-12, 2015. Hints of possible complex surface geology and the polar cap first seen in April are visible. Credit: NASA

Hey Pluto, it’s great to see your face! Since sending its last batch of images in April, NASA’s New Horizons probe lopped off another 20 million miles in its journey to the mysterious world.  Among the latest revelations: the dwarf planet displays a much more varied surface and the bright polar cap discovered earlier this spring appears even bigger.

Comparison of the April image of one hemisphere of Pluto with nearly the same hemisphere photographed in May. have been rotated to align Pluto's rotational axis with the vertical direction (up-down), as depicted schematically in the center panel. Between April and May, Pluto appears to get larger as the spacecraft gets closer, with Pluto's apparent size increasing by approximately 50 percent. Pluto rotates around its axis every 6.4 Earth days, and these images show the variations in Pluto's surface features during its rotation. Credit: NASA
Comparison of the April image of one hemisphere of Pluto with the same hemisphere photographed in May. The photos have been rotated to align Pluto’s rotational axis with the vertical direction (up-down), as shown schematically in the center panel. Between April and May, Pluto grew larger as the spacecraft got closer, with Pluto’s apparent size increasing by approximately 50%. Pluto rotates around its axis every 6.4 Earth days; this and the images below show the variations in Pluto’s surface features during its rotation. Credit: NASA

“These new images show us that Pluto’s differing faces are each distinct; likely hinting at what may be very complex surface geology or variations in surface composition from place to place,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute in Boulder, Colorado.

Compare Pluto's polar cap (white spot at top of the globe), first seen in April (left) with the latest image taken on May 10. Approximately the same face of Pluto is shown in both images. The cap's extent varies with longitude. Credit: NASA
Compare Pluto’s polar cap (white spot at top of the globe), first seen in April (left) with the latest image taken on May 10. Approximately the same face of Pluto is shown in both images. The cap’s extent varies with longitude. Credit: NASA

Mission scientists caution against over-interpreting some of the smaller details. The photos have been processed using a method called deconvolution, which strips away the out-of-focus information to enhance features on Pluto. Deconvolution can occasionally add “false” details or artifacts, so the smallest features in these pictures will need to be confirmed by images taken from closer range in the next few weeks.

Pluto compared on
Pluto compared on April 16, 2015 and May 12. Credit: NASA

Compared to recent photos of Ceres, the other dwarf planet in the limelight this season, Pluto shows only light and dark blotches. That’s how Ceres started out too. All those variations in tone and texture suggest a fascinating and complex surface. And it’s clear that the polar cap — whatever it might ultimately be — is extensive and multi-textured. The images were taken from a little less than 50 million miles (77 million km) away or about the same distance Mars is from Earth during a typical opposition.

New Horizons current position along with
New Horizons current position and particulars on May 28, 2015. Credit: NASA

Watch for dramatic improvements in the images as New Horizons speeds toward its target, covering 750,000 miles per day until closest approach on July 14. By late June, they’ll have four times the resolution; during the flyby that will improve to 5,000 times. The spacecraft is currently 2.95 billion miles from Earth. Light, traveling at 186,00o miles per second, requires 8 hours and 47 minutes – the length of a typical work day – to make the long round trip.

U.S. Air Force Certifies SpaceX for National Security Launches, Ending Monopoly

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 is now certified for USAF launches. SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

The U.S. Air Force announced Tuesday that they have certified SpaceX to launch the nations critical and highly valuable national security satellites on the firms Falcon 9 rocket, thereby breaking the decade old launch monopoly held by launch competitor United Launch Alliance (ULA). ULA is a joint venture owned by aerospace giants Boeing and Lockheed Martin.

The Air Force’s goal in approving the SpaceX Falcon 9 booster is aimed at drastically cutting the high cost of access to space by introducing competition in the awarding of military mission launch contacts. The prior contract involved a sole source $11 Billion “block buy” bid for 36 rocket cores from ULA in December 2013 which was legally challenged by SpaceX in April 2014, but eventually settled by SpaceX in an agreement with the USAF earlier this year.

Lieutenant General Samuel Greaves, Commander of the Air Force Space and Missile Systems Center (SMC), announced the long awaited decision on Tuesday, May 26.

The certification milestone came after a grueling two year review process in which the Air Force invested more than $60 million and 150 people to thoroughly review all aspects of the Falcon 9 booster. The review was based on three successful flights by the Falcon 9 v1.1 which first launched in late 2013.

The purpose of certification is to assure that qualified launch providers could meet the challenge of safely, securely and reliably lofting expensive U.S. national security military missions to space and into their intended orbits with full mission capability that are critical for maintaining national defense.

“The SpaceX and SMC teams have worked hard to achieve certification,” said Greaves, Commander of the Air Force Space and Missile Systems Center (SMC) and Air Force Program Executive Officer for Space, in a statement.

“And we’re also maintaining our spaceflight worthiness process supporting the National Security Space missions. Our intent is to promote the viability of multiple EELV-class launch providers as soon as feasible.”

And the competitive launch races “for award of qualified national security space launch missions” between SpaceX and ULA start very soon, within the next month says the USAF.

In June, the Air Force will issue a Request for Proposal (RFP) for GPS III launch services. ULA has three GPS launches in its manifest for 2015.

Of course SpaceX was overjoyed on hearing the certification news.

“This is an important step toward bringing competition to National Security Space launch, said Elon Musk, SpaceX CEO and Lead Designer.

‘We thank the Air Force for its confidence in us and look forward to serving it well.”

Until today, ULA has held a launch monopoly over military missions since the company was founded in 2006. ULA also launches many NASA science missions, but very few commercial satellites.

Thus the U.S. military and NASA provide the core of ULA’s business and the source of much of its income and profits.

SpaceX is suing the Air Force for the right to compete for US national security satellites launches using Falcon 9 rockets such as this one which successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX is now certified by the Air Force for the right to compete for US national security satellites launches using Falcon 9 rockets such as this one which successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

“This is a very important milestone for the Air Force and the Department of Defense,” said Secretary of the Air Force Deborah Lee James, in a statement.

“SpaceX’s emergence as a viable commercial launch provider provides the opportunity to compete launch services for the first time in almost a decade. Ultimately, leveraging of the commercial space market drives down cost to the American taxpayer and improves our military’s resiliency.”

Other military spacecraft in the future could involve vehicles such as the X-37B space plane which recently launched on an Atlas V, as well as weather satellites, signals intelligence and missile warning satellites and a range of top secret missions for the National Reconnaissance Office (NRO) that have been routinely launched by ULA with a 100% success rate to date.

USAF X-37B orbital test vehicle launches atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle launches atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

ULA’s stable of launchers includes the Atlas V and Delta IV families of vehicles. ULA is phasing out the Delta IV due to its high costs. Only the Delta IV Heavy will remain in service as required to launch the very heaviest satellites that cannot be accommodated by less powerful rockets.

ULA is also replacing the Atlas V with the partly reusable new Vulcan rocket, that will be phased in starting in 2019 using American-made engines from either Blue Origin or Aerojet Rocketdyne.

The Atlas V uses Russian made RD-180 engines, who’s use has become highly contentious since the deadly crisis in Ukraine erupted in 2014.

The ensuing threats of RD-180 engine embargoes and imposition of sanctions and counter sanctions imposed by the US and Russia have thus placed US national security at risk by being dependent on a rocket with foreign made engines whose future supply chain was uncertain.

U.S. Senator John McCain (R-AZ), Chairman of the Senate Armed Services Committee, has been highly critical of the ULA dependence on the Russian RD-180 engines and issued this statement in response to the Air Force announcement.

“The certification of SpaceX as a provider for defense space launch contracts is a win for competition, said McCain.

“Over the last 15 years, as sole-source contracts were awarded, the cost of EELV was quickly becoming unjustifiably high. I am hopeful that this and other new competition will help to bring down launch costs and end our reliance on Russian rocket engines that subsidizes Vladimir Putin and his cronies.”

A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station's Space Launch Complex-41 in preparation for launch of NASA's Magnetospheric Multiscale (MMS) science mission on March 12, 2015.  Credit: Ken Kremer- kenkremer.com
A United Launch Alliance Atlas V 421 rocket is poised for blastoff at Cape Canaveral Air Force Station’s Space Launch Complex-41 in preparation for launch of NASA’s Magnetospheric Multiscale (MMS) science mission on March 12, 2015. Credit: Ken Kremer- kenkremer.com

Overall the Air Force “invested more than $60 million and 150 people in the certification effort which encompassed 125 certification criteria, including more than 2,800 discreet tasks, 3 certification flight demonstrations, verifying 160 payload interface requirements, 21 major subsystem reviews and 700 audits in order to establish the technical baseline from which the Air Force will make future flight worthiness determinations for launch.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

In a major move forward on a long dreamed of mission to investigate the habitability of the subsurface ocean of Jupiter’s mysterious moon Europa, top NASA officials announced today, Tuesday, May 26, the selection of nine science instruments that will fly on the agency’s long awaited planetary science mission to an intriguing world that many scientists suspect could support life.

“We are on our way to Europa,” proclaimed John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, at a media briefing today outlining NASA’s plans for a mission dedicated to launching in the early to mid-2020s. “It’s a mission to inspire.”

“We are trying to answer big questions. Are we alone?”

“The young surface seems to be in contact with an undersea ocean.”

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, radar and spectrometers, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

“Europa has tantalized us with its enigmatic icy surface and evidence of a vast ocean, following the amazing data from 11 flybys of the Galileo spacecraft over a decade ago and recent Hubble observations suggesting plumes of water shooting out from the moon,” says Grunsfeld.

“We’re excited about the potential of this new mission and these instruments to unravel the mysteries of Europa in our quest to find evidence of life beyond Earth.”

Planetary scientists have long desired a speedy return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the surface in recent times.

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection, whose candidates include the heavy lift Space Launch System (SLS).

The solar powered probe will go into orbit around Jupiter for a three year mission.

“The mission concept is that it will conduct multiple flyby’s of Europa,” said Jim Green. director, Planetary Science Division, NASA Headquarters, during the briefing.

“The purpose is to determine if Europa is a habitable place. It shows few craters, a brown gum on the surface and cracks where the subsurface meet the surface. There may be organics and nutrients among the discoloration at the surface.”

Europa is at or near the top of the list for most likely places in our solar system that could support life. Mars is also near the top of the list and currently being explored by a fleet of NASA robotic probes including surface rovers Curiosity and Opportunity.

“Europa is one of those critical areas where we believe that the environment is just perfect for potential development of life,” said Green. “This mission will be that step that helps us understand that environment and hopefully give us an indication of how habitable the environment could be.”

The exact thickness of Europa’s ice shell and extent of its subsurface ocean is not known.

The ice shell thickness has been inferred by some scientists to be perhaps only 5 to 10 kilometers thick based on data from Galileo, the Hubble Space Telescope, a Cassini flyby and other ground and space based observations.

The global ocean might be twice the volume of all of Earth’s water. Research indicates that it is salty, may possess organics, and has a rocky sea floor. Tidal heating from Jupiter could provide the energy for mixing and chemical reactions, supplemented by undersea volcanoes spewing heat and minerals to support living creatures, if they exist.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

“Europa could be the best place in the solar system to look for present day life beyond our home planet,” says NASA officials.

The instruments chosen today by NASA will help answer the question of habitability, but they are not life detection instruments in and of themselves. That would require a follow on mission.

“They could find indications of life, but they’re not life detectors,” said Curt Niebur, Europa program scientist at NASA Headquarters in Washington. “We currently don’t even have consensus in the scientific community as to what we would measure that would tell everybody with confidence this thing you’re looking at is alive. Building a life detector is incredibly difficult.”

‘During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Niebur told Universe Today. “These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

“The mass spectrometer has a range of 1 to 2000 daltons, Niebur told me. “That’s a much wider range than Cassini. However there will be no means aboard to determine chirality.” The presence of Chiral compounds could be an indicator of life.

Right now the Europa mission is in the formulation stage with a budget of about $10 million this year and $30 Million in 2016. Over the next three years the mission concept will be defined.

The mission is expected to cost in the range of at least $2 Billion or more.

Jupiter Moon Europa, Ice Rafting View
Jupiter Moon Europa, Ice Rafting View

Here’s a NASA description of the 9 instruments selected:

Plasma Instrument for Magnetic Sounding (PIMS) — principal investigator Dr. Joseph Westlake of Johns Hopkins Applied Physics Laboratory (APL), Laurel, Maryland. This instrument works in conjunction with a magnetometer and is key to determining Europa’s ice shell thickness, ocean depth, and salinity by correcting the magnetic induction signal for plasma currents around Europa.

Interior Characterization of Europa using Magnetometry (ICEMAG)
— principal investigator Dr. Carol Raymond of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California. This magnetometer will measure the magnetic field near Europa and – in conjunction with the PIMS instrument – infer the location, thickness and salinity of Europa’s subsurface ocean using multi-frequency electromagnetic sounding.


Mapping Imaging Spectrometer for Europa (MISE)
— principal investigator Dr. Diana Blaney of JPL. This instrument will probe the composition of Europa, identifying and mapping the distributions of organics, salts, acid hydrates, water ice phases, and other materials to determine the habitability of Europa’s ocean.

Europa Imaging System (EIS) — principal investigator Dr. Elizabeth Turtle of APL. The wide and narrow angle cameras on this instrument will map most of Europa at 50 meter (164 foot) resolution, and will provide images of areas of Europa’s surface at up to 100 times higher resolution.

Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) — principal investigator Dr. Donald Blankenship of the University of Texas, Austin. This dual-frequency ice penetrating radar instrument is designed to characterize and sound Europa’s icy crust from the near-surface to the ocean, revealing the hidden structure of Europa’s ice shell and potential water within.

Europa Thermal Emission Imaging System (E-THEMIS) — principal investigator Dr. Philip Christensen of Arizona State University, Tempe. This “heat detector” will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites, such as potential vents erupting plumes of water into space.

MAss SPectrometer for Planetary EXploration/Europa (MASPEX) — principal investigator Dr. Jack (Hunter) Waite of the Southwest Research Institute (SwRI), San Antonio. This instrument will determine the composition of the surface and subsurface ocean by measuring Europa’s extremely tenuous atmosphere and any surface material ejected into space.

Ultraviolet Spectrograph/Europa (UVS) — principal investigator Dr. Kurt Retherford of SwRI. This instrument will adopt the same technique used by the Hubble Space Telescope to detect the likely presence of water plumes erupting from Europa’s surface. UVS will be able to detect small plumes and will provide valuable data about the composition and dynamics of the moon’s rarefied atmosphere.

SUrface Dust Mass Analyzer (SUDA) — principal investigator Dr. Sascha Kempf of the University of Colorado, Boulder. This instrument will measure the composition of small, solid particles ejected from Europa, providing the opportunity to directly sample the surface and potential plumes on low-altitude flybys.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragons Coming and Going at Record Setting Pace

Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts

Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts
Story updated with further details and photos[/caption]

SpaceX Dragons seem to be flying nearly everywhere these days, coming and going at a record pace to the delight and relief of NASA, researchers and the space faring crews serving aboard the International Space Station (ISS). As one Dragon returned to Earth from space today, May 21, another Dragon prepares to soar soon to space.

The commercial SpaceX-6 cargo Dragon successfully splashed down in the Pacific Ocean at 12:42 p.m. EDT (1642 GMT) today, Thursday, about 155 miles southwest of Long Beach, California, some five hours after it was released from the grip of the stations robotic arm this morning at 7:04 a.m. EDT by the Expedition 43 crew as the craft were flying some 250 miles (400 km) above Australia.

The ocean splashdown marked the conclusion to the company’s sixth cargo resupply mission to the ISS under a commercial contract with NASA. Overall this was the seventh trip by a Dragon spacecraft to the station since the inaugural flight in 2012.

Following the launch failure and uncontrolled destructive plummet back to Earth of the Russian Progress 59 cargo freighter earlier this month, the station and its six person international crews are more dependent than ever on the SpaceX commercial supply train to orbit to keep it running and humming with productive science.

Working from a robotics work station in the domed cupola, NASA astronaut Scott Kelly released the Dragon CRS-6 spacecraft from the grappling snares of the 57.7-foot-long (17-meter-long) Canadian-built robotic arm with help from fellow NASA astronaut Terry Virts. Kelly is a member of the first 1 Year ISS mission crew, along with Russian cosmonaut Mikhail Kornienko.

The capsule then performed an intricate series of three departure burns and maneuvers to move beyond the imaginary 656-foot (200-meter) “keep out sphere” around the station and begin its five and a half hour long trip back to Earth.

The station crew had packed Dragon with almost 3,100 pounds of NASA cargo from the International Space Station. The including research samples pertaining to a host of experiments on how spaceflight and microgravity affect the aging process and bone health as well as no longer need items and trash to reduce station clutter.

The SpaceX Dragon cargo spacecraft was released from the International Space Station's robotic arm at 7:04 a.m. EDT Thursday. The capsule then performed a series of departure burns and maneuvers to move beyond the 656-foot (200-meter) "keep out sphere" around the station and begin its return trip to Earth.  Credits: NASA TV
The SpaceX Dragon cargo spacecraft was released from the International Space Station’s robotic arm at 7:04 a.m. EDT Thursday. The capsule then performed a series of departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station and begin its return trip to Earth. Credits: NASA TV

“Spaceflight-induced health changes, such as decreases in muscle and bone mass, are a major challenge facing our astronauts,” said Julie Robinson, NASA’s chief scientist for the International Space Station Program Office at NASA’s Johnson Space Center in Houston, in a statement.

“We investigate solutions on the station not only to keep astronauts healthy as the agency considers longer space exploration missions but also to help those on Earth who have limited activity as a result of aging or illness.”

The Dragon was retrieved from the ocean by recovery boats following the parachute assisted splashdown. It will be transported to Long Beach, California for removal and return of the NASA cargo. The capsule itself will be shipped to SpaceX’s test facility in McGregor, Texas, for processing to remove cargo and inspection of its performance.

Dragon splashes down into the Pacific Ocean, carrying 3,100 lbs of cargo and science for NASA on May 21, 2015, Credit: SpaceX.
Dragon splashes down into the Pacific Ocean, carrying 3,100 lbs of cargo and science for NASA on May 21, 2015, Credit: SpaceX.

“The returning Space Aging study, for example, examines the effects of spaceflight on the aging of roundworms, widely used as a model for larger organisms,” noted NASA in a statement.

“By growing millimeter-long roundworms on the space station, researchers can observe physiological changes that may affect the rate at which organisms age. This can be applied to changes observed in astronauts, as well, particularly in developing countermeasures before long-duration missions.”

Dragon departed after having spent a record setting stay of 33 days berthed to the station at an Earth facing port on the Harmony node.

Dragon is also the only current US means for sending cargo to the station after the loss of the Orbital Sciences Cygnus craft in the Antares rocket explosion last October.

The SpaceX CRS-6 Dragon successfully blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The resupply vessel had arrived three days later on April 17 and was successfully snared by the Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, the first female Italian astronaut.

Dragon launched on April 14 with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.

An Espresso machine was also aboard and delivered to enhance station morale during the daily grind some 250 miles above Earth.

Among the research investigations were a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Following the complete success of the SpaceX Dragon CRS-6 mission, NASA just announced that the next SpaceX Dragon is currently slated to launch on June 26 at 11:09 a.m. EDT.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX CRS-6 Falcon 9 Launch to the International Space Station on April 14, 2015. Credit: Alex Polimeni

X-37B Air Force Space Plane Launches on 4th Mystery Military Mission and Solar Sailing Test

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com
Story updated with additional details and photos[/caption]

The X-37B, a reusable Air Force space plane launched today, May 20, from Cape Canaveral, Florida, on its fourth mission steeped in mystery as to its true goals for the U.S . military and was accompanied by ten tiny cubesat experiments for NASA and the NRO, including a solar sailing demonstration test for The Planetary Society.

The military space plan successfully blasted off for low Earth orbit atop a 20 story United Launch Alliance (ULA) Atlas V rocket on the clandestine Air Force Space Command 5 (AFSPC-5) satellite mission for the U.S. Air Force Rapid Capabilities Office at 11:05 a.m. EDT (1505 GMT) today, May 20, from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida.

The weather cooperated for a spectacular liftoff from the Florida space coast, which was webcast live by ULA until five minutes after launch when it went into a communications blackout shortly after announcing the successful ignition of the Centaur upper stage.

The exact launch time was classified until it was released by the Department of Defense this morning. Early this morning the four hour launch window was narrowed down to two small windows of opportunity.

USAF X-37B orbital test vehicle launches atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle launches atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

Among the experiments for the flight are 10 CubeSats housed in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage. Together they are part of the National Reconnaissance Office’s (NRO’s) Ultra Lightweight Technology and Research Auxiliary Satellite (ULTRASat). The 10 CubeSats in ULTRASat are managed by the NRO and NASA. They are contained in eight P-Pods from which they will be deployed in the coming days.

Also aboard the X-37B is a NASA materials science experiment called METIS and an advanced Hall thruster experiment. The Hall thruster is a type of electric propulsion device that produces thrust by ionizing and accelerating a noble gas, usually xenon.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and The Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. Photons from the sun should push on the solar sails.

“The purpose of this LightSail demonstration test is to verify telemetry, return photos return and to test the deployment of the solar sails,” said Bill Nye, the Science Guy), and President of The Planetary Society, during the X-37B launch webcast.

“LightSail is comprised of three CubeSats that measure about 30 cm by 10 cm.”

“It’s smaller than a shoebox, everybody! And the sail that will come out of it is super shiny mylar. We’re very hopeful that the thing will deploy properly, the sunlight will hit it and we’ll get a push.”

United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

“ULA is honored to launch this unique spacecraft for the U.S Air Force. Congratulations to the Air Force and all of our mission partners on today’s successful launch! The seamless integration between the Air Force, Boeing, and the entire mission team culminated in today’s successful launch of the AFSPC-5 mission” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

The two stage Atlas V stands 206 feet tall and weighs 757,000 pounds.

The X-37B was carried to orbit by the Atlas V in its 501 configuration which includes a 5.4-meter-diameter payload fairing and no solid rocket motors. The Atlas first stage booster for this mission was powered by the RD AMROSS RD-180 engine generating some 850,000 pounds of thrust and fired for approximately the first four and a half minutes of flight. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The X-37B space plane was to separate from the Centaur about 19 minutes after liftoff. The Centaur continued firing separately with the CubeSat deployment, including the Planetary Society’s LightSail test demoonstration, into a different orbit later.

Overall this was ULA’s sixth launch of the 501 configuration the 54th mission to launch on an Atlas V rocket. This was also ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006.

The OTV is somewhat like a miniature version of NASA’s space shuttles.

Boeing has built two OTV vehicles. But it is not known which of the two vehicles was launched today.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch.  Credit: Ken Kremer/kenkremer.com
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA

Does the Red Planet Have Green Auroras?

A map of MAVEN's Imaging Ultraviolet Spectrograph (IUVS) auroral detections in December 2014 overlaid on Mars’ surface. The map shows that the aurora was widespread in the northern hemisphere, not tied to any geographic location. The aurora was detected in all observations during a 5-day period. Credits: University of Colorado

Martian auroras will never best the visual splendor of those we see on Earth, but have no doubt. The Red Planet still has what it takes to throw an auroral bash. Witness the latest news from NASA’s MAVEN atmospheric probe

In December 2014, it detected widespread auroras across Mars’ northern hemisphere dubbed the “Christmas Lights”. If a similar display happened on Earth, northern lights would have been visible from as far south as Florida.

“It really is amazing,” says Nick Schneider who leads MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) instrument team at the University of Colorado.  “Auroras on Mars appear to be more wide ranging than we ever imagined.”

A beautiful curtain of rays spread across the northern sky just last night (May 12) as seen from Duluth, Minn. Aurora colors on Earth are caused by the excitation of nitrogen and oxygen atoms from high-speed particles from the solar wind. Oxygen is responsible for most of the aurora's greens and reds. Credit: Bob King
A beautiful curtain of auroral rays spreads across the northern sky last night (May 12) as seen from Duluth, Minn. Aurora colors on Earth are caused by the excitation of nitrogen and oxygen atoms by high-speed particles in the solar wind. Oxygen in particular is responsible for most of the aurora’s greens and reds. Credit: Bob King

Study the map and you’ll see the purple arcs extend to south of 30° north latitude. So what would Martian auroras look like to the human eye? Would we see an arcade of nested arcs if we faced east or west from 30°N? Well, er, yes, if you could see into the ultraviolet end of the spectrum. Mars’ atmosphere is composed mostly of carbon dioxide, so most of the auroral emissions occur when high speed solar wind particles ionize CO2 molecules and carbon monoxide to produce UV light. Perhaps properly suited-up bees, which can see ultraviolet, would be abuzz at the sight.

High-speed particles from the Sun, mostly electrons, strike oxygen and nitrogen atoms in Earth's upper atmosphere. Credit: NASA
High-speed particles from the Sun, mostly electrons, strike oxygen and nitrogen atoms in Earth’s upper atmosphere. As they return to their “relaxed” state, they emit light in characteristic colors. Credit: NASA

That’s not the end of the story however. Martian air does contain 0.13% oxygen, the element that puts the green and red in Earth’s auroras. The “Christmas Lights” penetrated deeply into Mars’ atmosphere, reaching an altitude of just 62 miles (100 km) above its surface. Here, the air is relatively thicker and richer in oxygen than higher up, so maybe, just maybe Christmas came in green wrapping.

Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their tops, auroras can form. Credit: NASA
Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their “peaks”, auroras can form. Credit: NASA

Nick Schneider, who leads MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) instrument team, isn’t certain but thinks it’s possible that a diffuse green glow could appear in Mars’ sky during particularly energetic solar storms.

A magnetosphere is that area of space, around a planet, that is controlled by the planet's magnetic field. The shape of the Earth's magnetosphere is the direct result of being blasted by solar wind, compressed on its sunward side and elongated on the night-side, the magnetotail. Credits: NASA
Earth’s  magnetosphere, an area of space that’s controlled by the planet’s magnetic field, guides solar wind electrons and protons along magnetic field lines into the atmosphere in the polar regions  to create auroras. The planet’s field is created by electric currents generated in its outer nickel-iron core.
Credits: NASA

While the solar wind produces auroras at both Earth and Mars, they originate in radically different ways. At Earth, we’re ensconced in a protective planet-wide magnetic field. Charged particles from the Sun are guided to the Earth’s poles by following a multi-lane freeway of  global magnetic field lines.  Mars has no such organized, planet-wide field. Instead, there are many locally magnetic regions. Particles arriving from the Sun go where the magnetism takes them.

“The particles seem to precipitate into the atmosphere anywhere they want,” says Schneider. “Magnetic fields in the solar wind drape across Mars, even into the atmosphere, and the charged particles just follow those field lines down into the atmosphere.”

Maybe one day, NASA or one of the other space agencies will send a lander with a camera that can shoot long time exposures at night. We’ll call it the “Go Green” initiative.

Wayward Progress Destroyed During Fiery Plummet, ISS Crew Launches ‘Under Evaluation’

File photo of a Russian Progress cargo freighter. Credit: Roscosmos

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
Story updated with further details[/caption]

The spinning, out-of-control Russian Progress 59 cargo freighter met its undesired early demise when it fell from orbit early Friday, May 8, and was destroyed during the unplanned fiery plummet through the Earth’s atmosphere.

As a result of the loss of the unmanned Progress 59 spacecraft, which was bound for the International Space Station (ISS) on a routine resupply mission, the timelines of upcoming crew rotations and new launches are “under evaluation” – Universe Today learned according to Russian and American space sources.

The doomed Progress freighter “ceased to exist” after it reentered the Earth’s atmosphere 05.04 Moscow time on May 8, 2015 (10:04 p.m. EDT May 7) over the central Pacific Ocean,” according to an official statement from Roscosmos, the Russian Space Agency.

The consequences of the failure might cause “postponements of upcoming station crew changes to June” and blastoffs “to July” according to Russian space industry and media sources.

The vessel, also known as Progress M-27M, burned up minutes later and any surviving pieces fell over the Pacific Ocean.

“Debris fell about 900 kilometers west of the Marquesas Islands in the central Pacific Ocean,” a space industry source told the Russian news agency TASS.

“Roscosmos plans to adjust the program of flights to the International Space Station (ISS) due to the recent accident involving the Progress M-27M spacecraft,” according to the TASS rocket and space industry source.

Roscosmos quickly established an investigation board to determine the cause of the Progress failure and any commonalities it might have with manned launches of the Soyuz rocket and capsule, and report back by 13 May.

“The results of investigation of the incident related to “Progress M-27M” will be presented no later than 13 May following the completion of the state commission,” Roscosmos stated.

Russian mission controllers lost control of the Progress 59 spacecraft shortly after its otherwise successful launch to the ISS on April 28 from the Baikonur space center in Kazakhstan atop a Soyuz-2.1A carrier rocket.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

After control could not be reestablished, all hope of docking with the ISS was abandoned by Roscosmos.

NASA officials said that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least September, even if no other supplies arrive in the meantime.

“The spacecraft was not carrying any supplies critical for the United States Operating Segment (USOS) of the station, and the break up and reenty of the Progress posed no threat to the ISS crew,” NASA said in a statement.

“Both the Russian and USOS segments of the station continue to operate normally and are adequately supplied well beyond the next planned resupply flight.”

There is a stock of propellants onboard in the Russian segment that can be used for periodically required station reboosts.

According to TASS, “the cause of the accident with the Russian Progress M-27M spacecraft has not been established yet, Russian Deputy Prime Minister Dmitry Rogozin told journalists on Friday.”

“Not yet,” he said, answering a question on whether causes of the accident had been established.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Because the cause of Progress failure is not yet clear, the schedules for upcoming crew departures and launches to the ISS via Russian Soyuz rockets and capsules are “under evaluation,” according to sources.

There is a significant potential for a delay in the planned May 13 return to Earth of the three person crew international crew consisting of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos, who have been aboard the complex since November 2014.

They comprise the current Expedition 43 crew, along with the recently arrived crew of NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka who launched onboard a Soyuz capsule on March 27.

Kelly and Kornienko comprise the first ever “1 Year ISS Crew.”

Virts and his crewmates were due to head back to Earth in their Soyuz capsule on May 13. According to Russian sources, their return trip may be postponed to about June 11 to 13.

“The return from orbit of the expedition which is currently there is suggested to be postponed from May 14 to June,” said a TASS source.

Their three person replacement crew on Expedition 44 were due to blastoff on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan. This launch may now be delayed as well, to mid or late July.

“More time will be needed to check already manufactured rockets,” said a source. “A manned Soyuz launch may be made in the last ten days of July.”

“The proposal was forwarded by a Roscosmos working group and has not been approved yet,” reports TASS.

An official announcement by Roscosmos of any ISS schedule changes may come next week since the scheduled return of Virts crew is only days away.

Another potential change is that the launch of the next unmanned Progress 60 (M-28M), could potentially be moved up from August to July, hinging on the outcome of the state commission investigation.

To date flights of the Progress vehicle have been highly reliable. The last failure occurred in 2011, shortly after the retirement of NASA’s Space Shuttle orbiters in July 2011. The loss of the Progress did cascade into a subsequent crew launch delay later in 2011.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
“There’s coffee in that nebula”… ehm, I mean… in that #Dragon. Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

The next SpaceX Falcon 9 launch carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS is slated for mid-June. The most recent SpaceX Dragon was launched on the CRS-6 mission on April 14, 2015.

At this time the SpaceX CRS-7 launch remains targeted for liftoff on June 19, 2015.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

SpaceX Completes Successful Crew Dragon Test of Astronaut Life Saving Escape System

The SpaceX Crew Dragon spacecraft ascends during Pad Abort Test on Wednesday, May 6 following a simulated emergency at the launch pad to test emergency escape system for astronauts. Credits: NASA

Soaring on the power of an octet of SuperDrago engines, SpaceX successfully completed a critical rapid fire life-saving test of their Dragon crew capsules pad abort emergency escape system that would ignite in a split second to save the astronauts lives in the unlikely event of a failure of the Falcon 9 booster rocket at the Cape Canaveral launch pad.

The uncrewed SpaceX Crew Dragon roared swiftly skywards upon ignition of the test vehicle’s integrated SuperDraco engines at 9 a.m EDT this morning, Wednesday, May 6, for the mile high test conducted from the SpaceX Falcon 9 launch pad from a specially built platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida.

A human-sized crash test dummy was seated inside for the test exercise which ended safely with a parachute assisted Atlantic Ocean splashdown after less than two minutes. There were no astronauts aboard.

The SuperDraco engines fired for approximately six seconds and accelerated the crew Dragon “from 0 to 100 mph in 1.2 seconds. It reached a top speed of about 345 mph,” said SpaceX CEO Elon Musk in a post test briefing.

“This bodes quite well for the future of the program. I don’t want to jinx it, but this is really quite a good indication for the future of Dragon.” said Elon Musk.

“We hope to launch the first crews to the ISS within about two years, plus or minus six months.”

The side mounted escape engines mark a revolutionary change from the traditional top mounted launch escape system used previously in the Mercury, Apollo, Soyuz and Orion human spaceflight capsules. The space shuttle had no escape system beyond ejections seats used on the first four flights.

Dragon was mounted atop the finned trunk section for the test. The entire Dragon/trunk assembly was about 20 feet (5 meters) tall.

The test is a critical milestone towards the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.

“This is a critical step toward ensuring crew safety for government and commercial endeavors in low-Earth orbit,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“Congratulations to SpaceX on what appears to have been a successful test on the company’s road toward achieving NASA certification of the Crew Dragon spacecraft for missions to and from the International Space Station.”

Here is a video of the Pad Abort Test:

Video caption: Powered by its SuperDraco engines, the uncrewed SpaceX Crew Dragon flies through its paces in the Pad Abort Test from Cape Canaveral Air Force Station in Florida. Credit: NASA

After all the monomethylhydrazine and nitrogen tetroxide hypergolic propellants were consumed, Dragon soared as planned to an altitude of about 1500 meters (.93 mi) above the launch pad. At about T+21 seconds the trunk was jettisoned and the spacecraft began a slow rotation with its heat shield pointed toward the ground again as it arced out eastwards over the ocean.

The drogue chutes and trio of red and white main parachutes deployed as planned for a picturesque Dragon splashdown in the Atlantic Ocean about a mile offshore of its Cape Canaveral launch pad. The capsule was retrieved from the ocean by waiting recovery boats.

Today’s pad abort demonstration tested the ability of the set of eight SuperDraco engines integrated directly into the side walls of the crew Dragon to ignite simultaneously and pull the vehicle away from the launch pad in a split second – in a simulated emergency to save the astronauts lives in the event of a real emergency.

Therefore the Pad Abort Test did not include an actual Falcon 9 booster since it was focused on a checkout of the capsule’s escape capability.

Sequence of May 6, 2015 SpaceX Pad Abort Test Flight in Four Frames. Credit: NASA
Sequence of May 6, 2015 SpaceX Pad Abort Test Flight in Four Frames. Credit: NASA

The SuperDraco engines are located in four jet packs built into the capsule around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds in under one second, to propel the astronauts safely away.

The entire test lasted less than two minutes.

The test was webcast live on NASA TV: http://www.nasa.gov/nasatv

The crew Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.

The pad abort test was accomplished under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA, that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.

A second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.

The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the ocean.

“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX, at a prelaunch briefing.

“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Mercury MESSENGER Mission Concludes with a Smashing Finale!

The image shown here is the last one acquired and transmitted back to Earth by the mission. The image is located within the floor of the 93-kilometer-diameter crater Jokai. The spacecraft struck the planet just north of Shakespeare basin. The image measures 0.6 miles (1 km) across. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The planet Mercury has a brand new 52-foot-wide crater. At 3:26 p.m.  EDT this afternoon, NASA’s MESSENGER spacecraft bit the Mercurial dust, crashing into the planet’s surface at over 8,700 mph just north of the Shakespeare Basin. Because the impact happened out of sight and communication with the Earth, the MESSENGER team had to wait about 30 minutes after the predicted impact to announce the mission’s end. 

NASA estimates that the MESSENGER spacecraft would crash into Mercury this afternoon at 3:26 p.m. EDT near the 30-mile-wide crater Janacek on the opposite side of the planet from Earth. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
NASA predicted that the MESSENGER spacecraft would crash into Mercury this afternoon at 3:26 p.m. EDT near the 30-mile-wide crater Janacek  and the large Shakespeare Basin on the opposite side of the planet from Earth. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Even as MESSENGER faced its demise, it continued to take pictures and gather data right up until impact. The first-ever space probe to orbit the Solar System’s innermost planet, MESSENGER has completed 4,103 orbits as of this morning. Not only has it imaged the planet in great detail, but using it seven science instruments, scientists have gathered data on the composition and structure of Mercury’s crust, its geologic history, the nature of its magnetic field and rarefied sodium-calcium atmosphere, and the makeup of its iron core and icy materials near its poles.

Color-coded view of Carnegie Rupes (ridge) with low elevations in blue and high in red. The ridge formed as the Mercury's interior cooled, resulting in the overall shrinking of the planet. Parts of the landscape lapped over other parts as the planet shrunk. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Color-coded view of Carnegie Rupes at left with low elevations in blue and high in red. The ridge formed as Mercury’s interior cooled, resulting in the overall shrinking of the planet. Parts of the landscape lapped over other parts as the planet shrunk. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Images show those ubiquitous craters but also features that set its moonlike landscape apart from the Moon including volcanic plains, tectonic landforms that indicate the planet shrank as its interior cooled and mysterious mouse-like nibbles called “hollows”, where surface material may be vaporizing in sunlight leaving behind a network of holes. To learn more about the mission’s “greatest hits”, check out its Top Ten discoveries or pay a visit to the Gallery.

The rounded, depressions, called "hollows", are a fascinating discovery of MESSENGER's orbital mission and may have been formed by vaporization of something in the material when exposed by the Raditladi impact. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
The rounded depressions, called “hollows”, are a fascinating discovery of MESSENGER’s orbital mission and may have been formed by vaporization of materials in the surface when exposed by the Raditladi impact. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

MESSENGER mission controllers conducted the last of six planned maneuvers on April 24 to raise the spacecraft’s minimum altitude sufficiently to extend orbital operations and further delay the probe’s inevitable impact onto Mercury’s surface, but it’s now out of propellant. Without the ability to counteract the Sun’s gravity, which is slowly pulling the craft closer to Mercury’s surface, the team prepared for the inevitable.

False color images of Mercury taken with MESSENGER's Mercury Atmosphere and Surface Composition Spectrometer (MASCS) in everything from infrared to ultraviolet light reveal colorful differences in terrain and surface mineralogy. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
False color images of Mercury taken with MESSENGER’s Mercury Atmosphere and Surface Composition Spectrometer (MASCS) in everything from infrared to ultraviolet light reveal colorful differences in terrain and surface mineralogy. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

The spacecraft actually ran out of propellant a while back, but controllers realized they could re-purpose a stock of helium, originally carried to pressurize the fuel, for a few final blasts to keep it alive and doing science right up to the last minute. During its final hours today, MESSENGER will be shooting and sending back as many new pictures as possible the same way you’d squeeze in one last shot of the Grand Canyon before departing for home. It’s also holding hundreds of older photos in its memory chip and will send as many of those as it can before the final deadline.

Farewell MESSENGER! Artist view of the spacecraft orbiting the innermost planet Mercury. Credit: NASA
Farewell MESSENGER! Artist view of the spacecraft in orbit about Mercury. Credit: NASA

“Operating a spacecraft in orbit about Mercury, where the probe is exposed to punishing heat from the Sun and the planet’s dayside surface as well as the harsh radiation environment of the inner heliosphere (Sun’s sphere of influence), would be challenge enough,” said Principal Investigator Sean Solomon, MESSENGER principal investigator. “But MESSENGER’s mission design, navigation, engineering, and spacecraft operations teams have fought off the relentless action of solar gravity, made the most of every usable gram of propellant, and devised novel ways to modify the spacecraft trajectory never before accomplished in deep space.”

Face northwest starting about 45 minutes after sunset to look for Mercury tonight. It will lie about two fists below Venus and only 1.5 from the Pleiades star cluster. Source: Stellarium
Face northwest starting about 45 minutes after sunset to find Mercury tonight. It’s located about two fists to the lower right of Venus and just 1.5° below the Pleiades star cluster. Use binoculars to see the star cluster more easily. Source: Stellarium

Ground-based telescopes won’t be able to spy MESSENGER’s impact crater because of its small size, but the BepiColombo Mercury probe, due to launch in 2017 and arrive in orbit at Mercury in 2024, should be able to get a glimpse. Speaking of spying, you can see the planet Mercury tonight (and for the next week or two), when it will be easily visible low in the northwestern sky starting about 45 minutes after sundown. The planet coincidentally makes its closest approach to the Pleiades star cluster tonight and tomorrow.

Use the occasion to wish MESSENGER a fond farewell.

The End is Near: NASA’s MESSENGER Now Running on Fumes

The MESSENGER spacecraft has been in orbit around Mercury since March 2011. Image Credit: NASA/JHU APL/Carnegie Institution of Washington

For more than four years NASA’s MESSENGER spacecraft has been orbiting our solar system’s innermost planet Mercury, mapping its surface and investigating its unique geology and planetary history in unprecedented detail. But the spacecraft has run out of the fuel needed to maintain its extremely elliptical – and now quite low-altitude – orbit, and the Sun will soon set on the mission when MESSENGER makes its fatal final dive into the planet’s surface at the end of the month.

On April 30 MESSENGER will impact Mercury, falling down to its Sun-baked surface and colliding at a velocity of 3.9 kilometers per second, or about 8,700 mph. The 508-kilogram spacecraft will create a new crater on Mercury about 16 meters across.

The impact is estimated to occur at 19:25 UTC, which will be 3:25 p.m. at the John Hopkins University Applied Physics Lab in Laurel, Maryland, where the MESSENGER operations team is located. Because the spacecraft will be on the opposite side of Mercury as seen from Earth the impact site will not be in view.

Postcards from the (Inner) Edge: MESSENGER Images of Mercury

MESSENGER captures image of curious "hollows" around a crater peak
MESSENGER image of “hollows” around a crater’s central peak – one of the many unique discoveries the mission made about Mercury. Read more here.

But while it’s always sad to lose a dutiful robotic explorer like MESSENGER, its end is bittersweet; the mission has been more than successful, answering many of our long-standing questions about Mercury and revealing features of the planet that nobody even knew existed. The data MESSENGER has returned to Earth – over ten terabytes of it – will be used by planetary scientists for decades in their research on the formation of Mercury as well as the Solar System as a whole.

“For the first time in history we now have real knowledge about the planet Mercury that shows it to be a fascinating world as part of our diverse solar system,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate. “While spacecraft operations will end, we are celebrating MESSENGER as more than a successful mission. It’s the beginning of a longer journey to analyze the data that reveals all the scientific mysteries of Mercury.”

View the top ten science discoveries from MESSENGER here.

On April 6 MESSENGER used up the last vestiges of the liquid hydrazine propellant in its tanks, which it needed to make course corrections to maintain its orbit. But the tanks also hold gaseous helium as a pressurizer, and system engineers figured out how to release that gas through the complex hydrazine nozzles and keep MESSENGER in orbit for a few more weeks.

Earth and the Moon imaged by the MESSENGER spacecraft on Oct. 8, 2014
Earth and the Moon imaged by MESSENGER on Oct. 8, 2014. Credit: NASA/JHU APL/Carnegie Institution of Washington.

On April 24, though, even those traces of helium will be exhausted after a sixth and final orbit correction maneuver. From that point on MESSENGER will be coasting – out of fuel, out of fumes, and out of time.

“Following this last maneuver, we will finally declare MESSENGER out of propellant, as this maneuver will deplete nearly all of our remaining helium gas,” said Mission Systems Engineer Daniel O’Shaughnessy. “At that point, the spacecraft will no longer be capable of fighting the downward push of the Sun’s gravity.

“After studying the planet intently for more than four years, MESSENGER’s final act will be to leave an indelible mark on Mercury, as the spacecraft heads down to an inevitable surface impact.”

Read more: Five Mercury Secrets Revealed by MESSENGER

But MESSENGER scientists and engineers can be proud of the spacecraft that they built, which has proven itself more than capable of operating in the inherently challenging environment so close to our Sun.

“MESSENGER had to survive heating from the Sun, heating from the dayside of Mercury, and the harsh radiation environment in the inner heliosphere, and the clearest demonstration that our innovative engineers were up to the task has been the spacecraft’s longevity in one of the toughest neighborhoods in our Solar System,” said MESSENGER Principal Investigator Sean Solomon. “Moreover, all of the instruments that we selected nearly two decades ago have proven their worth and have yielded an amazing series of discoveries about the innermost planet.”

True color image of Mercury (MESSENGER)
True-color image of Mercury made from MESSENGER data. Credit: NASA/JHU APL/Carnegie Institution of Washington.

The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft launched on August 3, 2004, and traveled over six and a half years before entering orbit about Mercury on March 18, 2011 – the first spacecraft ever to do so. Learn more about the mission’s many discoveries here.

The video below was released in 2013 to commemorate MESSENGER’s second year in orbit and highlights some of the missions important achievements.

Source: NASA and JHUAPL

Are you an educator? Check out some teaching materials and shareables on the MESSENGER community page here.