Mercury Spacecraft’s 2015 Death Watch Could Go One More Month

Artist's impression of the MESSENGER spacecraft, with Mercury in the background. Credit: JHUAPL

If all goes well — and there’s no guarantee of this — NASA’s venerable Mercury sentinel may have an extra month of life left in it before it goes on a death plunge to the planet’s surface. Managers think they have found a way to stretch its fuel to allow the spacecraft to fly until April, measuring the planet’s magnetic field before falling forever.

Success will partially depend on a maneuver that will take place on Jan. 21, when MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) will raise its minimum altitude. But moreover, pushing the impact back to April will be the first extended test of using helium as a propellant in hydrazine thrusters, components that were not actually designed to get this done. But the team says it is possible, albeit less efficiently.

“Typically, when … liquid propellant is completely exhausted, a spacecraft can no longer make adjustments to its trajectory,” stated Dan O’Shaughnessy, a mission systems engineer with the Johns Hopkins University Applied Physics Laboratory.

“However, gaseous helium was used to pressurize MESSENGER’s propellant tanks, and this gas can be exploited to continue to make small adjustments to the trajectory.”

A crater on Mercury at the edge of the larger Oskison crater located in the plains north of Caloris basin. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A crater on Mercury at the edge of the larger Oskison crater located in the plains north of Caloris basin. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

However long the mission does end up lasting, MESSENGER has shown us some unexpected things about the planet that is closest to the Sun. Turns out that water ice likely lies in some of the shadowed craters on its surface. And that organics, which were possibly delivered to Earth via comets and asteroids, are also on Mercury.

Atmospheric changes have been seen in the tenuous gases surrounding Mercury, showing a definite influence from the nearby Sun. And even the magnetic field lines on the planet are influenced by charged particles from our closest star.

And with MESSENGER viewing the planet from close-up, NASA and Johns Hopkins hope to learn more about volcanic flows, how crater walls are structured, and other features that you can see on the airless planet. Despite a 10-year mission and more than three years orbiting Mercury, it’s clear from MESSENGER that there is so much more to learn.

Source: Johns Hopkins University Applied Physics Laboratory

Best Space Photos Of 2014 Bring You Across The Solar System

A raw shot from the front hazcam of NASA's Opportunity rover taken on Sol 3757, on Aug. 19, 2014. Credit: NASA/JPL-Caltech

Feel like visiting a dwarf planet today? How about a comet or the planet Mars? Luckily for us, there are sentinels across the Solar System bringing us incredible images, allowing us to browse the photos and follow in the footsteps of these machines. And yes, there are even a few lucky humans taking pictures above Earth as well.

Below — not necessarily in any order — are some of the best space photos of 2014. You’ll catch glimpses of Pluto and Ceres (big destinations of 2015) and of course Comet 67P/Churyumov–Gerasimenko (for a mission that began close-up operations in 2014 and will continue next year.) Enjoy!

The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
NASA's Mars Curiosity Rover captures a selfie to mark a full Martian year -- 687 Earth days -- spent exploring the Red Planet.  Curiosity Self-Portrait was taken at the  'Windjana' Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm.  Credit: NASA/JPL-Caltech/MSSS
NASA’s Mars Curiosity Rover captures a selfie to mark a full Martian year — 687 Earth days — spent exploring the Red Planet. Curiosity Self-Portrait was taken at the ‘Windjana’ Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm. Credit: NASA/JPL-Caltech/MSSS
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn's intense magnetic environment. Credit: NASA/JPL/Space Science Institute
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn’s intense magnetic environment. Credit: NASA/JPL/Space Science Institute
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon b yNASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
The Mars Reconnaissance Orbiter took this image of a "circular feature" estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
The Mars Reconnaissance Orbiter took this image of a “circular feature” estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

Incredible Towering Structures Cast Shadows Across Saturn’s Rings

Vertical structures cause shadows on Saturn's B ring in this August 2009 picture from the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

From a distance, Saturn’s rings look like a sheer sheet, but peer up close and you can see that impression is a mistake. Shadows from rubble believed to be two miles (3.2 kilometers) high are throwing shadows upon the planet’s B ring in this image from the Cassini spacecraft.

While the picture is from 2009, it caught the eye of the lead of the Cassini imaging team, who wrote eloquently about it in a blog post recently celebrating the link between wonder and the holidays.

“I have often thought: What a surreal sight this would be if you were flying low across the rings in a shuttle craft. To your eyes, the rings would seem like a gleaming white, scored, gravelly sheet below you, extending nearly to infinity,” wrote Carolyn Porco, the lead imager for the mission at the Cassini Imaging Central Laboratory for Operations (CICLOPS).

“And as you flew, you would see in the distance a wall of rubble that, eventually, as it neared, you would come to realize towered two miles above your head. There isn’t another sight like it in the Solar System!”

A 2007 artist impression of the aggregates of icy particles that form the 'solid' portions of Saturn's rings. These elongated clumps are continually forming and dispersing. The largest particles are a few metres across.They clump together to form elongated, curved aggregates, continually forming and dispersing. Credit: NASA/JPL/Univ. of Colorado
A 2007 artist impression of the aggregates of icy particles that form the ‘solid’ portions of Saturn’s rings. These elongated clumps are continually forming and dispersing. The largest particles are a few metres across.They clump together to form elongated, curved aggregates, continually forming and dispersing. Credit: NASA/JPL/Univ. of Colorado

Besides the inherent beauty and delicacy of this picture, another notable feature is how hard it is to capture. According to CICLOPS, one can only take this photo during Saturn’s equinox — once every 15 years in Earth time! That’s because the angle of the Sun’s light reaches the plane of the rings, allowing shadows to fall. The area itself is likely filled with moonlets of a kilometer (0.62 miles) in size.

“It is possible that these bodies significantly affect the ring material streaming past them and force the particles upward, in a ‘splashing’ manner,” the CICLOPS website notes.

We’ve included more pictures of Saturn’s rings below, all taken from the Cassini spacecraft. The machine is healthy and working hard after about 10.5 years working at the planet. One of its major tasks now is to observe changes in the planet and particularly its large moon, Titan, as the system nears the solstice.

Saturn's rings. Credit: NASA/JPL/Space Science Institute.
Saturn’s rings. Credit: NASA/JPL/Space Science Institute.
Enceladus and Tethys hang below Saturn's rings in this image from the Cassini spacecraft. Credit: NASA/JPL-Caltech/SS
Enceladus and Tethys hang below Saturn’s rings in this image from the Cassini spacecraft. Credit: NASA/JPL-Caltech/SS
Raw Cassini image of Titan and Enceladus backdropped by Saturn's rings. Image Credit: NASA/JPL/Space Science Institute
Raw Cassini image of Titan and Enceladus backdropped by Saturn’s rings. Image Credit: NASA/JPL/Space Science Institute
A close look at Enceladus, with Saturn's rings in the background. Credit: NASA/JPL/Space Science Institute
A close look at Enceladus, with Saturn’s rings in the background. Credit: NASA/JPL/Space Science Institute
The Cassini spacecraft looks close at Saturn to frame a view encompassing the entire C ring. Image credit: NASA/JPL/SSI
The Cassini spacecraft looks close at Saturn to frame a view encompassing the entire C ring. Image credit: NASA/JPL/SSI
Raw image of Saturn's rings. Credit: NASA/JPL/Space Science Institute
Raw image of Saturn’s rings. Credit: NASA/JPL/Space Science Institute
Rhea poses with Saturn's rings; Janus and Prometheus are off in the distance.  Credit: NASA/JPL/Space Science Institute. Click for larger version
Rhea poses with Saturn’s rings; Janus and Prometheus are off in the distance. Credit: NASA/JPL/Space Science Institute. Click for larger version
Spokes visible in Saturn's B ring. Credit: NASA/JPL/Space Science Institute
Spokes visible in Saturn’s B ring. Credit: NASA/JPL/Space Science Institute
Looming vertical structures, seen here for the first time and created by Saturn's moon Daphnis, rise above the planet's otherwise flat, thin disk of rings to cast long shadows in this Cassini image.  Credit: CICLOPS
Looming vertical structures, seen here for the first time and created by Saturn’s moon Daphnis, rise above the planet’s otherwise flat, thin disk of rings to cast long shadows in this Cassini image. Credit: CICLOPS

Making the Trip to Mars Cheaper and Easier: The Case for Ballistic Capture

How long does it take to get to Mars
A new proposal for sending craft to Mars could save money and offer more flexible launch windows. Credit: NASA

When sending spacecraft to Mars, the current, preferred method involves shooting spacecraft towards Mars at full-speed, then performing a braking maneuver once the ship is close enough to slow it down and bring it into orbit.

Known as the “Hohmann Transfer” method, this type of maneuver is known to be effective. But it is also quite expensive and relies very heavily on timing. Hence why a new idea is being proposed which would involve sending the spacecraft out ahead of Mars’ orbital path and then waiting for Mars to come on by and scoop it up.

This is what is known as “Ballistic Capture”, a new technique proposed by Professor Francesco Topputo of the Polytechnic Institute of Milan and Edward Belbruno, a visiting associated researcher at Princeton University and former member of NASA’s Jet Propulsion Laboratory.

In their research paper, which was published in arXiv Astrophysics in late October, they outlined the benefits of this method versus traditional ones. In addition to cutting fuel costs, ballistic capture would also provide some flexibility when it comes to launch windows.

MAVEN was launched into a Hohmann Transfer Orbit with periapsis at Earth's orbit and apoapsis at the distance of the orbit of Mars. Credit: NASA
MAVEN was launched into a Hohmann Transfer Orbit with periapsis at Earth’s orbit and apoapsis at the distance of the orbit of Mars. Credit: NASA

Currently, launches between Earth and Mars are limited to period where the rotation between the two planets is just right. Miss this window, and you have to wait another 26 months for a new one to come along.

At the same time, sending a rocket into space, through the vast gulf that separates Earth’s and Mars’ orbit, and then firing thrusters in the opposite direction to slow down, requires a great deal of fuel. This in turn means that the spacecraft responsible for transporting satellites, rovers, and (one day) astronauts need to be larger and more complicated, and hence more expensive.

As Belbruno told Universe Today via email:  “This new class of transfers is very promising for giving a new approach to future Mars missions that should lower cost and risk.  This new class of transfers should be applicable to all the planets. This should give all sorts of new possibilities for missions.”

The idea was first proposed by Belbruno while he was working for JPL, where he was trying to come up with numerical models for low-energy trajectories. “I first came up with the idea of ballistic capture in early 1986 when working on a JPL study called LGAS (Lunar Get Away Special),” he said. “This study involved putting a tiny 100 kg solar electric spacecraft in orbit around the Moon that was first ejected from a Get Away Special Canister on the Space Shuttle.”

The Hiten spacecraft, part of the MUSES Program, was built by the Institute of Space and Astronautical Science of Japan and launched on January 24, 1990. It was Japan's first lunar probe. Credit: JAXA
The Hiten spacecraft, built by the Institute of Space and Astronautical Science of Japan, was Japan’s first lunar probe. Credit: JAXA

The test of the LGAS was not a resounding success, as it would be two years before it got to the Moon. But in 1990, when Japan was looking to rescue their failed lunar orbiter, Hiten, he submitted proposals for a ballistic capture attempt that were quickly incorporated into the mission.

“The time of flight for this one was 5 months,” he said. “It was successfully used in 1991 to get Hiten to the Moon.” And since that time, the LGAS design has been used for other lunar missions, including the ESA’s SMART-1 mission in 2004 and NASA’s GRAIL mission in 2011.

But it is in future missions, which involve much greater distances and expenditures of fuel, that Belbruno felt would most benefit from this method. Unfortunately, the idea met with some resistance, as no missions appeared well-suited to the technique.

“Ever since 1991 when Japan’s Hiten used the new ballistic capture transfer to the Moon, it was felt that finding a useful one for Mars was not possible due to Mars much longer distance and its high orbital velocity about the Sun. However, I was able to find one in early 2014 with my colleague Francesco Topputo.”

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit: ISRO
India’s Mars Orbiter Mission (MOM) was one of the most successful examples of the Hohmann Transfer method. Credit: ISRO

Granted, there are some drawbacks to the new method. For one, a spacecraft sent out ahead of Mars’ orbital path would take longer to get into orbit than one that slows itself down to establish orbit.

In addition, the Hohmann Transfer method is a time-tested and reliable one. One of the most successful applications of this maneuver took place back in September, when the Mars Orbiter Mission (MOM) made its historic orbit around the Red Planet. This not only constituted the first time an Asian nation reached Mars, it was also the first time that any space agency had achieved a Mars orbit on the first try.

Nevertheless, the possibilities for improvements over the current method of sending craft to Mars has people at NASA excited. As James Green, director of NASA’s Planetary Science Division, said in an interview with Scientific American: “It’s an eye-opener. This [ballistic capture technique] could not only apply here to the robotic end of it but also the human exploration end.”

Don’t be surprised then if upcoming missions to Mars or the outer Solar System are performed with greater flexibility, and on a tighter budget.

Further Reading: arXiv Astrophysics

Universe Today’s Top 10 Space Stories of 2014

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It seems a lot of the space stories of this year involve spacecraft making journeys: bouncing across a comet, or making their way to Mars. Private companies also figure prominently, both in terms of successes and prominent failures.

These are Universe Today’s picks for the top space stories of the year. Disagree? Think we forgot something? Let us know in the comments.

10. End of Venus Express

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau
Artist’s impression of Venus Express performing aerobreaking maneuvers in the planet’s atmosphere in June and July 2014. Credit: ESA–C. Carreau

This month saw the end of Venus Express’ eight-year mission at the planet, which happened after the spacecraft made a daring plunge into part of the atmosphere to learn more about its properties. The spacecraft survived the aerobraking maneuvers, but ran out of fuel after a few engine burns to raise it higher. Soon it will plunge into the atmosphere for good. But it was a productive mission overall, with discoveries ranging from a slowing rotation to mysterious “glories”.

9. Continued discoveries by Curiosity and Opportunity

1 Martian Year on Mars!  Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014.    Navcam camera raw images stitched and colorized.   Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Methane? Organics? Water? Mars appears to have had these substances in abundance over its history. Continued work from the Curiosity rover — passing its second Earth year on Mars — found methane fluctuating in Gale Crater, and the first confirmed discovery of organics on the Martian surface. Opportunity is almost 11 years into its mission and battling memory problems, but the rover is still on the move (passing 41 kilometers) to an area that could be full of clay.

8. Siding Spring at Mars and the level of study of the comet by other missions at Mars

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

We had a rare opportunity to watch a comet make a grazing pass by Mars, not close enough to pose significant danger to spacecraft, but definitely close enough to affect its atmosphere! Siding Spring caught everyone’s attention throughout the year, and did not disappoint. The numerous spacecraft at the Red Planet caught glimpses, including from the surface and from orbit. It likely created a meteor shower and could alter the Martian atmosphere forever.

7. Kepler K2

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

The Kepler space telescope lost the second of its four pointing devices last year, requiring a major rethink for the veteran planet hunter. The solution was a new mission called K2 that uses the pressure of the Sun to maintain the spacecraft’s direction, although it has to flip every 83 days or so to a new location to avoid the star’s glare. It’s not as precise as before, but with the mission approved we now know for sure K2 can locate exoplanets. The first confirmed one is a super-Earth.

6. MAVEN at Mars

An artist's conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center
An artist’s conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center

Where did the Martian atmosphere go? Why was it so thick in the past, allowing water to flow on the surface, and so thin right now? The prevailing theory is that the Sun’s pressure on the Martian atmosphere pushed lighter isotopes (such as that of hydrogen) away from the planet, leaving heavier isotopes behind. NASA is now investigating this in more detail with MAVEN (Mars Atmosphere and Volatile Evolution), which arrived at the planet this fall.

5. India’s MOM

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit ISRO
Artist’s impression of India’s Mars Orbiter Mission (MOM). Credit ISRO

India made history this year as only the third entity to successfully reach the Red Planet (after the United States and Europe). While updates from the Mars Orbiter Mission have been slow in recent weeks, we know for sure that it observed Siding Spring at Mars and it has been diligently taking pictures of the Red Planet, such as this one of the Solar System’s largest volcano and a huge canyon on Mars.

4. Accidents by Virgin and Orbital

NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)
NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)

In one sobering week in October, the dangers of space travel were again made clear after incidents affected Virgin Galactic and Orbital Sciences. Virgin lost a pilot and seriously injured another when something went seriously awry during a flight test. Investigators have so far determined that the re-entry system turned on prematurely, but more details are being determined. Orbital meanwhile suffered the catastrophic loss of one of its Antares rockets, perhaps due to Soviet-era-designed engines, but the company is looking at other ways to fulfill its NASA contractual obligations to send cargo to the International Space Station.

3. SpaceX rocket landing attempts

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30.  Credit: SpaceX
The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

SpaceX is attempting a daunting technological feat, which is bringing back its rocket first stages for re-use. The company is hoping that this will cut down on the costs of launch in the long term, but this technological innovation will take some time. The Falcon 9 rocket stage that made it back to the ocean in July was deemed a success, although the force of the landing broke it apart. Next, SpaceX is trying to place its rocket on an ocean platform.

2. Orion flight

Orion Service Module fairing separation. Credit: NASA TV
Orion Service Module fairing separation. Credit: NASA TV

NASA’s spacecraft for deep space exploration (Orion) successfully finished its first major uncrewed test this month, when it rode into orbit, made a high-speed re-entry and successfully splashed down in the ocean. But it’s going to be a while before Orion flies again, likely in 2017 or even 2018. NASA hopes to put a crew on this spacecraft type in the 2020s, potentially for trips to the Moon, an asteroid or (more distantly) Mars.

1. Rosetta

New Rosetta mission findings do not exclude comets as a source of water in and on the Earth's crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)
New Rosetta mission findings do not exclude comets as a source of water in and on the Earth’s crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)

It’s been an exciting year for the Rosetta mission. First it woke up from a lengthy hibernation, then it discovered that Comet 67P/Churyumov-Gerasimenko looks a bit like a rubber duckie, and then it got up close and released the Philae lander. The soft touchdown did not go as planned, to say the least, as the spacecraft bounced for two hours and then came to rest in a spot without a lot of sunlight. While Philae hibernates and controllers hope it wakes up again in a few months, however, science results are already showing intriguing things. For example, water delivered to Earth likely came mostly from other sources than comets.

NASA’s NuSTAR Scans the Sun with X-ray Vision

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays above particularly active regions (NASA/JPL-Caltech/GSFC)

What if you had x-ray vision like Superman? Or if those funny-looking glasses they advertised in comic books in the 60s actually worked?* Then with those our Sun might look something like this, lighting up with brilliant flares of high-energy x-rays as seen by NASA’s super-sensitive NuSTAR Space Telescope (with a little help from SDO.)

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched aboard a Orbital Sciences Pegasus rocket, on June 13, 2012. (Credit: NASA/Caltech-JPL)

Of course NASA’s orbiting NuSTAR x-ray telescope is not like a typical medical imaging system. Instead of looking for broken bones, NuSTAR (short for Nuclear Spectroscopic Telescope Array) is made to detect high-energy particles blasting across the Universe from exotic objects like supermassive black holes, pulsars, and supernovae.

Read more: Stars Boil Before They Blow Up, Says NuSTAR

But astronomers suggested turning NuSTAR’s gaze upon our own Sun to see what sorts of x-ray activity may be going on there.

“At first I thought the whole idea was crazy,” said Fiona Harrison, a Professor of Physics and Astronomy at Caltech and PI for the NuSTAR mission. “Why would we have the most sensitive high energy X-ray telescope ever built, designed to peer deep into the universe, look at something in our own back yard?”

As it turns out NuSTAR was able to reveal some very interesting features on the Sun, showing where the corona is being heated to very high temperatures. The image above shows NuSTAR’s first observations, overlaid onto data acquired by NASA’s Solar Dynamics Observatory.

NuSTAR data is shown in green and blue, revealing high-energy emission around – but not exactly aligned with – active regions on the Sun where solar plasma is being heated to more than 3 million degrees. The red represents ultraviolet light captured by SDO and shows material in the solar atmosphere at a slightly cooler 1 million degrees.

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays near active regions and coronal loops (NASA/JPL-Caltech/GSFC)
The NuSTAR data overlaid on the full disk SDO image, rotated so north on the Sun is up. (NASA/JPL-Caltech/GSFC)

Because the Sun isn’t terribly intense in high energy x-ray output it’s safe to observe it with NuSTAR — it’s not likely to burn out the telescope’s sensors. But what NuSTAR can detect may help astronomers determine the exact mechanisms behind the intense coronal heating that occurs in and above the Sun’s chromosphere. If so-called “nanoflares” — miniature and as-yet-invisible versions of solar flares — are responsible, for instance, NuSTAR might be able to catch them in action for the first time.

Read more: Warm Coronal Loops May Hold the Key to Hot Solar Atmosphere

“NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said David Smith, solar physicist and member of the NuSTAR team at the University of California, Santa Cruz.

In addition NuSTAR could potentially detect the presence of axions in the Sun’s core — hypothesized particles that may make up dark matter in the Universe.

NuSTAR may not be a “solar telescope” per se, but that won’t stop astronomers from using its unique abilities to learn more about the star we intimately share space with.

“NuSTAR will give us a unique look at the Sun, from the deepest to the highest parts of its atmosphere.”

– David Smith, solar physicist, University of California Santa Cruz

Read more in a JPL article here.

*I never did get my box of 100 army men, either. Then again, I may have ordered a few decades too late.

Walk Beside China’s Moon Rover In Best Chang’e-3 Mission Pictures Ever

Taking the Chinese Yutu rover out for a spin on the Moon. The mission began in December 2013. Credit: Chinese Academy of Sciences

It’s been just over a year since China wowed the world with the first soft Moon landing in almost 40 years. The Chang’e-3 robotic lander made it all the way to Mare Imbrium (Sea of Rains) on Dec. 14, 2013, quickly deploying the Yutu rover for a spin.

Mission updates have been sparse in recent months, but the Planetary Society and a forum on Unmanned Spaceflight recently pointed out a new image archive. These pictures are so high-definition, it’s almost as good as being on the Moon beside the rover.

While some of the images are familiar to followers of the mission, what makes the image archive stick out is how high-definition many of them are.

China's Yutu rover scoots around on the Moon in this undated photo. The mission began in December 2013. Credit: Chinese Academy of Sciences
China’s Yutu rover scoots around on the Moon in this undated photo. The mission began in December 2013. Credit: Chinese Academy of Sciences

A few great shots have been sent back from the surface, including a set from January that was combined into a 360-degree panorama by Marco Di Lorenzo and Universe Today’s Ken Kremer. But this archive contains a wealth of them.

The lander/rover team made it to the surface last year equipped with high-definition video cameras, prepared to catch some of the first new views of the lunar surface from close up since the Apollo robotic/human and Soviet robotic moon landing era of the 1960s and 1970s.

While Chinese officials reportedly said the rover would last three months and the lander a year, difficulties quickly cropped up.

Chang'e 3 viewed from the Yutu lunar rover. The mission began in December 2013. Credit: Chinese Academy of Sciences
Chang’e-3 viewed from the Yutu lunar rover. The mission began in December 2013. Credit: Chinese Academy of Sciences

Shortly before Yutu entered a planned hibernation for its second lunar night (about two weeks on Earth) in January, a technical problem was reported that was later identified as a problem with its solar panel.

A “control circuit malfunction”, according to the Xinhua news agency, left the rover at risk of not waking up after that second hibernation. The mast it controlled was supposed to lower and protect some of the rover’s sensitive electronics. Yutu survived the night, but was left unable to move through the third lunar day.

According to the Planetary Society (based on Chinese news media reports), there are no current status updates for Yutu, but Chang’e-3 is still working a year after the landing.

The Yutu rover leaves the Chang'e 3 lunar lander in December 2013. Credit: Chinese Academy of Sciences
The Yutu rover leaves the Chang’e-3 lunar lander in December 2013. Credit: Chinese Academy of Sciences
The Chang'e 3 mission's view of lunar rocks. The mission began in December 2013. Credit: Chinese Academy of Sciences
The Chang’e-3 mission’s view of lunar rocks. The mission began in December 2013. Credit: Chinese Academy of Sciences

Exploring Venus By Airship: Cool Concept, But Certainly Not New

An artist concept of the view from an airship orbiting Venus. Credit: NASA Langley HAVOC team.

Venus presents a special challenge to space explorers. Yes, there is a surface, but hellish temperatures and atmospheric pressure on the surface of Venus has a tendency to crush spacecraft fairly quickly. Short of building a submarine-rated surface explorer, maybe there’s a better way to look at the hothouse planet? A newly proposed NASA concept suggests using airships. Yes, airships with people in them.

But as you will see below, balloons and airships have been discussed extensively in the past decade by NASA and the Europeans as the best way of exploring Venus without needing to touch its hellish surface.

Venus may seem nothing but a distraction to an agency that is talking about exploring Mars in the 2030s (with Orion’s recent uncrewed test being the first advertised step of that, although critics say it won’t get us to the Red Planet). Leaving that aside, however, exploring Venus by balloon is not a new idea at all, even within NASA. The backers of the High Altitude Venus Operational Concept (HAVOC) even argue we should head to Venus before Mars, as one of the co-leads recently told Universe Today.

“A human mission to Venus is not on a lot of people’s radar, but we’ve really enjoyed working on the concepts for this mission,” said Langley’s Chris Jones, project co-lead, in an interview with Universe Today’s Nancy Atkinson. “This was an internal study: what does the future of humankind in space look like? Frankly, we see Venus as potentially no later than the second planetary destination that humans might go to, after Mars or even before Mars.”

Artist's conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)
Artist’s conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)

Why? Jones explained that because it takes a shorter time to get to Venus, that makes it a “stepping stone or practice run” to get humans to Mars. “The best would be a long lived surface lander, but technology issues for surface robotic missions are pretty significant, and a human mission to surface is nearly insurmountable. What’s left is a good platform for a science mission at mid-level altitudes, and it paints a good picture for a human mission in the atmosphere at 50 kilometers.”

The proposed flight profile of the HAVOC airship at Venus.  Credit: Space Mission Analysis Branch, NASA Langley Research Center.
The proposed flight profile of the HAVOC airship at Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

The clouds of Venus, Jones said, present an ideal spot for humans to roam from a spacecraft. The conditions at 50 kilometers (31 miles) above the surface are about the same pressure and atmosphere as Earth.

“Air itself is a lifting gas at those altitudes,” he added, “so you don’t have to bring some ridiculous supply of helium for this to work. And the rest of the environmental parameters at 50 kilometers are actually quite nice: the gravity is about the same as on Earth’s surface, the atmospheric pressure is about the same as Earth, and we can potentially manufacture a significant amount of that air by processing carbon dioxide. These are some of the facts we saw early on that inspired us to do this.”

There also would be more solar power and protection from radiation than Mars, and the temperature — although fairly hot — would be possible to account for fairly easily in spacecraft designs.

Jones provided some details on how the crew would spend about 30 days exploring the planet after a journey there and back (440 days total). Bear in mind that the mission is just in the early stages of even thinking about development. Cost, timeline, approvals and many other hurdles would need to be overcome before it could even become a reality.

Details of the proposed HAVOC airship mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.
Details of the proposed HAVOC airship mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

“The big parameters of Venus’ atmosphere is the big longitudinal winds,” Jones said. “If you just rode them, it would take you about 110 hours to circle the planet. The other component of winds would push you towards the poles. In order to stay near the equator where there is less turbulence, the airship would ride the longitudinal winds while using a propulsion system to counter those winds pushing you towards the poles.”

The concept arose from science objectives for the planet out of NASA’s Venus Exploration Analysis Group, Jones said, whose aims include understanding the atmosphere and its interaction with the surface. NASA’s Langley Research Center also has human objectives they considered, such as showing how people can work in deep space and develop advanced technologies to accomplish that.

The proposed Venus exploration plan for HAVOC. Credit: Space Mission Analysis Branch, NASA Langley Research Center.
The proposed Venus exploration plan for HAVOC. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

The HAVOC mission would start with a series of phased exploration sorties. The first phase would be examining the Venusian atmosphere with a robotic mission, and the second would be crewed ride to orbit that would include deploying an uncrewed robotic airship in the atmosphere.

The third phase is the 30-day mission described above, while the fourth phase could potentially be as long as a year. If it gets to a Phase 5, that would be a “permanent presence in Venus’ atmosphere”, Jones said.

A size comparison of ships for the proposed HAVOC mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.
A size comparison of ships for the proposed HAVOC mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

Of note: balloons have been discussed before within NASA, particularly by Venus exploration advocate Geoffrey Landis of NASA Glenn, and Jones told Universe Today that this new team found much inspiration from Landis’ previous work.

Universe Today interviewed Landis in 2008 about missions he proposed about human-colony airships and uncrewed solar-powered airplanes. And in this 2010 study, he suggested three ideas for exploring the surface using uncrewed low-altitude balloons. One would skim the clouds around 25 kilometers (15.6 miles) and two other concepts (more rigid, naturally), would fly about 5 kilometers (3 miles) high. This was presented at an American Institute of Aeronautics and Astronautics meeting that year.

The remaining core of the High Altitude Venus Operational Concept (HAVOC), a far-out mission being developed by NASA, in this artist's concept. Credit: NASA Langley Research Center/YouTube (screenshot)
The remaining core of the High Altitude Venus Operational Concept (HAVOC), a far-out mission being developed by NASA, in this artist’s concept. Credit: NASA Langley Research Center/YouTube (screenshot)

“A notable advantage of the carbon dioxide atmosphere of Venus is that this allows a much wider range of lifting gasses for a balloon; not merely the hydrogen or helium usually used for terrestrial balloons,” Landis wrote in the paper. “Oxygen and nitrogen, in fact, are lifting gasses in the Venus atmosphere (although not good ones). At the altitudes considered, two other lifting gasses are water (which is a gas at the temperatures considered) and ammonia.”

Landis was also not deterred by harsh surface conditions. While Venus’ surface is difficult — its  480 Celsius (900 Fahrenheit) thick atmosphere destroyed the Soviet Venera probes in minutes — he’s secured early-stage NASA funding for a robotic landsailing rover concept nicknamed “Zephyr”. “Sailing on Venus! How cool is that? The project will have an exceptional public engagement factor,” the description page for the Venus Landsailing Rover reads.

In a nutshell, Glenn has created electronics that can continue to function in temperatures similar to what are found on the surface. Simulations also show that solar cells would work, albeit at reduced efficiency. Hence the idea to use a heavily-reinforced landsail to take advantage of Venus’ 100-times-more-pressure-than-Earth atmosphere at the surface. Wind speeds are less than a meter of second, but have terrific force behind them. And at least some of Venus appears to be flat, with rocks only a centimeter thick in pictures from Venera.

Artist's concept for a landsail rover on Mars, based on an idea by NASA's Geoffrey Landis. Credit: NASA
Artist’s concept for a landsail rover on Mars, based on an idea by NASA’s Geoffrey Landis. Credit: NASA

Balloons have also been considered by the European Space Agency, particularly in the form of an uncrewed Venus Entry Probe discussed in detail in this presentation by Surrey Satellite Technology Ltd. It would include a Low Venus Orbiter that would map the planet to complement closer-to-ground measurements, a Venus Relay Satellite that would send information from the balloon, and the “aerobot” itself.

“The aerobot consists of a long-duration balloon and gondola … that will analyze the Venusian middle cloud layer at an altitude of ~55 km, where the environment is relatively benign. The balloon will deploy a swarm of active ‘ballast’ micro-sondes, which, once deployed, will determine vertical profiles of the lower atmosphere,” the presentation reads. More detailed information is available from this 2004 ESA workshop presentation by Surrey and this ESA webpage, which says the study was completed in 2005.

Students have even explored Venusian balloon ideas, such as in the 2014 Summer School Alpbach cosponsored by the European Space Agency. An uncrewed idea called EvolVe suggests a joint orbiter and balloon mission to see how tectonic activity and volcanoes affected the surface of Venus, among other scientific goals. The balloon would hover in the same general region, about 50 to 60 km (31 miles to 37 miles),  and probe the surface using radar and other tools. It’s one of two concepts selected for further investigation that could lead to a science conference presentation and/or science journal publication.

Star Trekking: We Humans Can Beam Tools Into Space Without A Transporter

Expedition 42 astronaut Butch Wilmore holds up a 3-D-printed rachet, the first such tool made in space. Credit: NASA

In the 1960s, we thought the best way of sending stuff between Earth and space was through a transporter. These days, turns out all it takes is an e-mail and a special 3-D printer. The first tool created in space, a rachet, was made last week on the International Space Station using plans beamed from Earth. Now, we get to see if it actually works.

The printer has been active for a few weeks, making test items that had already been done on Earth. But for this particular item, manufacturer Made In Space chose to take an additional risk: creating a tool from plans that were done almost at the last minute, similar to how a real mission would work when astronauts have a sudden need for a part.

“Made In Space uplinked a design which did not exist when the printer was launched. In fact the ratchet was designed, qualified, tested, and printed in space in less than a week,” the company wrote on its blog.

NASA astronaut Butch Wilmore (Expedition 42 commander on the International Space Station) holds the first 3-D printed part made in space, which was created on Nov. 25, 2014. Credit: NASA
NASA astronaut Butch Wilmore (Expedition 42 commander on the International Space Station) holds the first 3-D printed part made in space, which was created on Nov. 25, 2014. Credit: NASA

And it wasn’t as simple as just sending up the plans and hoping for the best. NASA had to give the safety thumbs-up before it went up there. Also, the plans (once sent to the space station) were verified as okay to go by Made In Space engineers before the crew got the okay to print last week.

The rachet took about four hours to print in space, which is a heck of a lot faster than sitting around waiting for a cargo ship — especially when said ship is delayed, as what happened recently to the SpaceX Dragon that was supposed to launch on Friday (Dec. 19) and has now been pushed back to at least Jan. 6.

While the rachet could be of use for simple repairs in space, it won’t be staying up there long. Just as with all the other parts printed so far, it’s going to be sent back to Earth for analysis to make sure it can stand up to the rigors of a space mission. Made In Space will soon have a more robust printer going up to station, and wants to make sure all the kinks are worked out before then.

Source: Made In Space

NASA’s First Orion Crew Module Arrives Safely Back at Kennedy Space Center

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – After a history making journey of more than 66,000 miles through space, ocean splash down and over 2700 mile cross country journey through the back woods of America, NASA’s pathfinding Orion crew capsule has returned to its home base at the Kennedy Space Center in Florida.

“The Orion mission was a spectacular success,” said Jules Schneider, Lockheed Martin Program manager for Orion at KSC, during a homecoming event attended by space journalists including Universe Today on Friday, Dec. 19, 2014.

“We achieved 85 of 87 test objectives,” noted Schneider. “Only an up righting air bag did not deploy fully after splashdown. And we are looking into that. Otherwise the mission went extremely well.”

Orion’s early homecoming was unexpected and a pleasant surprise since it hadn’t been expected until next week just prior to Christmas.

Orion flew on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that started NASA’s long road to send astronauts beyond Earth and eventually to Mars in the 2030s.

The media were able to see the entire Orion capsule from top to bottom, including the exposed, blackened and heat scorched heat shield which had to protect the vehicle from fiery reentry temperatures exceeding 4000 F (2200 C).

 Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com

Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Orion is being stored for now inside the Launch Abort System Facility (LASF)

“The heat shield worked extremely well and did its job,” Schneider told Universe Today.

Engineers took three samples from the 16.5 foot diameter heat shield and they are in for analysis.

“I don’t know if you can tell, we’ve actually taken a few core samples off the heat shield already and we’re looking at those,” said Schneider. “We will be removing the heat shield from this vehicle later in February so we will get an ever better look at it.”

One of the main objectives was to test the heat shield during the high speed atmospheric plummet of about 20000 mph (32000 kph) that reached approximately 85% of what astronauts will experience during a return from future voyages to Mars and Asteroids in the next decade and beyond.

“All of Orion’s system performed very well,” Schneider told me in an interview beside Orion.

“And the capsule used only about 90 pounds of its about 300 pounds of hydrazine propellant stored on board.”

“All of the separation events went beautifully and basically required virtually no maneuvering fuel to control the attitude of the capsule. The expected usage was perhaps about 150 pounds.”

“Therefore there is a lot more hydrazine fuel on board than we expected. And we had to be cautious in transporting Orion across the country.”

Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Lockheed Martin is the Orion prime contractor.

The Orion arrived module arrived back at KSC, Thursday afternoon after being hauled across our country mostly on back country roads, and with no publicity or fanfare, on an unmarked flat bed truck to minimize interaction with the public.

“It was like a black ops operation,” said one of the team members responsible to safely transporting Orion from Naval Base San Diego to KSC.

NASA obtained special permits to move Orion from all the states travelled between California and Florida.

“We didn’t want any publicity because the capsule was still loaded with residual toxic chemicals like ammonia and hydrazine.” These were used to power and fuel the capsule.”

Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Watch for more details and photos later.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com