NASA Wants To Launch Tiny Moon Satellites On Its Next-Generation Rocket

Artist's conception of NASA's Space Launch System with Orion crewed deep space capsule. Credit: NASA

As the space community counts down the days to the long-awaited Dec. 4 uncrewed launch of the Orion spacecraft — that vehicle that is supposed to bring astronauts into the solar system in the next decade — NASA is already thinking ahead to the next space test in 2017 or 2018.

Riding atop the new Space Launch System rocket, if all goes to plan, will be a suite of CubeSats that will explore the Moon as Orion makes its journey out to our largest closest celestial neighbor. NASA announced details of the $5 million “Cube Quest” challenge yesterday (Nov. 24).

CubeSats are tiny satellites that are so small that they are often within the reach of universities and similar institutions that want to perform science in space without the associated cost of operating a huge mission. The concept has been so successful that some companies are basing their entire business model on it, such as Planet Labs — a company that is performing Earth observations with the small machines.

NCube-2 cubesat, a typical configuration for this kind of satellite (although the outer skin is missing.) Credit: ARES Institute
NCube-2 cubesat, a typical configuration for this kind of satellite (although the outer skin is missing.) Credit: ARES Institute

The competition will be divided into several parts, including a ground tournament to see if the CubeSats can fly on the SLS, a lunar derby to ensure they can communicate at a distance of 10 times the Earth-moon distance, and a deep-space derby to put the CubeSat in a “stable lunar orbit” and work well there.

“The Cube Quest Challenge seeks to develop and test subsystems necessary to perform deep space exploration using small spacecraft. Advancements in small spacecraft capabilities will provide benefits to future missions and also may enable entirely new mission scenarios, including future investigations of near-Earth asteroids,” NASA stated.

For more details on the competition, check out this link.

Mercury Spacecraft Moves To Testing Ahead Of 2016 Launch To Sun’s Closest Planet

Artist's impression of the European Space Agency/JAXA BepiColombo mission in operation around Mercury. Credit: Astrium

After facing down a couple of delays due to technical difficulties, Europe’s and Japan’s first Mercury orbiter is entering some of the final stages ahead of its 2016 launch. Part of the BepiColombo orbiter moved into a European testing facility this past week that will shake, bake and otherwise test the hardware to make sure it’s ready for its extreme mission.

Because Mercury is so close to the Sun, BepiColombo is going to have a particularly harsh operating environment. Temperatures there will soar as high as 350 degrees Celsius (662 degrees Fahrenheit), requiring officials to change the chamber to simulate these higher temperatures. Time will tell if the spacecraft is ready for the test.

BepiColombo is also special because it includes not one orbiting spacecraft, but two. Flying in different orbits, the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter will try to learn more about this mysterious planet. NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) spacecraft has spent the past few  years orbiting Mercury, but before then, we had very little information on the planet. (And before MESSENGER, only brief flybys from NASA’s Mariner 10 in the 1970s turned up spacecraft-based information on Mercury.)

MESSENGER has turned up quite a few surprises. It’s showed us more about the nature of Mercury’s tenuous atmosphere and it’s discovered probable water ice (!) in permanently shadowed areas, among other things. The European Space Agency and Japan hope to push our understanding of the Sun’s closest planet when BepiColombo gets there in 2024.

On Oct. 30, 2014, the Mercury Planetary Orbiter (part of the BepiColombo mission) was moved into the European Space Agency's space simulator for testing ahead of the expected 2016 launch. Credit: ESA–A. Le’Floch
On Oct. 30, 2014, the Mercury Planetary Orbiter (part of the BepiColombo mission) was moved into the European Space Agency’s space simulator for testing ahead of the expected 2016 launch. Credit: ESA–A. Le’Floch

There are so many questions that Mercury presents us, and BepiColombo is trying to answer a few of those. For example, Mercury’s density is higher than the rest of the other terrestrial planets for reasons that are poorly understood. Scientists aren’t sure if its core is liquid or solid, or even it has active plate tectonics as Earth does. Its magnetic field is a mystery, given that Mars and Venus and the Moon don’t have any. And there are tons of questions too about its atmosphere, such as how it is produced and how the magnetic field and solar wind work together.

The two spacecraft will be carried together to Mercury’s orbit along with a component called the Mercury Transfer Model (MTM), which will push the spacecraft out there using solar-electric propulsion. Just before BepiColombo enters orbit, MTM will be jettisoned and the Mercury Polar Orbiter will ensure the Mercury Magnetospheric Orbiter receives the needed resources to survive until the two spacecraft move into their separate orbits, according to the European Space Agency.

As for why it takes so long to get out there, to save on fuel the mission will swing by Earth, Venus and Mercury to get to the right spot. Once the two spacecraft are ready to go, they’re expected to last a year in orbit — with a potential one-year extension.

Where The Heck Did Philae Land? Rosetta Team Narrows The Cometary Search

A 3-D image of Comet 67P/Churyumov–Gerasimenko taken from the Philae lander as it descended. The picture is a combination of two images from the Rosetta Lander Imaging System (ROLIS) taken about an hour before landing at 10:34 a.m. EST (3:34 p.m. UTC) on Nov. 12, 2014. Credit: ESA/Rosetta/Philae/ROLIS/DLR

The first soft comet landing Nov. 12 showed us how space missions can quickly drift to the unexpected. Philae’s harpoons to secure it failed to fire, and the spacecraft drifted for an incredible two hours across Comet 67P/Churyumov–Gerasimenko before coming to rest … somewhere. But where? And can the orbiting Rosetta spacecraft find it?

That’s been the obsession of the European Space Agency for the past couple of weeks. Controllers have pictures from Philae during its descent and brief science operations on the surface. They’ve managed to capture the little lander in incredible photographs from Rosetta. But the key to finding Philae will likely come from a different experiment altogether.

The experiment is called the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) and is a piece of work between both lander and orbiter. Rosetta sent radio signals to Philae on the surface to get a better sense of what the insides of 67P are made of. But it turns out it can also be used to pinpoint the lander.

ESA recently released a landing zone of where, based on CONSERT data, it believes the lander came to rest. The next step will be to get the Rosetta spacecraft to examine the area in high-definition.

An estimation of Philae's landing site on Comet 67P/Churyumov–Gerasimenko, based on data from the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) experiment. Credit: ESA/Rosetta/Philae/CONSERT
An estimation of Philae’s landing site on Comet 67P/Churyumov–Gerasimenko, based on data from the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) experiment. Credit: ESA/Rosetta/Philae/CONSERT

“By making measurements of the distance between Rosetta and Philae during the periods of direct visibility between orbiter and lander, as well as measurements made through the core, the team have been able to narrow down the search to the strip presented in the image shown above,” ESA stated. “The determination of the landing zone is dependent on the underlying comet shape model used, which is why there are two candidate regions marked.”

Finding Philae is not only a goal to fulfill curiosity, but also to learn more about the comet itself. The team needs to know where the lander is sitting before they can fully analyze the CONSERT data, they said. So the search continues for the hibernating lander, which right now is in a shady spot and unable to transmit status updates since it can’t get enough sunlight to recharge. (This could change as 67P gets closer to the Sun, but nobody knows for sure.)

Rosetta, meanwhile, is in perfect health and continues to transmit incredible pictures of the comet, such as this one below released a couple of days ago. The montage you see includes the zone where Philae was supposed to have touched down, but it will take higher-resolution images from the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) to get a better look.

Source: European Space Agency (here and here)

A montage of four images of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
A montage of four images of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

 

Africa’s First Mission to the Moon Announced

Africa2Moon will be Africa's foist venture into space. Credit: developspacesa.org

Africa is home to 7 out of 10 of the world’s fastest-growing economies. It’s population is also the “youngest” in the world, with 50% of the population being 19 years old or younger. And amongst these young people are scores of innovators and entrepreneurs who are looking to bring homegrown innovation to their continent and share it with the outside world.

Nowhere is this more apparent than with the #Africa2Moon Mission, a crowdfunded campaign that aims to send a lander or orbiter to the Moon in the coming years.

Spearheaded by the Foundation for Space Development – a non-profit organization headquartered in Capetown, South Africa – the goal of this project is to fund the development of a robotic craft that will either land on or establish orbit around the Moon. Once there, it will transmit video images back to Earth, and then distribute them via the internet into classrooms all across Africa.

In so doing, the project’s founders and participants hope to help the current generation of Africans realize their own potential. Or, as it says on their website: “The #Africa2Moon Mission will inspire the youth of Africa to believe that ‘We Can Reach for the Moon’ by really reaching for the moon!”

Through their crowdfunding and a social media campaign (Twitter hashtag #Africa2Moon) they hope to raise a minimum of $150,000 for Phase I, which will consist of developing the mission concept and associated feasibility study. This mission concept will be developed collaboratively by experts assembled from African universities and industries, as well as international space experts, all under the leadership of the Mission Administrator – Professor Martinez.

The ZACube was one of several cubesats launched with the help of the South African Space Council. Credit: SA Space Council
The ZACube-1 was one of several cubesats launched under the direction of the South African Space Council. Here, an artist’s rendering of the cubesat pays homage to Nelson Mandela. Credit: SA Space Council

Martinez is a veteran when it comes to space affairs. In addition to being the convener for the space studies program at the University of Cape Town, he is also the Chairman of the South African Council for Space Affairs (the national regulatory body for space activities in South Africa). He is joined by Jonathan Weltman, the Project Administrator, who is both an aeronautical engineer and the current CEO of the Foundation for Space Development.

Phase I is planned to run from Jan to Nov 2015 and will be the starting point for Phase II of #Africa2Moon, which will be a detailed mission design. At this point, the #Africa2Moon mission planners and engineering team will determine precisely what will be needed to see it through to completion and to reach the Moon.

Beyond inspiring young minds, the program also aims to promote education in the four major fields of Science, Technology, Engineering, and Mathematics (aka STEM). Towards this end, they have pledged to commit 25% of all the funds they raise towards STEM education through a series of #Africa2Moon workshops for educators and students. In addition, numerous public engagement activities will be mounted in partnership with other groups committed to STEM education, science awareness, and outreach.

Africa is so often thought of as a land in turmoil – a place that is perennially plagued by ethnic violence, dictators, disease, drought, and famine. This popular misconception belies very positive facts about the growing economy of world’s second-largest and second-most populous continent.

That being said, all those working on the #Africa2Moon project hope it will enable future generations of Africans to bridge the humanitarian and economic divide and end Africa’s financial dependence on the rest of the world. It is also hoped that the mission will provide a platform for one or more scientific experiments, contribute to humankind’s knowledge of the moon, and form part of Africa’s contribution to global space exploration activities.

The project’s current list of supporters include the SpaceLab at the University of Cape Town, The South African Space Association, Women in Aerospace Africa, The Cape Town Science Centre, Space Commercial Services Group, Space Advisory Company, and the Space Engineering Academy. They have also launched a seed-funding campaign drive through its partnership with the UN Foundation’s #GivingTuesday initiative.

For more information, go to the Foundation’s website, or check out the mission’s Indiegogo or CauseVox page.

Further Reading: Foundation for Space Development

Watch Three Humans Take A Flawless Ride To Space Yesterday

A Soyuz rocket carries the Expedition 42/3 crew to the International Space Station from Kazakhstan on Nov. 24, 2014. On board were Anton Shkaplerov (Roscosmos), Terry Virts (NASA) and Samantha Cristoforetti (European Space Agency). Credit: NASA/Aubrey Gemignani

And now we have six people in space again — including the first-ever Italian woman to reach orbit. Samantha Cristoforetti has been delighting people worldwide with her behind-the-scenes training posts as she prepares for her “Futura” mission, which will see her spend 5.5 months on the International Space Station with her crewmates. We have the NASA video from the big day above, and some photos from the launch below.

Cristoforetti has been sharing Spotify playlists and amusing tweets with more than 131,000 Twitter followers, not to mention people on Flickr and Google Plus. Her sense of humor and eye for the unusual will make for a fun few months in orbit along with the rest of her crew, NASA’s Terry Virts and Russia’s Anton Shkaplerov.

On station for their arrival last night was the second half of their crew:  Barry Wilmore (NASA), Elena Serova (Russia) and Alexander Samoukutyaev (Russia). And in March 2015, a big event occurs: the first one-year mission on the International Space Station will begin with the arrival of the next crew.

The launch took place at 4:01 p.m. EDT (9:01 p.m. UTC) from the Baikonur Cosmodrome in Kazakhstan aboard a Soyuz rocket.

 

Prior to the launch of Expedition 42 in November 2014, Samantha Cristoforetti (left, European Space Agency) speaks with a loved one through the glass at a pre-launch press conference. Credit: NASA/Aubrey Gemignani
Prior to the launch of Expedition 42 in November 2014, Samantha Cristoforetti (left, European Space Agency) speaks with a loved one through the glass at a pre-launch press conference. Credit: NASA/Aubrey Gemignani
Prior to the launch of Expedition 42 in November 2014, Anton Shkaplerov (Roscosmos, center) visits with a family member (at right) through the glass at a pre-flight press conference. In the background are his crewmates, from left: Terry Virts (NASA) Samantha Cristoforetti (ESA). Credit: NASA/Aubrey Gemignani
Prior to the launch of Expedition 42 in November 2014, Anton Shkaplerov (Roscosmos, center) visits with a family member (at right) through the glass at a pre-flight press conference. In the background are his crewmates, from left: Terry Virts (NASA) Samantha Cristoforetti (ESA). Credit: NASA/Aubrey Gemignani

Global Warming Watch: How Carbon Dioxide Bleeds Across The Earth

High concentrations of carbon dioxide (in red) tend to congregate in the northern hemisphere during colder months, when plants can't absorb as much from the atmosphere. This picture is based on a NASA Goddard computer model from ground-based observations and depicts concentrations on March 30, 2006. Credit: NASA's Goddard Space Flight Center/B. Putman/YouTube (screenshot)

Red alert — the amount of carbon dioxide in the atmosphere is increasing year-by-year due to human activity. It’s leading to a warming Earth, but just how quickly — and how badly it will change the environment around us — is hard to say.

NASA released a new video showing how carbon dioxide — a product mainly of fossil fuels — shifts during a typical year. Billed as the most accurate model to date, the emissions shown in 2006 (tracked by ground-based sources) show how wind currents across the globe spread the gas across the globe. The red you see up there indicates high concentrations. The full video is below the jump.

In spring and summer, plants absorb carbon dioxide and the amount in the atmosphere above that hemisphere decreases. In fall and winter, carbon dioxide is not absorbed as well since the plants are dead or dormant. Also seen in the video is carbon monoxide that spreads out from forest fires, particularly in the southern hemisphere.

“Despite carbon dioxide’s significance, much remains unknown about the pathways it takes from emission source to the atmosphere or carbon reservoirs such as oceans and forests,” NASA stated.

“Combined with satellite observations such as those from NASA’s recently launched OCO-2 [Orbiting Carbon Observatory-2], computer models will help scientists better understand the processes that drive carbon dioxide concentrations.”

The model is called GEOS-5 and was made by scientists at the NASA Goddard Space Flight Center’s global modeling and assimilation office.

Source: NASA

NASA Aims To Slash Space Shipping Costs With Shiny 3-D Printer

The Columbus module is installed on the International Space Station in 2008. Pictured is NASA astronaut Rex Walheim. Credit: NASA

Need a part on the International Space Station? You’re going to have to wait for that. That is, wait for the next spaceship to arrive with the critical tool to make a repair, or replace something that broke. You can imagine how that slows down NASA’s desire for science on the orbiting laboratory.

Enter the first orbiting “machine shop”: a 3-D printer that was just installed in the station’s Columbus laboratory this week. If the printer works as planned, astronauts will be able to make simple things based on instructions from the ground. Over time, the agency hopes this will save time and money, and reduce the need to rely on shipments from Earth. And keep an eye out in 2015: two other 3-D printers are scheduled to join it.

As NASA aims to send astronauts to an asteroid and perhaps to Mars, the need to manufacture parts on site is critical. Sending a valve to Phobos isn’t an easy proposition. Much better that future crews will make stuff on the spot, and NASA says the space station will be a good spot to test this kind of stuff out. Adding motivation is a National Research Council report from this summer urging NASA to start 3-D printing testing as soon as possible, since the station (as of yet) is only funded by all partners through 2020. Negotiations are ongoing to extend that to 2024.

In November 2014, NASA astronaut Butch Wilmore installed a 3-D printer made by Made in Space in the Columbus laboratory's Microgravity Science Glovebox on the International Space  Station. Credit: NASA TV
In November 2014, NASA astronaut Butch Wilmore installed a 3-D printer made by Made in Space in the Columbus laboratory’s Microgravity Science Glovebox on the International Space Station. Credit: NASA TV

“Additive manufacturing with 3-D printers will allow space crews to be less reliant on supply missions from Earth and lead to sustainable, self-reliant exploration missions where resupply is difficult and costly,” stated Jason Crusan, director of NASA’s advanced explorations systems division at NASA headquarters in Washington. “The space station provides the optimal place to perfect this technology in microgravity.”

But don’t get too excited yet; astronauts aren’t going to make screwdrivers right away. The first step will be calibrating the printer. Then, the first files (mainly test coupons) will be printed and sent back to Earth to make sure they meet up to standards compared to identical samples printed on the ground with the same printer.

Made In Space Inc. manufactured this printer (which arrived on station in September) with the aim of sending up a more advanced version in 2015. In a statement, the company said it is “gratified” that the printer is ready to go in space. Any science collected on it will inform the design of the new printer, “which will enable a fast and cost-effective way for people to get hardware to space,” the company added.

And guess what: there is yet another printer that will be launched to the space station next year. Called the POP3D Portable On-Board Printer, the European Space Agency promises that the tiny machine — less than half the diameter of a basketball — will be able to print a plastic part in about half an hour.

The prime contractor for this printer is Italian company Altran. POP3D will reach the station in the first half of next year, ideally while Italy’s Samantha Cristoforetti is still doing her Futura mission in space (which starts this Sunday, if the launch schedule holds.)

Iconic Kennedy Space Center Countdown Clock Retires

STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Iconic Kennedy Space Center Countdown Clock seen here retires
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
Story updated and more photos[/caption]

In another sign of dramatically changing times since the end of NASA’s Space Shuttle program, the world famous Countdown Clock that ticked down to numerous blastoffs at the Kennedy Space Center Press Site and was ever present to billions of television viewers worldwide, has been retired.

Years of poor weather and decades of unforgiving time have visibly taken their toll on the iconic Countdown Clock beloved by space enthusiasts across the globe – as I have personally witnessed over years of reporting on launches from the KSC Press Site.

It was designed in the 1960s and has been counting down launches both manned and unmanned since the Apollo 12 moon landing mission in November 1969. And it continued through the final shuttle mission liftoff in July 2011 and a variety of unmanned NASA launches since then.

The countdown clock’s last use came just two months ago in September 2014 during the SpaceX CRS-4 launch to the ISS, which I attended along with the STS-135 launch.

The clock is located just a short walk away from another iconic NASA symbol – the Vehicle Assembly Building (VAB) – which assembled the Apollo/Saturn and Space Shuttle stacks for which it ticked down to blastoff. See photo below.

A new clock should be in place for NASA’s momentous upcoming launch of the Orion crew capsule on its inaugural unmanned test flight on Dec. 4, 2014.

Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com
Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com

Because of its age, it has become harder to replace broken pieces.

“Maintaining the clock was becoming problematic,” NASA Press spokesman Allard Beutel told Universe Today.

It displays only time in big bold digits. But of course in this new modern digital era it will be replaced by one with a modern multimedia display, similar to the screens seen at sporting venues.

“The new clock will not only be a timepiece, but be more versatile with what we can show on the digital display,” Beutel told me.

The countdown clock is a must see for journalists, dignitaries and assorted visitors alike. Absolutely everyone, and I mean everyone !! – wants a selfie or group shot with it in some amusing or charming way to remember good times throughout the ages.

And of course, nothing beats including the countdown clock and the adjacent US flag in launch pictures in some dramatic way.

Indeed the clock and flag are officially called “The Press Site: Clock and Flag Pole” and are were listed in the National Register of Historic Places on Jan. 21, 2000.

The clock was officially powered down for the last time at 3:45 p.m. EDT on Nov. 19, 2014.

Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-5 launch in September 2014. Credit: Ken Kremer – kenkremer.com
Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-4 launch in September 2014. Credit: Ken Kremer – kenkremer.com

“The countdown clock at Kennedy’s Press Site is considered one of the most-watched timepieces in the world and may only be second in popularity to Big Ben’s Great Clock in London, England. It also has been the backdrop for a few Hollywood movies,” noted a NASA press release announcing the impending shutdown of the iconic clock.

“It is so absolutely unique — the one and only — built for the world to watch the countdown and launch,” said Timothy M. Wright, IMCS Timing, Countdown and Photo Services. “From a historical aspect, it has been very faithful to serve its mission requirements.”

The famous landmark stands nearly 6 feet (70 inches) high, 26 feet (315 inches) wide is 3 feet deep and sits on a triangular concrete and aluminum base.

Each numerical digit (six in all) is about 4 feet high and 2 feet wide. Each digit uses 56 40-watt light bulbs, the same ones found at the local hardware store. There are 349 total light bulbs in the clock, including the +/- sign (nine) and pair of colons (four), according to a NASA statement.

The new clock will be about the same size.

Fortunately for space fans, there is some good news!

The Countdown Clock will be moved to the nearby Kennedy Space Center Visitor Complex (KSCVC) and placed on permanent display for public viewing.

Details soon!

Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011.  Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com
Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011. Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

With Philae Delivered, Rosetta Will Play ‘Comet Escort’ Through 2015

The Rosetta spacecraft takes a selfie Oct. 7 with its target, 67P/Churyumov–Gerasimenko, from an altitude of about 9.9 miles (16 kilometers). Credit: ESA/Rosetta/Philae/CIVA

With the Philae mission down on the comet and preliminary science results coming from its brief science surge on the surface, little has been said about the delivery vehicle. But while Philae is in hibernation, the Rosetta spacecraft remains quietly in orbit around Comet 67P/Churyumov–Gerasimenko for what will prove to be a dramatic 2015.

Should the orbiter remain healthy, it will be the first to be a “comet escort” — to watch a comet changing from up close as the celestial body draws closer to the Sun. And to stay out of the debris field, Rosetta will have some fancy footwork to perform in the next few months, says the European Space Agency (ESA).

“Burns” with the comet are planned on Saturday (Nov. 22) and Wednesday (Nov. 26) to bring it up about 30 kilometers (19 miles) above, and then it will scoot down closer to about 20 kilometers (12.5 miles) on Dec. 3. Rosetta will remain in this orbit for a while to look at the comet’s nucleus, as well as to measure plasma, dust and gas that is expected to increase as the comet gets closer to the Sun.

Rosetta will stay as close to 67P as possible, but if activity heats up to an unacceptable risk, it will jump to a “high-activity” trajectory that will keep it away from the worst of the debris. And it’s also going to keep an ear out for Philae, just in case more sunlight on the comet ends up recharging the hibernating lander’s battery. “Early next year, Rosetta will be switched into a mode that allows it to listen periodically for beacon signals from the surface.,” ESA wrote.

There has been some discussion about the magnitude of Philae’s success given that it did land on the comet as planned, but the harpoons (which had travelled a decade in space at that point) did not fire on to the surface as planned. This meant that the lander drifted for about two hours before settling far from its prime landing spot, mostly outside of the sunlight it needs to recharge its batteries.

But in a science marathon, researchers got as much as they could out of the instruments and have already released preliminary results, such as how the sound of Philae’s landing revealed the comet’s interior structure, and the discovery of organic materials on the surface.

Source: European Space Agency

First Orion Flight Will Assess Radiation Risk As NASA Thinks About Human Mars Missions

The Mars Society prototype habitat in Utah conducts studies on what it would be like to live on Mars. Credit: Mars Society MRDS

If you wanna get humans to Mars, there are so many technical hurdles in the way that it will take a lot of hard work. How to help people survive for months on a hostile surface, especially one that is bathed on radiation? And how will we keep those people safe on the long journey there and back?

NASA is greatly concerned about the radiation risk, and is asking the public for help in a new challenge as the agency measures radiation with the forthcoming uncrewed Orion test flight in December. There’s $12,000 up for grabs across at least a few awards, providing you get your ideas into the agency by Dec. 12.

“One of the major human health issues facing future space travelers venturing beyond low-Earth orbit is the hazardous effects of galactic cosmic rays (GCRs),” NASA wrote in a press release.

“Exposure to GCRs, immensely high-energy radiation that mainly originates outside the solar system, now limits mission duration to about 150 days while a mission to Mars would take approximately 500 days. These charged particles permeate the universe, and exposure to them is inevitable during space exploration.”

 Orion in orbit in this artists concept.  Credit: NASA

Orion in orbit in this artists concept. Credit: NASA

Here’s an interesting twist, too — more data will come through the Orion test flight as the next-generation spacecraft aims for a flight 3,600 miles (5,800 kilometers) above Earth’s surface. That’s so high that the vehicle will go inside a high-radiation environment called the Van Allen Belts, which only the Apollo astronauts passed through in the 1960s and 1970s en route to the Moon.

While a flight to Mars will also just graze this area briefly, scientists say the high-radiation environment will give them a sense of how Orion (and future spacecraft) perform in this kind of a zone. So the spacecraft will carry sensors on board to measure overall radiation levels as well as “hot spots” within the vehicle.

You can find out more information about the challenge, and participation details, at this link.

Source: NASA