And we have touchdown! This is what the feet of the Philae lander experienced as the spacecraft touched down on its cometary destination last week. You can hear the brief sound from the Cometary Acoustic Surface Sounding Experiment (CASSE) above. What’s even cooler is the scientific data that short noise reveals.
CASSE is embedded in the three legs of Philae and recorded the first of three landings for the spacecraft, which bounced for about two hours before coming to rest somewhere on Comet 67P/Churyumov–Gerasimenko (where is still being determined).
About that first touchdown: “The Philae lander came into contact with a soft layer several centimetres thick. Then, just milliseconds later, the feet encountered a hard, perhaps icy layer on 67P/Churyumov-Gerasimenko,” stated German Space Agency (DLR) researcher Klaus Seidensticker. He is the lead for the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME), which includes CASSE.
CASSE also recorded information from the lander’s feet from Philae’s final resting spot, and transmitted information about the MUlti PUrpose Sensor (MUPUS) as the latter instrument drilled into the surface. Other instruments on SESAME found no dust particles nearby the lander (which scientists say means the landing site is quiescent) and also sensed water ice beneath the lander.
Philae is now in hibernation as its final resting spot does not include a lot of sunlight to recharge the solar panels, but the researchers are hoping that more energy might be available as 67P draws closer to the Sun in 2015. The orbiting Rosetta spacecraft is continuing to collect data on the comet.
Just hours after announcing that it plans to put a robotic lander on the moon in the next decade, the British-led group Lunar Mission One is already a sixth of a way to its £600,000 (US$940,000) initial crowdfunding goal.
The money is intended to jumpstart the project and move it into more concrete stages after seven years of quiet, weekend work, the group said on its Kickstarter page.
“We’ve reached the limit of what we can do part-time. The next three years are going to be hard, full-time work to set the project up. We need to confirm and agree the lunar science and develop the instrument package,” the page read.
“We need to plan and research the online public archive. We need to get commercial partners on board to design and develop the lunar landing module and the drilling mechanism. We need to pilot the education programme. We need to prepare the sales and marketing campaign for our memory boxes. And we need to do all of this globally.”
Among the rewards is something called a “digital memory box”, where you can upload your favorite sounds to be placed on the spacecraft. The group also plans to offer a little bit of physical space to put a strand of your hair along with the small digital archive.
And what does the group want to do there? Drill. It would place the lander at the Moon’s south pole and push down at least 20 meters (65 feet), potentially as far as 100 meters (328 feet), to learn more about the Moon’s history.
“By doing this, we will access lunar rock dating back up to 4.5 billion years to discover the geological composition of the Moon, the ancient relationship it shares with our planet and the effects of asteroid bombardment,” the group wrote. “Ultimately, the project will improve scientific understanding of the early Solar System, the formation of our planet and the Moon, and the conditions that initiated life on Earth.”
Private ideas for bold missions is something we’ve heard about repeatedly in the last few years, with initiatives ranging from the Mars One mission to send people on a one-way mission to the Red Planet, to the potential asteroid-mining ventures Planetary Resources and Deep Space Initiatives. As with these other ventures, the nitty gritty in terms of costs, systems and mission plans is still being worked out. This coupled with the long timelines to get these ventures off the ground means that success is not necessarily a guarantee.
Lunar Mission One, however, does have an experienced space hand helping it out: RAL Space, who the Kickstarter campaign page says has helped out with 200 missions. That’s including the high-profile Philae lander that just landed on Comet 67P/Churyumov–Gerasimenko last week and did a brief surge of science before going into hibernation.
Fancy having a shuttle launch play as your ringtone? NASA is trying to make that possible through offering several dozen space sounds on SoundCloud, a popular music- and sound-sharing service.
In the last month, the agency has uploaded 63 sound files ranging from objects in the solar system, to rocket launches, to famous quotes from NASA’s history. And you can download and use the files for free from here, as long as you follow the usage guidelines over here.
“Here’s a collection of NASA sounds from historic spaceflights and current missions. You can hear the roar of a space shuttle launch or Neil Armstrong’s ‘One small step for (a) man, one giant leap for mankind’ every time you get a phone call if you make our sounds your ringtone. Or, you can hear the memorable words ‘Houston, we’ve had a problem,’ every time you make an error on your computer,” the agency wrote on SoundCloud.
Space isn’t a foreign entity to SoundCloud, which also hosted dozens of sounds uploaded by prolific social-media sharing Chris Hadfield when the Canadian astronaut went into space between 2012 and 2013. He put up a few songs as well as what certain activities sound like on the International Space Station, such as dinnertime or a spaceship docking.
NASA’s newest Mars spacecraft is “go” for at least a year — and potentially longer. After taking a time-out from commissioning to observe Comet Siding Spring whizz by the Red Planet in October, the Mars Atmosphere and Volatile Evolution (MAVEN) officially began its science mission Monday (Nov. 17). And so far things are going well.
“From the observations made both during the cruise to Mars and during the transition phase, we know that our instruments are working well,” stated principal investigator Bruce Jakosky, who is with NASA’s Goddard Space Flight Center in Maryland. “The spacecraft also is operating smoothly, with very few ‘hiccups’ so far. The science team is ready to go.”
MAVEN arrived in orbit Sept. 16 after facing down and overcoming a potential long delay for its mission. NASA and other federal government departments were in shutdown while MAVEN was in final launch preparations, but the mission received a special waiver because it is capable of communicating with the rovers on Mars. Given the current relay spacecraft are aging, MAVEN could serve as the next-generation spacecraft if those ones fail.
But that’s providing that MAVEN can last past the next year in terms of hardware and funding. Meanwhile, its primary science mission is better understanding how the atmosphere of Mars behaves today and how it has changed since the Red Planet was formed.
“The nine science instruments will observe the energy from the Sun that hits Mars, the response of the upper atmosphere and ionosphere, and the way that the interactions lead to loss of gas from the top of the atmosphere to space,” Jakosky added.
“Our goal is to understand the processes by which escape to space occurs, and to learn enough to be able to extrapolate backwards in time and determine the total amount of gas lost to space over time. This will help us understand why the Martian climate changed over time, from an early warmer and wetter environment to the cold, dry planet we see today.”
Okay, let’s take a deep breath about Rosetta and remember just how far we’ve come since the mission arrived at its target comet in August. Lately we’ve been focused on reporting on the Philae landing, but remember how we barely knew how the comet looked until this summer? How much of a surprise the rubber duckie shape was to us?
This Hubble Space Telescope model from 2003 shows us why. From afar, Comet 67P/Churyumov-Gerasimenko is a tiny object to image, even for the NASA probe’s powerful lens. Back then, the telescope was tasked with examining the comet to look at its size and shape to better design the Philae lander spacecraft. And the model reveals no duckie; it looks more like a sombrero from some angles.
The main concern of scientists back then was redirecting Rosetta to a new target when its original comet (46P/Wirtanen) fell out of reach due to a launch delay. 67P was bigger and had a higher gravity, requiring scientists to make adjustments to Philae before landing, according to the release. So Hubble sprung into action to look at 67P. Below are the release images from that time.
And here’s a fun quote from 2003 that finally came last Wednesday, when Philae touched down for its (sadly brief, so far) mission on the comet: “Although 67P/C-G is roughly three times larger than the original Rosetta target, its elongated shape should make landing on its nucleus feasible, now that measures are in place to adapt the lander package to the new configuration before next year’s launch,” stated Philippe Lamy of the Space Astronomy Laboratory (Laboratoire d’Astronomie Spatiale) in France.
We’ve sure come a long way since then. Below are some of the pictures Rosetta caught of 67P as it made its approach to its target this year, after a decade flying through space. While Philae is in what could be permanent hibernation, Rosetta is orbiting, working well and expected to keep up observations when the comet draws closer to the sun in 2015.
Wow! New images released from the Rosetta spacecraft orbiting Comet 67P/Churyumov–Gerasimenko show the spacecraft coming in for its (first) landing on Wednesday (Nov. 12). “The mosaic comprises a series of images captured by Rosetta’s OSIRIS camera over a 30 minute period spanning the first touchdown,” wrote the European Space Agency in a blog post today (Monday).
This is just the latest in a series of images coming from the orbiting Rosetta spacecraft showing the Philae lander coming in for its rendezvous with 67P. A major next step for the mission will be figuring out where the lander actually came for a rest, but there’s plenty of data from both Rosetta and Philae to comb through for this information, ESA said.
What’s known for sure is Philae made three touchdowns on the comet — making history as humanity’s first soft-lander on such an object — stopping in a shady area that will make recharging its solar panels difficult. The spacecraft is in hibernation as of Friday (Nov. 14) and scientists are really, really hoping it’s able to charge up for another science session soon. Rosetta, meanwhile, is hard at work above and will continue to follow the comet in 2015.
In case you missed it, below are some of the pictures over the last few days that could be used to help pinpoint the landing location.
What price do you put on scientific discovery? From the way Twitter lit up last week when the Philae spacecraft touched down on Comet 67P/Churyumov–Gerasimenko — it was a top-trending topic for a while — it appears there’s a lot of discussion going on about the Rosetta mission and its value to humanity.
A recent infographic (which you can see below) points out that the Rosetta mission, which included the now-hibernating Philae lander, cost as much as about four Airbus 380 jetliners. Is US$1.75 billion (€1.4 billion) a bargain for letting us explore further into the universe, or could the money have been better-served elsewhere?
This is a question often brought up about the value of space exploration, or what is called “blue-sky” research in general. The first developers of lasers, for example, could not have predicted how consumers would use them millions of times over to watch DVDs and Blu-Rays. Or in a more practical use, how medical lasers are used today for surgeries.
“Like a lot of blue-skies science, it’s very hard to put a value on the mission,” wrote Scienceogram.org, the organization that produced the infographic. “First, there are the immediate spin-offs like engineering know-how; then, the knowledge accrued, which could inform our understanding of our cosmic origins, amongst other things; and finally, the inspirational value of this audacious feat in which we can all share, including the next generation of scientists.”
To put the value of the Rosetta mission in more everyday terms, Scienceogram points out that the comet landing cost (per European citizen and per year between 1996 and 2015) was less than half the ticket price for Interstellar. That said, it appears that figure does not take into account inflation, so the actual cost per year may be higher.
The Rosetta spacecraft is still working well and is expected to observe its target comet through 2015. The Philae lander did perform the incredible feat of landing on 67P on Wednesday, but it ended up in a shadowy spot that prevented it from gathering sunlight to stay awake. The lander is now in hibernation, perhaps permanently, but scientists have reams of data from the lander mission to pore over.
It’s been said that Rosetta, in following 67P as it gets closer to the Sun, will teach us more about cometary behavior and the origins of our Solar System. Is the mission and its social-media-sensation pictures worth the price? Let us know in the comments. More information on the infographic (and the spreadsheet of data) are available here.
When the Philae lander arrived at its target comet last week, the little spacecraft landed three times in two hours before coming to a rest. While controllers could see this information from data coming in, they didn’t have any photographic proof — until now.
Here’s another cool thing about these images — some of the credit to Philae’s discovery comes through crowdsourcing! This is what the European Space Agency’s Rosetta blog said about who found this:
Credit for the first discovery goes to Gabriele Bellei, from the interplanetary division of Flight Dynamics, who spent hours searching the NAVCAM images for evidence of the landing.
Once the images were published, blog reader John Broughton posted a comment to report that he had spotted the lander in them (thank you, John). There was also quite some speculation by Rosetta blog readers in the comments section, wondering which features might be attributable to the lander. Martin Esser, Henning, and Kasuha in particular were among the first to make insightful observations on the topic, although many others have since joined in.
Last but not least, a careful independent review of the images was made by Mikel Catania from the earth observation division of Flight Dynamics, with the same conclusion. He also made the annotated animation shown here.
This goes to show you that while there is disappointment that Philae is in a long (perhaps permanent) sleep sooner than scientists hoped, data from the spacecraft will continue to be analyzed in the coming months and years. And don’t forget that the orbiting Rosetta spacecraft is in good health and will continue to return data on 67P as it draws closer to the Sun through 2015.
After moving out to the launch pad earlier this week, NASA’s first Orion spacecraft was hoisted atop the most powerful rocket in the world and awaits blastoff from Cape Canaveral, Florida, in early December on a critical test flight that will pave the way for human missions to deep space for the first time in more than four decades since NASA’s Apollo moon landing missions ended in 1972.
NASA’s cool new set of infographics above and below explain 8 key events on Orion’s Exploration Flight Test-1 (EFT-1) mission and its first trip to orbit and back.
Orion will lift off on a Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed EFT-1 mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
EFT-1 will test the rocket, second stage, jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.
Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Here’s what Orion’s ocean splashdown and recovery by Navy divers will look like:
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
The United Launch Alliance Delta IV Heavy rocket is the world’s most powerful rocket. The triple barreled Delta IV Heavy booster is the only rocket sufficiently powerful to launch the 50,000 pound Orion EFT-1 spacecraft to orbit.
The first stage of the mammoth Delta IV Heavy generates some 2 million pounds of liftoff thrust.
Watch for Ken’s Orion coverage, and he’ll be at KSC for the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
A ride into space, a high-speed re-entry and a safe parachute deployment. That’s what NASA is hoping for when the Orion vehicle soars into space for a planned flight test next month. Eventually, this spacecraft will carry humans on journeys around the solar system, if all goes to plan.
The dramatic video above shows some of the testing Orion has passed so far, culminating in an animation showing the plans for the flight test. For more details on what to expect, check out Universe Today’s Ken Kremer’s article from a few days ago. Below is a gallery of Orion images from over the past couple of years.