Dawn Spacecraft Will Take Pictures Of Its Target Dwarf Planet Today

Artist's conception of the Dawn spacecraft approaching the asteroid Ceres. Credit: NASA/JPL-Caltech

The year 2015 is going to be a big one for far-off spacecraft. Among them is the long-running Dawn mission, which is on its way to the dwarf planet Ceres (by way of Vesta) and should settle into orbit in April after a radiation blast delayed the original flight plan.

And today (Dec. 1) comes a special day for Dawn — when it turns its cameras to Ceres to capture the world, which will appear about nine pixels across. The reason? Besides scientific curiosity, it turns out to be a perfect calibration target, according to NASA.

“One final calibration of the science camera is needed before arrival at Ceres,” wrote Marc Rayman, the mission director at the Jet Propulsion Laboratory, in a recent blog post.

“To accomplish it, the camera needs to take pictures of a target that appears just a few pixels across. The endless sky that surrounds our interplanetary traveler is full of stars, but those beautiful pinpoints of light, while easily detectable, are too small for this specialized measurement. But there is an object that just happens to be the right size. On Dec. 1, Ceres will be about nine pixels in diameter, nearly perfect for this calibration.”

The Dawn spacecraft's first image of Ceres, taken July 20, 2010. Credit: NASA/JPL-Caltech/MPS/DLR/IDA
The Dawn spacecraft’s first image of Ceres, taken July 20, 2010. Credit: NASA/JPL-Caltech/MPS/DLR/IDA

This isn’t the first picture of Ceres by Dawn — not by a long-shot — but it sure will loom bigger than you see in the image at left, which was taken in 2010. Dawn hadn’t even arrived at Vesta at the time, the blog post points out, and the spacecraft was about 1,300 times further from Ceres then as it is now. Translating that into visual magnitude, the new pictures of Ceres will show an appearance about as bright as Venus, from Earth’s perspective.

In October, the Dawn blog said that more pictures of Ceres are planned on Jan. 13, when Ceres will appear 25 pixels across. This won’t be quite the best view ever — that was taken by the Hubble Space Telescope, which you can see below, — but just wait a couple of weeks. The mission planners say that by Jan. 26, the images will be slightly better. On Feb. 4, they will be twice as good and by Feb. 20, seven times as good.

As with the calibration photo taken today, these photos in 2015 will have a double purpose: optical navigation. It’s to help the spacecraft figure out where to go, because our pictures of Ceres are so fuzzy that mission planners will need more exact information as the mission proceeds.

You can read more information about the picture-taking, and Dawn’s planned approach to Ceres, in the Nov. 28 entry of the Dawn blog.

Pictures of the asteroid Ceres taken by the Hubble Space Telescope and released in 2005. It shows the asteroid moving over two hours and 20 minutes, which is about a quarter of a day on Ceres (nine hours). At the time, scientists said the bright spot is a mystery. Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)
Pictures of the asteroid Ceres taken by the Hubble Space Telescope and released in 2005. It shows the asteroid rotating over two hours and 20 minutes, which is about a quarter of a day on Ceres (nine hours). At the time, scientists said the bright spot is a mystery. Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)

Probing Pluto’s Paltry Atmosphere Using A Solar Eclipse And Spacecraft

Artist's conception of the Pluto system from the surface of one of its moons. Credit: NASA, ESA and G. Bacon (STScI)

Pluto is so far away from us and so tiny that it’s hard to glean even basic facts about it. What is its tenuous atmosphere made of? And how to observe it during NASA’s New Horizons very brief flyby next July? A recent Johns Hopkins blog post explains how a careful maneuver post-Pluto will let investigators use the Sun to examine the dwarf planet’s true nature.

Investigators will use an instrument called Alice, an ultraviolet spectrometer, to look at the atmosphere around Pluto and its largest moon, Charon. Alice is capable of examining the gases in the atmosphere using a large “airglow” aperture (4 by 4 centimeters) and also using the Sun for observation with a smaller, 1-mm solar occultation channel.

“Once New Horizons flies past Pluto, the trajectory will conveniently (meaning, carefully planned for many years) fly the spacecraft through Pluto’s shadow, creating an effect just like a solar eclipse here on Earth,” wrote Joel Parker, New Horizons co-investigator, in a blog post.

New Horizons
New Horizons spacecraft. Image Credit: NASA

“So we can (and will) just turn the spacecraft around and stare at the Sun, using Alice as it goes behind Pluto to measure how the Sun’s ultraviolet light changes as that light passes through deeper and deeper parts of Pluto’s atmosphere. This technique lets us measure the composition of Pluto’s atmosphere as a function of altitude.”

And guess where the technique was used not too long ago? Titan! That’s a moon of Saturn full of hydrocarbons and what could be a precursor chemistry to life. The moon is completely socked in with this orange haze that is intriguing. Scientists are still trying to figure out what it is made of — and also, to use our understanding of it to apply to planets outside our solar system.

When a huge exoplanet passes in front of its star, and it’s close enough to Earth, scientists are starting to learn how to ferret out information about its chemistry. This shows them what temperature the atmosphere is like and what it is made of, although it should be emphasized scientists are only starting on this work.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view.  Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

The goal of performing these transit observations of Titan was to understand how haze on an exoplanet might blur the observations. From four passes with the Cassini spacecraft, the team (led by Tyler Robinson at NASA’s Ames Research Center) found that haze would make it difficult to get information from all but the upper atmosphere.

“An additional finding from the study is that Titan’s hazes more strongly affect shorter wavelengths, or bluer, colors of light,” NASA stated at the time. “Studies of exoplanet spectra have commonly assumed that hazes would affect all colors of light in similar ways. Studying sunsets through Titan’s hazes has revealed that this is not the case.”

The nature of Pluto will better come to light when New Horizons makes its pass by the planet in July 2015. Meanwhile, controllers are counting down the days until the spacecraft emerges from its last hibernation on Saturday (Dec. 6).

Source: Johns Hopkins Applied Physics Laboratory

Cool NASA Animation Beautifully Details Every Step of Orion’s First Launch!

Orion atop Delta 4 Heavy Booster. Credit: NASA/Kim Shiflett

Video Caption: Animation details NASA’s Orion Exploration Flight Test-1 (EFT-1) mission launching on Dec. 4. 2014. Credit: NASA

It’s not Science Fiction! It’s Not Star Trek!

No. It’s a really, really big NASA Mission! It’s Orion!

In fact, it’s the biggest and most important development in US Human Spaceflight since the end of the Space Shuttle Program in 2011.

Orion is launching soon on its first flight, the pathfinding Exploration Flight Test-1 (EFT-1) mission and sets NASA on the path to send humans to Mars in the 2030s.

Watch this cool NASA animation beautifully detailing every key step of Orion’s First Launch!

Orion is designed to take humans farther than they’ve ever gone before. Even farther into deep space than NASA’s Apollo moon landing which ended more than four decades ago!

We are T-MINUS 4 Days and Counting to the inaugural blastoff of Orion as of today, Sunday, November 30, 2014.

To learn even more about the 8 major events and goals happening during Orion’s EFT-1 mission be sure to check out my recent story with NASA’s fabulous new set of infographics – here.

Every aspect of the final processing steps now in progress by engineers and technicians from NASA, rocket provider United Launch Alliance, and Orion prime contractor Lockheed Martin is proceeding smoothly and marching towards launch.

Orion’s move to Launch Complex-37. Credit: Mike Killian
Orion’s move to Launch Complex-37. Credit: Mike Killian

Orion will lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

EFT-1 will test the rocket, second stage, jettison mechanisms as well as avionics, attitude control, computers and electronic systems inside the Orion spacecraft.

Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

NASA TV will provide several hours of live coverage

Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com
Here’s how Orion EFT-1 Launch will look!
Delta 4 Heavy rocket and super secret US spy satellite roars off Pad 37 on June 29, 2012, from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com

Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

Launch - It’s going to be loud. It’s going to be bright. It’s going to be smoky. Engines are fired, the countdown ends and Orion lifts off into space atop the United Launch Alliance Delta IV Heavy rocket from the launch pad at Cape Canaveral in Florida.  Credit: NASA
Launch – It’s going to be loud. It’s going to be bright. It’s going to be smoky. Engines are fired, the countdown ends and Orion lifts off into space atop the United Launch Alliance Delta IV Heavy rocket from the launch pad at Cape Canaveral in Florida. Credit: NASA

………….

Learn more about Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 1-5: “Orion EFT-1, SpaceX CRS-5, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

IMG_7780a_Delta 4 Heavy_Ken Kremer

Dive teams attach tow lines to Orion test capsule during Aug. 15 recovery test at Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
Dive teams attach tow lines to Orion test capsule during Aug. 15, 2013 recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

Delaying Death: Mercury Spacecraft Firing Engines To Stay Up Until 2015

Illustration of MESSENGER in orbit around Mercury (NASA/JPL/APL)

Don’t take these spectacular Mercury images (below the jump) for granted. Three weeks ago, NASA’s orbiting Mercury spacecraft did an engine fire to boost its altitude above the hothouse planet. Another one is scheduled for January.

But all this will do is delay the end of the long-running mission — the first one to orbit Mercury — until early 2015, the Johns Hopkins Applied Physics Laboratory wrote in an update. These maneuvers “extend orbital operations and delay the probe’s inevitable impact onto Mercury’s surface until early next spring,” the organization said in a statement.

Until MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) flew by Mercury for the first time in January 2008, we knew very little about the planet. The only close-up pictures previously came from Mariner 10, which whizzed by a few times in 1974-75. After a few flybys, MESSENGER settled into orbit in 2011.

A 3-D image of Balanchine crater on Mercury obtained by the MESSENGER spacecraft. Scientists are examining the region to learn more about its oddly shaped ejecta, which may have occurred when one impact crater dumped material on top of another pile. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
A 3-D image of Balanchine crater on Mercury obtained by the MESSENGER spacecraft. Scientists are examining the region to learn more about its oddly shaped ejecta, which may have occurred when one impact crater dumped material on top of another pile. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

In that brief span of years, MESSENGER has taught us that Mercury is a different planet than we imagined. In a statement this August celebrating the spacecraft’s 10th launch anniversary, NASA identified several things that made MESSENGER’s science special:

  • Mercury’s high density compared to other planets remains a mystery. MESSENGER investigations found a surface that didn’t have a lot of iron in it, but lots of volatile materials such as sodium and sulfur.
  • The surface had volcanoes on it and still has water ice in permanently shadowed craters near the poles.
  • Its magnetic field produces weird effects that are still being examined. NASA speaks of “unexplained bursts of electrons and highly variable distributions of different elements” in its tenuous atmosphere, called an exosphere.
This is an Andy Warhol-like image of an unnamed crater near Mercury's north pole. Data obtained by the MESSENGER spacecraft makes scientists suspect there is water ice inside the 15-mile (24-kilometer) divot. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
This is an Andy Warhol-like image of an unnamed crater near Mercury’s north pole. Data obtained by the MESSENGER spacecraft makes scientists suspect there is water ice inside the 15-mile (24-kilometer) divot. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“Our only regret is that we have insufficient propellant to operate another 10 years, but we look forward to the incredible science returns planned for the final eight months of the mission,” stated Andy Calloway, MESSENGER mission operations manager at the Johns Hopkins University Applied Physics Laboratory, at the time.

MESSENGER has done several orbital-boosting maneuvers in recent months to prolong the mission as possible. The first one in June adjusted its orbit to between 71.4 miles (115 kilometers) and 97.2 miles (156.4 kilometers), while the second in September went lower: a minimum of 15.7 miles (25.2 kilometers) to 58.2 miles (93.7 kilometers).

As of late October, MESSENGER’s minimum altitude was 115.1 miles (185.2 miles) and it took roughly eight hours for it to orbit Mercury. Once it finally crashes, Europe’s and Japan’s BepiColombo is expected to be the next Mercury orbiting mission. It launches in 2016, but will take several flybys past planets to get there and won’t arrive until 2024.

Ice is lurking at the bottom of these craters on Mercury in this double image. From left to right, the large craters are  Chesterton, Tryggvadóttir, and Tolkien. The right-hand image is stretched to show the permanent dark bottoms in each crater. Data is from the NASA MESSENGER mission. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Ice is lurking at the bottom of these craters on Mercury in this double image. From left to right, the large craters are Chesterton, Tryggvadóttir, and Tolkien. The right-hand image is stretched to show the permanent dark bottoms in each crater. Data is from the NASA MESSENGER mission. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

‘Meteoric Smoke’: Comet Siding Spring Could Alter Mars Chemistry Permanently

Observations of Comet Siding Spring Oct. 19 by the Mars Orbiter Mission. Credit: Indian Space Research Organisation

Feeling lucky? Events such as the Comet Siding Spring approach by Mars in October only happen about once every eight million years, according to NASA.

And after we were treated to spectacular views from the agency’s spacecraft (see Curiosity and Opportunity and MAVEN, for example), we now have fresh pictures this month from an Indian mission. Also, NASA has released science results suggesting that the chemistry of Mars’ atmosphere could be changed forever from the close encounter.

“The image in the center shows a streak … radiating out of the comet’s nucleus (out of frame), possibly indicating the jet from [the] comet’s nucleus,” the Indian Science Research Organisation wrote of the above image sequence on its Facebook mission page.

“Usually jets represent outgassing activity from [the] vents of the comet-nucleus, releasing dust and ice crystals. The outgassing activity gradually increases as the comet moves closer to the Sun.”

Artist view of the comet passing closest to Mars this Sunday. At the time, the Mars orbiters from the U.S., Europe and India will be huddled on the opposite side of the planet to avoid possible impacts from comet dust. Credit: NASA
Artist view of the comet passing closest to Mars this Sunday. At the time, the Mars orbiters from the U.S., Europe and India will be huddled on the opposite side of the planet to avoid possible impacts from comet dust. Credit: NASA

The comet’s dust likely produced a meteor shower or meteor storm when particles from it crashed into the upper atmosphere, which “literally changed the chemistry,” added Jim Green, director of NASA’s planetary science division, in a recent discussion highlighted on an agency blog.

The agency says the dust created vaporized metals, which will eventually transform to dust or “meteoric smoke.” MAVEN (which stands for Mars Atmosphere and Volatile EvolutioN) will be monitoring the long-term effects. Possible results include high-altitude clouds or at the most extreme, maybe permanently altering what the chemistry of the atmosphere is. Not a bad thing for a mission to study shortly after it arrived at Mars.

You can view more science results from NASA’s studies of Siding Spring in this recent Universe Today story from Bob King, which talks in more detail about the meteor shower, new layers in the Mars atmosphere and the omnipresent dust.

Venus Express Spacecraft, Low On Fuel, Does Delicate Dance Above Doom Below

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau

It’s been an interesting year for Venus Express. A few months ago, controllers deliberately dipped the spacecraft into the atmosphere of the planet — for science purposes, of course. The daring maneuver was approved because the spacecraft is near the end of its mission. It’s nearly out of fuel and will fall into Venus — sometime. Likely in 2015. No one knows exactly when, however.

Until Dec. 30, European Space Agency operators are going to boost the spacecraft’s orbit to try to get a little more productivity out of it. After that, all depends on what gas is left in the tank.

The push against the dense atmosphere revealed a few surprises. In a recent blog post, ESA said the atmosphere was changing more than expected. Between different altitudes, controllers sometimes saw a steady rise in pressure and sometimes multiple peaks. The spacecraft’s journeys took it as low as 129.2 kilometers (80 miles) above the surface, but mostly involving a month of “surfing” between 131 km and 135 km (81.4 miles and 83.9 miles).

Artist's conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau
Artist’s conception of Venus Express doing an aerobraking maneuver in the atmosphere in 2014. Credit: ESA–C. Carreau

“One possible explanation is that we detected atmospheric waves,” stated Håkan Svedhem, Venus Express project scientist.

“These features can be caused when high speed winds travel over mountain ranges. The waves then propagate upwards. However, such waves have never before been detected at such heights – twice the altitude of the cloud deck that blankets Venus.”

ESA observed that the atmospheric density increased 1,000 times between 165 km and 130 km (102.5 miles and 80.8 miles) and that it also changed when the spacecraft moved from day to night (specifically, it was four times greater on the sunlit side.) Measurements were also taken of high-energy particles and Venus’ magnetic fields, which are still being examined.

False colour composite of a ‘glory’ seen on Venus on 24 July 2011. The image is composed of three images at ultraviolet, visible, and near-infrared wavelengths from the Venus Monitoring Camera. The images were taken 10 seconds apart and, due to the motion of the spacecraft, do not overlap perfectly. The glory is 1200 km across, as seen from the spacecraft, 6000 km away. Credit: ESA/MPS/DLR/IDA.
False colour composite of a ‘glory’ seen on Venus on 24 July 2011. The image is composed of three images at ultraviolet, visible, and near-infrared wavelengths from the Venus Monitoring Camera. The images were taken 10 seconds apart and, due to the motion of the spacecraft, do not overlap perfectly. The glory is 1200 km across, as seen from the spacecraft, 6000 km away. Credit: ESA/MPS/DLR/IDA.

But now, the end is indeed near for the spacecraft after eight years at Venus — four times longer than its primary mission. Although it is healthy and performing routine science operations, fuel is only standing at around 3 kilograms (6.6 pounds) and oxidizer at 5 kg (11 lbs). It’s possible not all of it is accessible due to propellant movement in the tanks, ESA said. The new maneuvers are expected to subtract 1.4 kg of fuel and 2 kg of oxidizer from these totals.

“Unfortunately, we do not know how much fuel remains in its tanks, but we are intending to continue the up-down process as long as possible, until the propellant runs out,” Svedhem added.

“We have yet to decide whether we shall simply continue until we lose control, allowing it to enter the atmosphere and burn up naturally, or whether we attempt a controlled descent until it breaks up.”

Source: European Space Agency (here and here)

How Do Astronauts Celebrate Thanksgiving On The Space Station?

The Expedition 28 crew on the International Space Station celebrates after a fresh food delivery in 2011. Credit: NASA

As Americans get ready for turkey feasts and other Thanksgiving goodies today, let’s take a few moments to think about the crew of six people on board the International Space Station. Two Americans, a European and three Russians are working there now and will be taking most of today (Nov. 26) off for the holiday.

What the heck will they eat? The NASA interview above provides some clues, including a surprise about leftovers. More details below the jump.

NASA, which is responsible for supplying the three astronauts using the American segment of the space station, generally allocates four pounds of food per crew member per day (including packaging), according to Vickie Kloeris, food system manager for the station. Astronauts can also bring a little bit of bonus food with them for special treats. The food isn’t sent up as meal plans, but as different kinds (meats, vegetables, and the like) that the astronauts can assemble at will.

“We don’t have a set-aside meal for Thanksgiving. but they do have all these products available to choose from,” Kloeris said in the interview. “Crew members do know that they’re going to be on orbit during the holidays, [so] they often put special items in their bonus containers with the holidays in mind.”

Kloreis said she couldn’t reveal what Expedition 42 has in its grab boxes, but in the past astronauts have brought up items such as cranberry sauce or icing/frosting to put on cookies in orbit.

Below you can see a recent tweet from former Canadian astronaut Chris Hadfield concerning a typical meal for astronauts, which he put up with a Thanksgiving reference. Whatever the crew is having up there, we wish them a Happy Thanksgiving!

 

Jet! Rosetta’s Comet Is Feeling The Heat As Gas and Dust Erupts From Surface

Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Get a load of those streaks! Rosetta’s comet is picking up in activity as it moves ever closer to the Sun, sending out a steady stream of gas and dust captured in this image released today (Nov. 26). It’s also possible that there might be an “atmosphere” developing around the comet, although the images aren’t clear on if that’s an artifact of Rosetta itself.

As the European Space Agency scurries to find the final resting place of the Philae lander, Rosetta continues normal operations above the comet and will keep tracking it through 2015. Rosetta is the first orbiter to stick around near a comet, which will allow scientists an unprecedented chance to see a comet change from up close as the Sun’s heat and particles affect it. Could there be an atmosphere starting up?

“At the bottom of the mosaic, the non-illuminated part of the comet stands out as a silhouette against the broader diffuse emission coming from the comet’s coma,” ESA stated. “There are hints of a diffuse ‘atmosphere’ close to the surface of the comet seen along the illuminated edges, but this could be due to scattering in the NAVCAM optics. The large number of small white blobs in the image are likely specks of dust or other small objects in the vicinity of the comet.”

Here’s the same image below, but slightly oversatured to bring out those streaks. It’ll be fun to see the changes at 67P over the next few months, and ESA is still holding out hope that Philae will wake up in a few months once enough sunlight reaches its shady spot. If that happens, scientists can then get an extreme close-up of 67P’s activity as well.

Source: European Space Agency

A mosaic of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft Nov. 20, with more exposure and contrast to bring out jets erupting from the comet's surface. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
A mosaic of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft Nov. 20, with more exposure and contrast to bring out jets erupting from the comet’s surface. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Rosetta Comet Sounds Make ‘Across The Universe’ Song Oh So Spooky

Four image montage of comet 67P/C-G, using images taken on 2 September. Credits: ESA/Rosetta/NAVCAM

It’s not quite across the universe from us, but Rosetta’s comet is a fair distance away — outside the orbit of Mars and drawing slightly closer to the Sun by the day. Recently, the team behind the probe released a “song” the comet produced, as picked up by the Rosetta Plasma Consortium instruments on the spacecraft. Now a YouTube artist has decided to take that a step further and play the sounds as background to a famous Beatles tune.

“When I first heard that the ESA had not only landed on but recorded audio from a comet, I knew I had to make something out of it,” wrote Andrew Huang, the creator of the video, on YouTube. “This is my reworking of the Beatles’ awesome cosmic ballad “Across the Universe” which, apart from my singing, was created entirely with sounds from the Rosetta space probe’s recording of Comet 67P/Churyumov–Gerasimenko.”

It’s a spooky rendition that makes you think of the dots you see in the sky as actual worlds or stars, producing energy and sounds and other phenomena that make them unique. Huang also created a video showing how he designed the song. What other Sirens will call to us from the cosmos?

(h/t io9, The Mary Sue)

 

 

Opportunity Mars Rover Pushes Past 41 Kilometers Of Driving On Red Planet

The Opportunity rover's view on Sol 3,839 on Nov. 11, 2014, shortly after it pushed past 41 kilometers (nearly 28.5 miles) of driving on the Red Planet. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. (panorama: Elizabeth Howell)

Opportunity is the rover that keeps on going and going. It recently broke an extraterrestrial driving record after 10 years of working on the Red Planet.

And even as the rover works through aging problems, the science team is still able to push it further — it just crested 41 kilometers (25.48 miles) on Sol Sol 3,836 (around Nov. 9)! Check out some recent pictures from the rover below.

The NASA machine is roaming the west edge of Endeavour Crater on its way to an area nicknamed “Marathon Valley”, which could contain clay minerals. Clays are considered a sign of water being in a region in the ancient past, which feeds into NASA’s ongoing search for habitable environments on Mars.

By the way, Opportunity is now just shy of a marathon’s worth of driving on Mars (which would be 26 miles, or 41.8 kilometers). In the meantime, we’ve collected some raw images from Opportunity to share. What new horizons will the plucky rover find next, as it draws close to its 11th anniversary on Mars in January?

The Opportunity rover continues to make tracks after passing 41 kilometers (28.5 miles) on Mars. View from Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
The Opportunity rover continues to make tracks after passing 41 kilometers (28.5 miles) on Mars. View from Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Solar panels from the Opportunity Mars rover shine against the mottled ground on Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
Solar panels from the Opportunity Mars rover shine against the mottled ground on Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
The wind-swept plains of Mars as seen by the Opportunity rover on Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
The wind-swept plains of Mars as seen by the Opportunity rover on Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A close-up of the cracked Martian ground taken by the Opportunity rover on Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A close-up of the cracked Martian ground taken by the Opportunity rover on Sol 3,846 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
The shadow of the Opportunity rover (bottom) lies dark against Mars ground on Sol 3,841 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
The shadow of the Opportunity rover (bottom) lies dark against Mars ground on Sol 3,841 in November 2014. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.