Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Story updated[/caption]

“We’re at the comet! Yes,” exclaimed Rosetta Spacecraft Operations Manager Sylvain Lodiot, confirming the spacecraft’s historic arrival at Comet 67P/Churyumov-Gerasimenko during a live webcast this morning, Aug. 6, from mission control at ESA’s spacecraft operations centre (ESOC) in Darmstadt, Germany.

The European Space Agency’s (ESA) Rosetta comet hunter successfully reached its long sought destination after a flawless orbital thruster firing at 11 AM CEST to become the first spacecraft in history to rendezvous with a comet and enter orbit aimed at an ambitious long term quest to produce ground breaking science.

“Ten years we’ve been in the car waiting to get to scientific Disneyland and we haven’t even gotten out of the car yet and look at what’s outside the window,” Mark McCaughrean, senior scientific adviser to ESA’s Science Directorate, said during today’s webcast. “It’s just astonishing.”

“The really big question is where did we and the solar system we live in come from? How did water and the complex organic molecules that build up life get to this planet? Water and life. These are the questions that motivate everybody.”

“Rosetta is indeed the ‘rosetta stone’ that will unlock this treasure chest to all comets.”

Today’s rendezvous climaxed Rosetta’s decade long and 6.4 billion kilometers (4 Billion miles) hot pursuit through interplanetary space for a cosmic kiss with Comet 67P while speeding towards the inner Solar System at nearly 55,000 kilometers per hour.

The probe is sending back spectacular up close high resolution imagery of the mysterious binary, two lobed comet, merged at a bright band at the narrow neck of the celestial wanderer that looks like a ‘rubber ducky.’

“This is the best comet nucleus ever resolved in space with the sharpest ever views of the nucleus, with 5.5.meter pixel resolution,” said Holger Sierks, principal investigator for Rosetta’s OSIRIS camera from the Max Planck Institute for Solar System Research in Gottingen, Germany, during the webcast.

Back side view of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km.   The image resolution is 5.3 metres/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Back side view of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. The image resolution is 5.3 metres/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“We now see lots of structure and details. Lots of topography is visible on the surface. We see the nucleus and outgassing activity. The outbursts are seen with overexposed images. It’s really fantastic”

“There is a big depression on the head and 150 meter high cliffs, rubble piles, and also we see smooth areas and plains. The neck is about 1000 meters deep and is a cool area. There is outgassing visible from the neck.”

“We see a village of house size boulders. Some about 10 meters in size and bigger they vary in brightness. And some with sharp edges. We don’t know their composition yet.”

“We don’t understand how its created yet. That’s what we’ll find out in coming months as we get closer.”

“Rosetta has arrived and will get even closer. We’ll get ten times the resolution compared to now.”

“The comet is a story about us. It will be the key in cometary science. Where did it form? What does it tell us about the water on Earth and the early solar system and where it come from?”

Following the blastoff on 2 March 2004 tucked inside the payload fairing of an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana, Rosetta traveled on a complex trajectory.

It conducted four gravity assist speed boosting slingshot maneuvers, three at Earth and one at Mars, to gain sufficient velocity to reach the comet, Lodiot explained.

The 1.3 Billion euro robotic emissary from Earth is now orbiting about 100 kilometers (62 miles) above the comet’s surface, some 405 million kilometers (250 million mi.) from Earth, about half way between the orbits of Jupiter and Mars.

The main event today, Aug. 6, was to complete an absolutely critical thruster firing which was the last of 10 orbit correction maneuvers (OCM’s). It started precisely on time at 11:00 AM CEST/09:00 GMT/5:00 AM EST, said Lodiot. The signal was one of the cleanest of the entire mission.

The orbital insertion engine firing dubbed the Close Approach Trajectory – Insertion (CATI) burn was scheduled to last about 6 minutes 26 seconds. Confirmation of a successful burn came some 28 minutes later.

“We’re at the comet! Yes,” Lodiot excitedly announced live whereupon the crowd of team members, dignitaries and journalists at ESOC erupted in cheers.

For the next 17 months, the probe will escort comet 67P as it loops around the Sun towards perihelion in August 2015 and then continue along on the outbound voyage towards Jupiter.

ESA’s incredibly bold mission will also deploy the three-legged piggybacked Philae lander to touch down and drill into and sample its incredibly varied surface a little over three months from now.

Together, Rosetta and Philae are equipped with a suite of 21 science instruments to conduct an unprecedented investigation to characterize the 4 km wide (2.5 mi.) comet and study how the pristine frozen body composed of ice and rock is transformed by the warmth of the Sun.

Comets are believed to have delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules.

Close-up detail of comet 67P/Churyumov-Gerasimenko. The image was taken by Rosetta’s OSIRIS narrow-angle camera and downloaded today, 6 August. The image shows the comet’s ‘head’ at the left of the frame, which is casting shadow onto the ‘neck’ and ‘body’ to the right.  The image was taken from a distance of 120 km and the image resolution is 2.2 metres per pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Close-up detail of comet 67P/Churyumov-Gerasimenko. The image was taken by Rosetta’s OSIRIS narrow-angle camera and downloaded today, 6 August. The image shows the comet’s ‘head’ at the left of the frame, which is casting shadow onto the ‘neck’ and ‘body’ to the right.
The image was taken from a distance of 120 km and the image resolution is 2.2 metres per pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta and Philae will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it by sampling and analyzing the comets nucleus and coma cloud of gas and dust.

“The first coma sampling could happen as early as next week,” said Matt Taylor, ESA’s Rosetta project scientist on the webcast.

“Is this double-lobed structure built from two separate comets that came together in the Solar System’s history, or is it one comet that has eroded dramatically and asymmetrically over time? Rosetta, by design, is in the best place to study one of these unique objects.”

After thoroughly mapping the comet, the team will command Rosetta to move even lower to 50 km altitude and then even lower to 30 km and less.

The scientists and engineers will search for up to five possible landing sites for Philae to prepare for the touchdown in mid-November 2014.

“We want to characterize the nucleus so we can land in November,” said Taylor. “We will have a ringside along with the comet as it moves inwards to the sun and then further out.”

Comet 67P/Churyumov-Gerasimenko activity on 2 August 2014. The IMAGE was taken by Rosetta’s OSIRIS wide-angle camera from a distance of 550 km. The exposure time of the image was 330 seconds and the comet nucleus is saturated to bring out the detail of the comet activity. Note there is a ghost image to the right. The image resolution is 55 metres per pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet 67P/Churyumov-Gerasimenko activity on 2 August 2014. The IMAGE was taken by Rosetta’s OSIRIS wide-angle camera from a distance of 550 km. The exposure time of the image was 330 seconds and the comet nucleus is saturated to bring out the detail of the comet activity. Note there is a ghost image to the right. The image resolution is 55 metres per pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Studying comets will shed light on the history of water and life on Earth.

“We are going to places we have never been to before,” said Jean-Jacques Dordain, ESA’s Director General during the webcast.

“We want to get answers to questions to the origin to water and complex molecules on Earth. This opens up even more new questions than answers.”

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

Watch for updates.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

……..

Read my Rosetta series here:

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn


Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Stunning Images from Rosetta Show Closeup Views of Comet 67P/Churyumov-Gerasimenko

Close-up detail of comet 67P/Churyumov-Gerasimenko. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta has arrived! After traveling more than ten years, ESA’s Rosetta spacecraft reached comet 67P/Churyumov-Gerasimenko. These most recent images shared from the Rosetta team were obtained from a distance of 285 kilometers above 67P’s surface, and scientists say they surpass all pictures taken from earlier space missions of cometary surfaces. Visible are steep slopes and precipices, sharp-edged rock structure, prominent pits, and smooth, wide plains.

“It’s incredible how full of variation this surface is,” said Holger Sierks, the principal investigator of the OSIRIS imaging system on Rosetta. “We have never seen anything like this before in such great detail. “Today, we are opening a new chapter of the Rosetta mission. And already we know that it will revolutionize cometary science.”
Below, see more closeup images, including an animation from the navigation camera of Rosetta’s approach to the comet.

Read our full, detailed article about Rosetta’s arrival here.

Animation from the navigation camera of Rosetta’s view of Comet 67P/Churyumov-Gerasimenko as the spacecraft approached to enter orbit. Credit: ESA/Rosetta team.
Close-up detail of comet 67P/Churyumov-Gerasimenko. The image was taken by Rosetta’s OSIRIS narrow-angle camera and downloaded today, 6 August. The image shows the comet’s ‘head’ at the left of the frame, which is casting shadow onto the ‘neck’ and ‘body’ to the right.  The image was taken from a distance of 120 km and the image resolution is 2.2 metres per pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Close-up detail of comet 67P/Churyumov-Gerasimenko. The image was taken by Rosetta’s OSIRIS narrow-angle camera and downloaded today, 6 August. The image shows the comet’s ‘head’ at the left of the frame, which is casting shadow onto the ‘neck’ and ‘body’ to the right.
The image was taken from a distance of 120 km and the image resolution is 2.2 metres per pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet 67P/Churyumov-Gerasimenko by Rosetta’s OSIRIS narrow-angle camera on 3 August from a distance of 285 km. The image resolution is 5.3 metres/pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet 67P/Churyumov-Gerasimenko by Rosetta’s OSIRIS narrow-angle camera on 3 August from a distance of 285 km. The image resolution is 5.3 metres/pixel. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
By planned overexposure of the nucleus of comet 67P/Churyumov-Gerasimenko structures in the coma become visible. This images was taken on August 2nd, 2014 from a distance of 550 kilometers. It was exposed for 5.5 minutes. ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
By planned overexposure of the nucleus of comet 67P/Churyumov-Gerasimenko structures in the coma become visible. This images was taken on August 2nd, 2014 from a distance of 550 kilometers. It was exposed for 5.5 minutes. ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km.   Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The image of Comet 67P/Churyumov-Gerasimenko was taken by Rosetta’s OSIRIS narrow-angle camera on 3 August 2014 from a distance of 285 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

We’ll add more images as they become available, and this is just the beginning! In the next months, Rosetta will come closer than 10 kilometers to the comet’s surface, with one of the main goals to search for an appropriate landing site for the Philae lander. Philae is scheduled to touch down on the surface sometime this fall. Plus, Rosetta will stay close to the until the end of 2015. “We will have the unique opportunity to witness, how the comet’s activity forms and changes its surface”, said Sierks.

Here’s a video that shows more information of what Rosetta will be doing over the coming months:

Sources: ESA Flickr, Max Planck, ESA , ESA blog.

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM - Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com

ESA’s Rosetta spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2, 3 and 4 from distances of 1026 km, 500 km, 300 km and 234 km. Not to scale. Credit: ESA/Rosetta/NAVCAM – Collage/Processing: Marco Di Lorenzo/Ken Kremer- kenkremer.com
Watch ESA’s Live Webcast here on Aug. 6 starting at 4 AM EDT/ 8 AM GMT[/caption]

After a decade long chase of 6.4 billion kilometers (4 Billion miles) through interplanetary space the European Space Agency’s (ESA) Rosetta spacecraft is now on final approach for its historic rendezvous with its target comet 67P scheduled for Wednesday morning, Aug. 6. some half a billion kilometers from the Sun. See online webcast below.

Rosetta arrives at Comet 67P/Churyumov-Gerasimenko in less than 12 hours and is currently less than 200 kilometers away.

You can watch a live streaming webcast of Rosetta’s Aug. 6 orbital arrival here, starting at 10:00 a.m. CEST/8 a.m. GMT/4 a.m. EDT/1 a.m. PDT via a transmission from ESA’s spacecraft operations centre in Darmstadt, Germany.

Rosetta is the first mission in history to rendezvous with a comet and enter orbit around it. The probe will then escort comet 67P as it loops around the Sun, as well as deploy the piggybacked Philae lander to its uneven surface.

Orbit entry takes place after the probe initiates the last of 10 orbit correction maneuvers (OCM’s) on Aug. 6 starting at 11:00 CEST/09:00 GMT.

The thruster firing, dubbed the Close Approach Trajectory – Insertion (CATI) burn, is scheduled to last about 6 minutes 26 seconds. Engineers transmitted the commands last night, Aug. 4.

CATI will place the 1.3 Billion Euro Rosetta into an initial orbit at a distance of about 100 kilometers (62 miles).

Since the one way signal time is 22 min 29 sec, it will take that long before engineers can confirm the success of the CATI thruster firing.

As engineers at ESOC mission control carefully navigate Rosetta ever closer, the probe has been capturing spectacular imagery showing rocks, gravel and tiny crater like features on its craggily surface with alternating smooth and rough terrain and deposits of water ice.

See above and below our collages (created by Marco Di Lorenzo & Ken Kremer) of navcam camera approach images of the comet’s two lobed nucleus captured over the past week and a half. Another shows an OSIRIS camera image of the expanding coma cloud of water and dust.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

The up close imagery revealed that the mysterious comet looks like a ‘rubber ducky’ and is comprised of two lobes merged at a bright band at the narrow neck in between.

Rosetta’s navcam camera has been commanded to capture daily images of the comet that rotates around once every 12.4 hours.

After orbital insertion on Aug. 6, Rosetta will initially be travelling in a series of 100 kilometer-long (62 mile-long) triangular arcs in front of the comet while firing thrusters at each apex. Further engine firings will gradually lower Rosetta’s altitude about Comet 67P until the spacecraft is captured by the comet’s gravity.

ESA’s Rosetta Spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2 and 3 from distances of 1026 km, 500 km and 300 km. Not to scale.  Credit: ESA/Rosetta/NAVCAM   Collage/Processing: Ken Kremer/Marco Di Lorenzo
ESA’s Rosetta Spacecraft on final approach to Comet 67P/Churyumov-Gerasimenko in early August 2014. This collage of navcam imagery from Rosetta was taken on Aug. 1, 2 and 3 from distances of 1026 km, 500 km and 300 km. Not to scale. Credit: ESA/Rosetta/NAVCAM Collage/Processing: Ken Kremer/Marco Di Lorenzo

Rosetta will continue in orbit at comet 67P for a 17 month long study.

In November 2014, Rosetta will attempt another historic first when it deploys the piggybacked Philae science lander from an altitude of just about 2.5 kilometers above the comet for the first ever attempt to land on a comet’s nucleus. The lander will fire harpoons to anchor itself to the 4 kilometer (2.5 mile) wide comet’s surface.

Together, Rosetta and Philae will investigate how the pristine frozen comet composed of ice and rock is transformed by the warmth of the Sun. They will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it.

Rosetta was launched on 2 March 2004 on an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

If the Sun Were the Size of a Person, How Big Would an Asteroid Be?

Artist's concept of OSIRIS-REx at Bennu. (Credit: NASA/GSFC)

I love anything that attempts to provide a sense of scale about the Solar System (see here and here for even more examples) and this one brings us down past the Sun, planets, and moons all the way to asteroid size — specifically asteroid 101955 Bennu, the target of the upcoming OSIRIS-REx mission.

Created by the OSIRIS-REx “321Science!” team, consisting of communicators, film and graphic arts students, teens, scientists, and engineers, the video shows some relative scales of our planet compared to the Sun, and also the actual size of asteroid Bennu in relation to some familiar human-made structures that we’re familiar with. (My personal take-away from this: Bennu — one of those “half grains of sand” — is a rather small target!)

A NASA New Frontiers mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) will launch in Sept. 2016 on a two-year journey to the asteroid 101955 Bennu. Upon arrival OSIRIS-REx will map Bennu’s surface and also measure the Yarkovsky effect, by which asteroids’ trajectories can change over time due to the small force exerted by radiant heat.

Read more: Astronomers Measure Sunlight’s Shove

OSIRIS-REx will also attempt to collect and send back a 60-gram sample of the asteroid’s surface material. Learn more about the OSIRIS-REx mission here and here.

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

NAVCAM camera image taken on 2 August 2014 from a distance of about 500 kilometers from comet 67P/Churyumov-Gerasimenko. Credits: ESA/Rosetta/NAVCAM

The Rosetta comet chaser is currently less than 500 kilometers (300 miles) from its target destination, Comet 67P/Churyumov-Gerasimenko following today’s (Aug. 3) successful completion of the spacecraft’s critically important penultimate trajectory burn, just three days before its history making arrival at the comet on Aug. 6.

The European Space Agency’s (ESA) 1.3 Billion euro Rosetta spacecraft is now under three days away from becoming Earth’s first probe ever to rendezvous with and enter orbit around a comet after a decade long hunt of 6.4 billion kilometers (4 Billion miles) through interplanetary space. The gap is narrowing with each passing second.

The last trajectory firing is set for Aug. 6. Altogether the final pair of trajectory burns will reduce the spacecrafts speed by some 3.5 meters per second (m/s) with respect to the comet which is traveling at 55,000 kilometers per hour (kph).

The probes latest Navcam camera image shot on Aug. 2, 2014 from a distance of about 500 kilometers from comet 67P/Churyumov-Gerasimenko shows exquisite detail of the rubber ducky shaped body tumbling end over end. See above.

See below our mosaic of navcam camera approach images of the nucleus captured over the past week and a half of the mysterious two lobed comet, merged at a bright band in between.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail.
Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

In November 2014, the Rosetta mothership will attempt another historic first when it deploys the Philae science lander from an altitude of just 1 or 2 kilometers for the first ever attempt to land on a comet’s nucleus. The lander will fire harpoons to anchor itself to the 4 kilometer wide (2.5 mile) comet’s surface.

Together, Rosetta and Philae will investigate how the pristine frozen comet composed of ice and rock is transformed by the warmth of the Sun. They will also search for organic molecules, nucleic acids and amino acids, the building blocks for life as we know it.

Did life on Earth begin with the help of comet seeding? That’s a question the Rosetta science team seeks to help answer.

Today’s early morning thruster firing, officially known as the Close Approach Trajectory – pre-Insertion (CATP) burn, began as scheduled at 11:00 CEST (09:00 GMT) and was due to last for about 13 minutes and 12 seconds and bleed off some 3.2 m/s of spacecraft speed.

Although it ended a few seconds early, ESA reports that the CATP burn went well as engineers monitored the spacecraft communications at the European Space Operations Centre (ESOC), in Darmstadt, Germany via the agency’s 35 meter deep-space tracking station in New Norcia, Australia.

“All looks good,” says Rosetta Spacecraft Operations Manager Sylvain Lodiot, according to an ESA operations tweet.

CATP is part of the final series of ten orbit correction maneuvers (OCM’s) that culminates with the final thruster firing slated for Aug. 6 dubbed the Close Approach Trajectory – Insertion (CATI) burn.

“The CATI burn will reduce the relative velocity to about 1 m/s,” says Lodiot. That’s about equivalent to human walking speed.

The CATI orbit insertion firing will slow Rosetta to essentially the same speed as a comet and place it in orbit at an initial stand-off distance of about 100 kilometers (62 miles).

Rosetta will initially be travelling in a series of 100 kilometer-long triangular arcs while firings thrusters at each apex. Further engine firings will gradually lower Rosetta’s altitude about Comet 67P until the spacecraft is captured by the comet’s gravity.

After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus.  This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide.  Credit: ESA–C. Carreau
After catching up with the comet Rosetta will slightly overtake and enter orbit from the ‘front’ of the comet as both the spacecraft and 67P/CG move along their orbits around the Sun. Rosetta will carry out a complex series of manoeuvres to reduce the separation between the spacecraft and comet from around 100 km to 25-30 km. From this close orbit, detailed mapping will allow scientists to determine the landing site for the mission’s Philae lander. Immediately prior to the deployment of Philae in November, Rosetta will come to within just 2.5 km of the comet’s nucleus. This animation is not to scale; Rosetta’s solar arrays span 32 m, and the comet is approximately 4 km wide. Credit: ESA–C. Carreau

“All systems on the spacecraft are performing well and the entire team is looking forward to a smooth arrival,” says Lodiot.

It will study and map the wanderer composed of primordial ice, rock, dust and more and search for a suitable landing site for Philae.

The one-way signal time from Earth to Rosetta and Comet 67P is currently 22 minutes and 27 seconds as both loop around the Sun at a distance of some 555 million kilometres away from the Sun at this time. The short period comet is located between the orbits of Jupiter and Mars.

Rosetta will escort Comet 67P as they journey together inwards around the sun and then travel back out towards Jupiter’s orbit and investigate the physical properties and chemical composition of the comets nucleus and coma of ice and dust for some 17 months.

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with negative OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA    Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with negative OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Collage/Processing: Marco Di Lorenzo/Ken Kremer

Rosetta was launched on 2 March 2004 on an Ariane 5 G+ rocket from Europe’s spaceport in Kourou, French Guiana.

You can watch Rosetta’s Aug. 6 orbital arrival live from 10:45-11:45 CEST via a livestream transmission from ESA’s spacecraft operations centre in Darmstadt, Germany.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Announces Science Instruments for Mars 2020 Rover Expedition to the Red Planet

An artist concept image of where seven carefully-selected instruments will be located on NASA’s Mars 2020 rover. The instruments will conduct unprecedented science and exploration technology investigations on the Red Planet as never before. Image Credit: NASA

NASA announced the winners of the high stakes science instrument competition to fly aboard the Mars 2020 rover at a briefing held today, Thursday, July 31, at the agency’s headquarters in Washington, D.C.

The 2020 rover’s instruments goals are to search for signs of organic molecules and past life and help pave the way for future human explorers.

Seven carefully-selected payloads were chosen from a total of 58 proposals received in January 2014 from science teams worldwide, which is twice the usual number for instrument competitions and demonstrates the extraordinary interest in Mars by the science community.

The 2020 rover architecture is based on NASA’s hugely successful Mars Science Laboratory (MSL) Curiosity rover which safely touched down a one ton mass on Mars on Aug. 5, 2012 using the nail-biting and never before used skycrane rocket assisted descent system.

The seven instruments will conduct unprecedented science and technology investigations on the Red Planet that’s aimed for the first time at simultaneously advancing both NASA’s unmanned robotic exploration searching for extraterrestrial life and plans for human missions to Mars in the 2030’s.

Planning for NASA's 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Image Credit:   NASA/JPL-Caltech
Planning for NASA’s 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Image Credit: NASA/JPL-Caltech

The instruments will have the capability to detect low levels of organic molecules that are essential precursors to life.

A technology demonstration experiment will use Mars natural resources to generate oxygen from atmospheric carbon dioxide that can be used as rocket fuel or for human explorers. This will save enormous costs by enabling astronauts to ‘live off the land’ rather than having to bring everything needed for survival from Earth.

NASA said that the development cost for the chosen instruments is approximately $130 million out of a total cost of $1.9 Billion.

This overall cost is less than Curiosity’s approximate $2.4 Billion cost since the team is rebuilding the rover and landing architecture – sort of an MSL 2 so to speak – developed for Curiosity and also using several left over MSL flight spares.

Curiosity’s panoramic view departing Mount Remarkable and ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 630, May 15, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo
Mars 2020 builds on the architecture developed for Curiosity.
Curiosity’s panoramic view departing Mount Remarkable and ‘The Kimberley Waypoint’ where rover conducted 3rd drilling campaign inside Gale Crater on Mars. The navcam raw images were taken on Sol 630, May 15, 2014, stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo

The Mars 2020 rover will also have a sample cacher with the ability to store core samples collected by the rover’s drill for later retrieval and return to Earth at an as yet unspecified time.

“The Mars 2020 rover, with these new advanced scientific instruments, including those from our international partners, holds the promise to unlock more mysteries of Mars’ past as revealed in the geological record,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate in Washington.

“This mission will further our search for life in the universe and also offer opportunities to advance new capabilities in exploration technology.”

NASA’s Mars 2020 rover will explore the Red Planet like never before.  Credit: NASA
NASA’s Mars 2020 rover will explore the Red Planet like never before. Credit: NASA
Here’s a list of the 7 selected science payload proposals. They are in some ways more advanced versions form Curiosity and in other ways completely new:

Mastcam-Z, an advanced camera system with panoramic and stereoscopic imaging capability with the ability to zoom. The instrument also will determine mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Phoenix.

SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d’Etudes Spatiales,Institut de Recherche en Astrophysique et Planetologie (CNES/IRAP) France.

Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload. The principal investigator is Luther Beegle, JPL.

The Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce oxygen from Martian atmospheric carbon dioxide. The principal investigator is Michael Hecht, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape. The principal investigator is Jose Rodriguez-Manfredi, Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Spain.

The Radar Imager for Mars’ Subsurface Exploration (RIMFAX), a ground-penetrating radar that will provide centimeter-scale resolution of the geologic structure of the subsurface. The principal investigator is Svein-Erik Hamran, Forsvarets Forskning Institute, Norway.

So the instruments are more sophisticated, upgraded hardware versions as well as new instruments to conduct geological assessments of the rover’s landing site, determine the potential habitability of the environment, and directly search for signs of ancient Martian life, according to NASA.

Creating a Returnable Cache of Martian Samples is a major objective for NASA's Mars 2020 rover.  This prototype show  hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth.  The 2020 rover would be to collect and package a carefully selected set of up to 31 samples in a cache that could be returned to Earth by a later mission.  The capabilities of laboratories on Earth for detailed examination of cores drilled from Martian rocks would far exceed the capabilities of any set of instruments that could feasibly be flown to Mars.  The exact hardware design for the 2020 mission is yet to be determined.  For scale, the diameter of the core sample shown in the image is 0.4 inch (1 centimeter).  Credit: NASA/JPL-Caltech
Creating a Returnable Cache of Martian Samples is a major objective for NASA’s Mars 2020 rover. This prototype show hardware to cache samples of cores drilled from Martian rocks for possible future return to Earth. The 2020 rover would be to collect and package a carefully selected set of up to 31 samples in a cache that could be returned to Earth by a later mission. The capabilities of laboratories on Earth for detailed examination of cores drilled from Martian rocks would far exceed the capabilities of any set of instruments that could feasibly be flown to Mars. For scale, the diameter of the core sample shown in the image is 0.4 inch (1 centimeter). Credit: NASA/JPL-Caltech

“Today we take another important step on our journey to Mars,” said NASA Administrator Charles Bolden.

“While getting to and landing on Mars is hard, Curiosity was an iconic example of how our robotic scientific explorers are paving the way for humans to pioneer Mars and beyond. Mars exploration will be this generation’s legacy, and the Mars 2020 rover will be another critical step on humans’ journey to the Red Planet.”

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

Book Review: Neil Armstrong – A Life of Flight by Jay Barbree

Neil Armstrong - A Life of Flight; by Jay Barbree

“Neil Armstrong – A Life of Flight” is a thoroughly enjoyable new biography about the first human to set foot on the Moon on NASA’s Apollo 11 mission written with gusto by Emmy winning NBC News space correspondent Jay Barbree.

Jay Barbee is a veteran NBC News reporter who has covered America’s manned space program from the start. And he has the distinction of being the only reporter to cover every single American manned space launch – all 166 from Alan Shepard in 1961 to STS-135 in 2011 – from his home base at the Kennedy Space Center in Florida allowing him to draw on a wealth of eyewitness experiences and inside contacts.

The book’s publication coincides with the 45th anniversary of the Flight of Apollo 11 on America’s first manned moon landing mission in July 1969 by the three man crew comprising Commander Neil Armstrong, fellow moonwalker and Lunar Module Pilot Buzz Aldrin and Command Module pilot Michael Collins.

It’s a meticulously researched book over five decades in the making and based on personal interviews, notes, meetings, remembrances, behind the scenes visits, launches and more between Neil Armstrong and his trusted friend Jay Barbree as well as hordes more officials and astronauts key to achieving NASA’s spaceflight goals.

He won that trust because the astronauts and others trusted that he would get the story right and never betray confidences, Jay told me in an interview about the book.

“This is really Neil’s book. And it’s as accurate as possible. I will never reveal something Neil told me in confidence. But there is far more in this book about Neil than he would have liked.”

Jay Barbree and Neil Armstrong enjoy dinner with America’s first in orbit, John Glenn, who is performing standup comedy out of the picture. Courtesy:  Jay Barbee. See  Jay Barbree and Neil Armstrong enjoy dinner with America’s first in orbit, John Glenn, who is performing standup comedy out of the picture. Courtesy:  Jay Barbree. See  p. XIX
Jay Barbree and Neil Armstrong enjoy dinner with America’s first in orbit, John Glenn, who is performing standup comedy out of the picture. Courtesy: Jay Barbree. See p. XIX

There is a six page list of acknowledgments and the forward is written by no less than John Glenn – the first American to orbit the Earth in 1962.

Barbree is a master story teller who amply illustrates why NASA felt Armstrong was the best candidate to be 1st Man on the Moon based on his extraordinary intellect, piloting skills, and collected coolness and clear thinking under extraordinary pressure.

Armstrong also always shied away from publicity and bringing attention to himself, Barbree told me.

“Neil did not think he was any more important than anyone else. Neil wanted to do a book about a life of flight. But he wanted everyone else included.” And that’s exactly the format for the book – including Armstrong’s colleagues in words and pictures.

On July 21, NASA officially renamed a historic human spaceflight facility at the Kennedy Space Center in honor of Mission Commander Neil Armstrong – read my story here.

At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O'Connell
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA’s 45th anniversary celebration of the Apollo 11 moon landing. The building’s high bay is being used to support the agency’s new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O’Connell

Barbree details Armstrong’s lifetime of flight experiences that led to the ultimate Moon landing moment; starting with his early experiences as a Korean war combat pilot and bailing out of a crippled Panther F9F fighter plane, flying the X-15 to an altitude of 39 miles and the edge of space as a NASA test pilot, his selection as a member of the second group of astronauts on September 17, 1962, his maiden space mission on Gemini 8 which suddenly went out of control and threatened the crews lives, and finally the landing on the Sea of Tranquility with only 30 seconds of fuel remaining.

“Neil Armstrong – A Life of Flight” is a book for anyone interested in learning the nitty gritty inside details starting from the founding of America’s space effort, the trials, tribulations and triumphs of the earlier Mercury and Gemini manned programs, the terrible tragedy of the Apollo 1 fire and death of three brave Americans – Gus Grissom, Ed White and Roger Chaffee – and how all this swirl lead up to America’s determined and miraculous effort recounting how we got to the Moon. Go elsewhere for gossip.

This hefty 350 page volume is absolutely chock full of details including copious quotes on virtually every page. So much so that Barbree brings the along reader for what seems like a firsthand account. It’s as though he were a fly in the room listening in on history being made and transcribing it second by second or as an actual crew member riding along himself and reporting ultimately from aboard Apollo 11 and the Moon’s desolate surface.

On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA

Barbree does this by putting into context the full meaning and breadth of what’s happening on a moment by moment basis. Giving you the reader a complete understanding of what, why and how these history making events transpired as they did.

I found his background information endlessly illuminating and informative ! – precisely because it’s not merely a transcription of dialogue.

Concerning the mild controversy regarding Armstrong’s actual first words spoken from the lunar surface, here’s excerpts from how Jay tells the story on p. 263:

“He had thought about one statement he judged had meaning and fit the historic occasion …. Neil had not made up his mind … he was undecided until he was faced with the moment.

Armstrong then lifted his left boot .. and set it down in moon dust.

“That’s one small step for man,” Neil said with a momentary pause. “One giant leap for mankind.”

What most didn’t know was that Neil had meant to say, “That’s one small step for a man,” and that set off an argument for years to come. Had a beep in transmission wiped it from our ears or had Neil nervously skipped the word?

Knowing Neil’s struggles with public speaking, I believe the latter, and with all the excitement … I’ve never been convinced Neil knew himself for sure,” Barbree wrote.

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

Towards the books conclusion, he writes of Armstrong; “No greater man walked among us. No better man left us informed answers. Neil taught us how to take care of our Earth-Moon system.”

I also enjoyed towards the end of the book where Jay includes Neil’s disappointment that we haven’t ventured beyond Earth orbit in over 4 decades and includes Neil’s personal testimony to Congress so we learn the detail of Armstrong thoughts – in his own words.

“I am persuaded that a return to the moon would be the most productive path to expanding the human presence in the solar system.”

Jay also pinpoints why we haven’t returned to the Moon; “lack of vision for the future” by Congress and Presidents “have kept astronauts locked in Earth orbit.”

It’s been my privilege to get to know Jay during my own space reporting from the press site at the Kennedy Space Center and interview him about his magnificent new book.

Read Jay Barbree’s new 8 part series of 45th anniversary Apollo 11 stories at NBC News here:

Morning on the Moon: Apollo 11 Showed How Far We Could Go

Armstrong passed away unexpectedly at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Despite Armstrong’s premature passing, Barbree told me he had completed all the interviews.

“There isn’t anything that comes to mind about Neil Armstrong that I didn’t get to ask him,” Barbree told me.

Read my 45th Apollo 11 anniversary articles here:

Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Historic Human Spaceflight Facility at Kennedy Renamed in Honor of Neil Armstrong – 1st Man on the Moon


Apollo 11 Moon Landing 45 Years Ago on July 20, 1969: Relive the Moment! – With an Image Gallery and Watch the Restored EVA Here

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

Read my story about the deep sea recovery of the Apollo 11 first stage F-1 engines in 2013 – here.

Jay Barbree is on a book signing tour and you might be lucky to catch him at an event like a colleague of mine did at the Smithsonian National Air & Space Museum recently. See photo below.

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Jay Barbree at “Neil Armstrong” book signing tour at the Smithsonian National Air & Space Museum. Credit: Mark Usciak
Jay Barbree at “Neil Armstrong” book signing tour at the Smithsonian National Air & Space Museum. Credit: Mark Usciak

To Help Mars Rovers Phone Home, NASA Asks For Ideas To Close Looming Communications Gap

Artist's conception of commercial satellites orbiting Mars and beaming information back to Earth. Credit: NASA/JPL-Caltech

Remember during the government shutdown when it looked as though a NASA Mars mission would be delayed? Launch preparations continued because delaying the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft — which could have pushed its window back by years — would cause “imminent risk to life or property”, administrator Charles Bolden told Universe Today in November.

Both NASA’s Mars Reconnaissance Orbiter and Mars Odyssey currently provide a vital data link to send huge streams of information from the rovers on the surface, Opportunity and Curiosity. (And the Mars 2020 rover is coming up in a few years, too.) While both orbiters are working well, they are both well over their design lifetimes. MAVEN is now on its way to Mars and should get there in September.

MAVEN’s mission, however, is only designed to last for a year. While it could last longer, NASA is already thinking ahead for satellite backups — especially for the 2020s. And that could include commercial participation, according to a new request for information the agency put out this week.

“NASA has no scheduled Mars science orbiters after MAVEN arrives on the Red Planet in the fall,” the agency warned in a press release. “This creates the need to identify cost-effective options to ensure continuity of reliable, high-performance telecommunications relay services for the future.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The solicitation (which you can see here) proposes to have NASA purchase telecommunications services from some “commercial service provider” that would be responsible for operating and owning the satellites. This isn’t necessarily open only to industry, either. NASA says that organizations could include commercial providers, its own centers, universities, non-profits, federally funded research and development centers and even U.S. government and international organizations.

“We are looking to broaden participation in the exploration of Mars to include new models for government and commercial partnerships,” stated John Grunsfeld, associate administrator of NASA’s science mission directorate. “Depending on the outcome, the new model could be a vital component in future science missions and the path for humans to Mars.”

And it’s possible these orbiters could explore new technologies for Mars — specifically, laser/optical communications, which were used to great success on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission. And other laser missions are coming up. This could make it easier to send back movies from Mars as well as still pictures.

Source: NASA Jet Propulsion Laboratory

Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Apollo 11 Comes Home. The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. They splashed down at 12:49 a.m. EDT, July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. Credit: NASA

Apollo 11 Comes Home
The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. They splashed down at 12:49 a.m. EDT, July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. Credit: NASA
Story and gallery expanded[/caption]

The three man crew of NASA’s Apollo 11 splashed down in the Pacific Ocean 45 years ago today on July 24, 1969 – successfully concluding Earth’s first journey to land humans on another world and return them safely to our Home Planet.

Apollo 11 Commander Neil Armstrong became the first human to set foot on the Moon on July 20, 1969 after he stepped off the footpad of the Lunar Module Eagle soon after the start of the moonwalk EVA at 10:39 p.m. EDT and onto the lunar surface with his left foot at the Sea of Tranquility at 10:56 p.m. EDT. Lunar Module (LM) pilot Buzz Aldrin followed soon thereafter. They came in peace for all mankind!

The magnificent Lunar landing feat accomplished by US Apollo 11 astronauts Neil Armstrong and Buzz Aldrin marks the pinnacle of Mankind’s most momentous achievement.

The Apollo 11 crew consisting of Neil Armstrong, Buzz Aldrin and Command module pilot Michael Collins splashed down safely at 12:50 p.m. EDT on July 24 about 900 miles southwest of Hawaii in the North Pacific Ocean while seated inside the Command Module Columbia dangling at the end of a trio of massive parachutes that slowed their descent through the Earth’s atmosphere.

President Nixon Greets the Returning Apollo 11 Astronauts. The Apollo 11 astronauts, left to right, Commander Neil A. Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. "Buzz" Aldrin Jr., inside the Mobile Quarantine Facility aboard the USS Hornet, listen to President Richard M. Nixon on July 24, 1969 as he welcomes them back to Earth and congratulates them on the successful mission. The astronauts had splashed down in the Pacific Ocean at 12:50 p.m. EDT about 900 miles southwest of Hawaii.  Credit: NASA
President Nixon Greets the Returning Apollo 11 Astronauts. The Apollo 11 astronauts, left to right, Commander Neil A. Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. “Buzz” Aldrin Jr., inside the Mobile Quarantine Facility aboard the USS Hornet, listen to President Richard M. Nixon on July 24, 1969 as he welcomes them back to Earth and congratulates them on the successful mission. The astronauts had splashed down in the Pacific Ocean at 12:50 p.m. EDT about 900 miles southwest of Hawaii. Credit: NASA

After a mission duration of 8 days, 3 hours, 18 minutes, 35 seconds from launch to landing the Apollo 11 crew were plucked from the ocean by helicopters from the USS Hornet recovery ship after splashdown only 12 nautical miles (24 km) away.

They had to don protective biological isolation garments (BIGs) in case they were infected by some unknown and potentially hazardous “moon germs.” Of course there were no pathogens, but this was not definitely known at the time.

After their return to Earth, the trio was scrubbed with a disinfect solution of sodium hypochlorite and had to remain in quarantine for 21 days inside a 30 feet (9.1 m) long quarantine facility known as the Lunar Receiving Laboratory (LRL).

They were welcomed back to Earth by President Nixon aboard the USS Hornet.

We’ve chronicled the journey of Apollo 11 and lunar touchdown on July 20, 1969 as well as this week’s renaming of a historic human spaceflight facility at the Kennedy Space Center in honor of Mission Commander Neil Armstrong.

Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Here we’ve collected a gallery of the mission and ocean splashdown that brought Apollo 11 to a close and fulfilled the lunar landing quest set by a young President John F. Kennedy early in the decade of the 1960s.

The trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969.

Apollo 11 Official Crew Portrait.    Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot.  Image Credit: NASA
Apollo 11 Official Crew Portrait. Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot. Image Credit: NASA

The three-stage Saturn V generated 7.5 million pounds of thrust and propelled the trio into space and immortality.

Read my story about the deep sea recovery of the Apollo 11 first stage F-1 engines in 2013 – here.

The crew arrived in lunar orbit three days later on July 19, 1969, inside the docked Apollo 11 Command/Service and Lunar Modules (CSM/LM).

Armstrong and Aldrin then moved into the Lunar Module, undocked and safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe.

Six hours later Armstrong climbed down the LM ladder and stepped onto the Moon and into immortality.

Armstrong’s first words:

“That’s one small step for [a] man, one giant leap for mankind.”

During their 2 ½ hour long moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;

“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

The duo collected about 50 pounds (22 kg) of priceless moon rocks and set out the first science experiments placed by humans on another world. The moon rocks were invaluable in informing us about the origin of the Earth – Moon system.

Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:

Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.

Altogether Armstrong and Aldrin spent about 21 hours on the moon’s surface. Then they said goodbye to the greatest adventure and fired up the LM ascent engine to rejoin Michael Collins circling above in the Apollo 11 Command Module.

“The whole world was together at that particular moment,” says NASA Administrator Charles Bolden in a CNN interview. “In spite of all we are going through there is hope!”

Celebrating Apollo 11.  NASA and Manned Spacecraft Center (MSC) officials joined with flight controllers to celebrate the successful conclusion of the Apollo 11 lunar landing mission in the Mission Control Center. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ.  Credit: NASA
Celebrating Apollo 11. NASA and Manned Spacecraft Center (MSC) officials joined with flight controllers to celebrate the successful conclusion of the Apollo 11 lunar landing mission in the Mission Control Center. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ. Credit: NASA

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Apollo 11 Welcome. New York City welcomes the Apollo 11 crew in a ticker tape parade down Broadway and Park Avenue. Pictured in the lead car, from the right, are astronauts Neil A. Armstrong, Buzz Aldrin and Michael Collins. The three astronauts teamed for the first manned lunar landing, on July 20, 1969.  Credit: NASA
Apollo 11 Welcome. New York City welcomes the Apollo 11 crew in a ticker tape parade down Broadway and Park Avenue. Pictured in the lead car, from the right, are astronauts Neil A. Armstrong, Buzz Aldrin and Michael Collins. The three astronauts teamed for the first manned lunar landing, on July 20, 1969. Credit: NASA
Apollo 11 Launch.  The American flag heralded the launch of Apollo 11, the first Lunar landing mission, on July 16, 1969. The massive Saturn V rocket lifted off from NASA's Kennedy Space Center with astronauts Neil A. Armstrong, Michael Collins, and Edwin "Buzz" Aldrin at 9:32 a.m. EDT. Four days later, on July 20, Armstrong and Aldrin landed on the Moon's surface while Collins orbited overhead in the Command Module. Armstrong and Aldrin gathered samples of lunar material and deployed scientific experiments that transmitted data about the lunar environment.   Credit: NASA
Apollo 11 Launch. The American flag heralded the launch of Apollo 11, the first Lunar landing mission, on July 16, 1969. The massive Saturn V rocket lifted off from NASA’s Kennedy Space Center with astronauts Neil A. Armstrong, Michael Collins, and Edwin “Buzz” Aldrin at 9:32 a.m. EDT. Four days later, on July 20, Armstrong and Aldrin landed on the Moon’s surface while Collins orbited overhead in the Command Module. Armstrong and Aldrin gathered samples of lunar material and deployed scientific experiments that transmitted data about the lunar environment. Credit: NASA
Launch of Apollo 11.  On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.  Image credit: NASA
Launch of Apollo 11. On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States’ first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module “Eagle” to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules “Columbia” in lunar orbit. Image credit: NASA
The Eagle Prepares to Land.  The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine.  Image Credit: NASA
The Eagle Prepares to Land. The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module "Eagle." Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera.   Image credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module “Eagle.” Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera. Image credit: NASA
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O'Connell
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA’s 45th anniversary celebration of the Apollo 11 moon landing. The building’s high bay is being used to support the agency’s new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O’Connell

Insta-Mars: Crew Wraps Up Mock Mission With Pictures Of Their Hawaiian Adventure

Casey Stedman, commander of the 2014 HI-SEAS mission, points towards its habitat module and Maunea Kea during the Hawaiian mission. Credit: Casey Stedman/Instagram

It’s the final countdown for a hardy group of people who have been on “Mars” for the past four months. On Friday (July 25), the HI-SEAS crew will make their return after simulating Red Planet exploration in Hawaii. And you can bet there are certain things they are missing about the outside world, or “Earth”.

“I haven’t seen a tree, smelled the rain, heard a bird, or felt wind on my skin in four months,” said Casey Stedman, the commander of the latest Hawai’i-Space Exploration and Analog Simulation, said in a statement on Instagram’s blog yesterday (July 20). Added chief technologist Ross Lockwood, “We’ve basically been subsisting on mush. Flavorful mush, but mush nonetheless.”

Despite the sacrifices, there’s a certain excitement to doing four solid months of experiments and “spacewalks” and other Martian activities. Luckily for us, the crew has been liveblogging their adventures on social media! Below the jump is some of their best Instagram photos from the trip.

HI-SEAS aims to closely simulate Mars exploration. The University of Hawaii runs the site, and every field season volunteers apply to participate in the missions. The first mission took place in 2012 and lasted 118 days. This mission is taking place in the same location, high on the slope of the Mauna Loa volcano.

Besides Instagram, some of the crew members are also accessible on Twitter. You can follow them at @rosslockwood, @Space_Chicken_, @TSwarmer and @casey_stedman. You can also read more about HI-SEAS on its official site.

Edit, July 24: Angelo Vermeulen (the commander of the first HI-SEAS mission last year) has just opened an Instagram account of his own where he is uploading pictures of the mission.

Full disclosure: I am a classmate of Tiffany Swarmer’s in the Space Studies department at the University of North Dakota. She and the department have not asked me to write this article, nor were they aware of its publication before it went online.

Sunset over Maui from Mauna Loa, as seen from the #HISEAS habitat #Mars #Space #Hawaii #NASA #NoFilter

Chicken tortilla soup with freshly baked corn bread. #HISEAS

The #HISEAS crew learns about Hawaiian vulcanism during their geology field lessons

May the Fourth Be With You – From your #HISEAS crew.

The 3 Americans of the 2nd #HISEAS crew celebrate #IndependenceDay #Mars #Hawaii #Space #NASA

Commander @casey_stedman and I are heading out on a sample collecting EVA. #HISEAS

Volcanic tephra from Kilauea Iki eruption- could similar deposits be found on #Mars? #HISEAS #Planetary

Just a little reading to learn about the responsibilities of commanding a space mission #HISEAS #Spaceflight #Astronaut #Science #ISS #NASA

Fresh lettuce on sMars courtesy of Lucie Poulet (@Space_Chicken_)! #HISEAS

It’s a good day to record sMars’ first podcast. #HISEAS

Crew quarters inside of the#HISEAS habitat module

Multitasking at its finest. #HISEAS

Simulating an EVA during the #HISEAS analog mission #Mars #Hawaii #Space #NASA

sTent accomplished. #HISEAS

The things I put up while while out on EVA. #HISEAS

The Kilauea Caldera as seen by the #HISEAS crew during their geology field lessons in Hawaiian Volcanoes National Park