Private American Rockets Blast Open 2014 & Commercial Space Race with Big Bangs on Jan. 6 & 7

Seaside panoramic view of an Antares rocket and Cygnus spacecraft at Launch Pad 0A at NASA Wallops Flight Facility on the Virginia Eastern Shore. Blastoff for the ISS is slated for Jan. 7 at 1:55 p.m. EDT. Credit: Ken Kremer (kenkremer.com)

Seaside panoramic view of an Antares rocket and Cygnus cargo spacecraft built by Orbital Sciences at Launch Pad 0A at NASA Wallops Flight Facility on the Virginia Eastern Shore. Blastoff for the ISS is slated for Jan. 7, 2014 at 1:55 p.m. EDT. Credit: Ken Kremer – kenkremer.com
UPDATE – Frigid Weather Delays Antares Launch to Jan. 8[/caption]

The status quo in space flight operations is no more.

Private American rockets are leading the charge of overdue change into the innovative ‘Commercial Space Race’ by blasting 2014 open with a pair of ‘Big Bang fireworks’ just a day apart on Jan. 6 and Jan. 7.

A dynamic duo of US aerospace firms – SpaceX and Orbital Sciences – are each poised to launch their own recently developed private boosters in the first week of the new year and aiming to dramatically cut costs.

And to top that off, the rockets are thundering aloft from two different spaceports located some 800 miles apart along the US East coast – weather permitting of course given the monster snow storm and frigid arctic air – akin to Mars – bearing down at this very moment on the big populations centers of the Atlantic coast region.

UPDATE ALERT – Antares Launch just postponed to Wed, Jan 8 at 1:32 p.m.due to extremely cold weather forecast. Back up day is Jan. 9

Both companies are revolutionizing access to space for both government entities as well as commercial companies doing lucrative business in space.

The implications of vastly reducing expenses for space travel and space commerce are far reaching and imperative – especially in the face of static and declining budgets mandated by politicians worldwide.

Except for China, which just landed its first rover on the Moon, is investing mightily in space and science and reaping strong economic growth.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

SpaceX is first on deck with their next generation Falcon 9 rocket poised to soar on Monday, Jan. 6, with a highly valuable international payload – the Thiacom-6 commercial broadcasting satellite.

Note: This launch has just been postponed from Jan. 3 according to a brief statement I received from the USAF 45th Space Wing. Apparently due to concerns with the rocket – better safe than sorry.

Orbital Sciences follows up quickly on Tuesday, Jan. 7, with their two stage Antares rocket carrying the firm’s own Cygnus cargo vessel on its first operational commercial resupply mission for NASA – that’s bound for the International Space Station (ISS).

The upgraded SpaceX Falcon 9 v1.1 two stage rocket is slated to launch from complex 40 at Cape Canaveral Air Force Station, Florida, likely at dusk.

The original Jan. 3 Falcon 9 evening time launch had been scheduled for 5:50 p.m. Thaicom-6 will be placed into an elliptical supersynchronous transfer orbit.

The commercial space race sometimes makes for strange bedfellows. The Thaicom-6 satellite was built by Orbital Sciences.

This marks only the 2nd launch of the newly upgraded Falcon 9 from Florida. Read my eyewitness reports about the thunderous maiden liftoff barely a month ago on Dec. 3, 2013 with the SES-8 commercial telecom satellite – starting here.

The new Falcon 9 is the key to achieving SpaceX’s future launch manifest of some 50 payloads worth billions of dollars.

The next gen Falcon 9 will also launch the human rated SpaceX Dragon to the ISS. But first the Dragon and Falcon 9 must successfully achieve a pair of abort tests planned for 2014. Read my new article and discussion with SpaceX CEO Elon Musk – here.

The Jan. 7 Antares liftoff is currently scheduled for 1:55 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island, Virginia.

Antares rocket slated for Jan. 7, 2014 launch undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by  Ken Kremer/Universe Today.   Credit: Ken Kremer - kenkremer.com
Antares rocket slated for Jan. 7, 2014 launch undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by Ken Kremer/Universe Today. Credit: Ken Kremer – kenkremer.com

The Antares launch comes on the heels of the completely successful demonstration flight to the space station by Orbital Sciences in September 2013.

This flight was originally scheduled for mid-December 2013 in prime time but was postponed due to the urgent repairs required to get the ISS cooling system back in full operation.

And although it’s now moved to daylight by reason of orbital mechanics, the liftoff could still easily be visible to millions of residents along a wide swath of the US East Coast spanning from North Carolina to New York City – weather permitting.

Antares Launch from Virginia– Maximum Elevation Map  The Antares daytime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Jan 7, 2014 launch depending on your location along the US east coast. Credit: Orbital Sciences
Antares Launch from Virginia– Maximum Elevation Map
The Antares daytime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Jan 7, 2014 launch depending on your location along the US east coast. Credit: Orbital Sciences

I’ll be covering the Antares launch, dubbed Orb-1, from on site at NASA Wallops – watch for my continuing reports.

The Cygnus logistics vessel will carry a total of 2,780 pounds of supplies to the station, including vital science experiments to expand the research capability of the Expedition 38 crew members aboard the orbiting laboratory, crew provisions, spare parts and experiment hardware, says NASA.

Also packed aboard the Antares/Cygnus flight are a batch of student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

“The 23 experiments flying next week [on Antares/Cygnus] are the culmination of 8,700 students engaged in real experiment design, and 1,800 proposals received by student teams,” Dr. Jeff Goldstein told Universe Today. Goldstein is the Center Director for the National Center for Earth and Space Science Education (NCESSE),which is sponsoring and organizing the student experiments.

This rocket volley is but the opening salvo of shots heard reverberating round the world that will surely “rock” the space industry to its core by cutting the steep cost of access to space.

“This is really rocking the industry. Everybody has to look out,” said Martin Halliwell, SES chief technical officer during a recent media briefing with Elon Musk, including Universe Today.

Both the SpaceX Falcon 9/Dragon and Orbital Sciences Antares/Cygnus vehicles were developed from the start with seed money from NASA in a public-private partnership.

The goal was to restore America’s cargo and crew capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles.

After a slow start, both Orbital Sciences and SpaceX have succeeded in bringing their new rockets and delivery vehicles safely on line.

SpaceX next Dragon cargo launch to the ISS is currently scheduled for Feb. 22, said SpaceX spokeswoman Emily Shanklin to Universe Today.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 8 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Mike Whalen of Orbital Sciences and Ken Kremer of Universe Today pose at the base of the Antares rocket 1st stage now slated for liftoff on Jan. 7, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Mike Whalen of Orbital Sciences and Ken Kremer of Universe Today pose at the base of the Antares rocket 1st stage now slated for liftoff on Jan. 8, 2014 (after weather delay) at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

Happy New Year’s Day 2014 from Mars – Curiosity Celebrates 500 Sols Spying Towering Mount Sharp Destination

Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014. NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras, in this cropped view. See full mosaic below. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494). Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014
NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras, in this cropped view. See full mosaic below. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494).
Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Story updated[/caption]

Today, New Year’s Day 2014, NASA’s Curiosity mega rover celebrates a huge mission milestone – her 500th Martian Day on the Red Planet since the death defying touchdown of August 2012.

“500 Sols of Mars: While Earth celebrates #NewYear2014, midnight on Mars mark my 500th day of operations,” she tweeted today.

And Curiosity marked the grand occasion by snapping a fabulous new panorama spying towering Mount Sharp – looming dead ahead in her high resolution color cameras.

You can take in the magnificent Martian view Curiosity sees today – via our newly assembled mosaic of humongous Mount Sharp rising 5.5 kilometers (3.4 mi) into the Red Planets sky; see above and below.

Ascending mysterious Mount Sharp – which dominates the Gale Crater landing site – is the ultimate reason for Curiosity’s being.

Curiosity marks 500 Sols on Mars on New Year’s Day Jan. 1, 2014. Credit: NASA/JPL
Curiosity marks 500 Sols on Mars on New Year’s Day Jan. 1, 2014. Credit: NASA/JPL

NASA’s science and engineering teams dispatched the state-of-the-art robot there because they believe the lower sedimentary layers hold the clues to the time period when Mars was habitable eons ago and they possess the required chemical ingredients necessary to sustain microbial life.

But first she needs to reach the mountains foothills.

So, just like some Earthlings, Curiosity also set a New Year’s resolution she’d like to share with you all – just tweeted all the way from the Red Planet.

“Goals for 2014: Finish driving to Mars’ Mount Sharp & do all the science I can.”

Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014.  NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494).   Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Curiosity Celebrates 500 Sols on Mars on Jan. 1, 2014. NASA’s Curiosity rover snaps fabulous new mosaic spying towering Mount Sharp destination looming dead ahead with her high resolution color cameras. Imagery assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494). Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Part of those goals involve shifting the missions focus to include the search for organic molecules – the building blocks of life as we know it – which may be preserved in the sedimentary rock layers.

“Really what we’re doing is turning the corner from a mission that is dedicated to the search for habitable environments to a mission that is now dedicated to the search for that subset of habitable environments which also preserves organic carbon,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology in Pasadena, said recently at the Dec. 2013 annual meeting of the American Geophysical Union (AGU).

The 1 ton behemoth is in the midst of an epic trek to destination Mount Sharp, roving across 10 kilometers (6 mi.) of the rather rocky crater floor of her landing site inside Gale Crater.

This illustration depicts a concept for the possible extent of an ancient lake inside Gale Crater. The existence of a lake there billions of years ago was confirmed by Curiosity from examination of mudstone in the crater's Yellowknife Bay area.  Credit: NASA/JPL-Caltech/MSSS
This illustration depicts a concept for the possible extent of an ancient lake inside Gale Crater. The existence of a lake there billions of years ago was confirmed by Curiosity from examination of mudstone in the crater’s Yellowknife Bay area. Credit: NASA/JPL-Caltech/MSSS

But the alien crater floor strewn with a plethora of sharp edged rocks is ripping significant sized holes and causing numerous dents in several of the rovers six big aluminum wheels – as outlined in my prior report; here.

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com See below complete 6 wheel mosaic and further wheel mosaics for comparison
Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

“Routes to future destinations for the mission may be charted to lessen the amount of travel over such rough terrain, compared to smoother ground nearby,” says NASA.

So far Curiosity’s odometer stands at 4.6 kilometers, following a post Christmas drive on Dec. 26, 2013 (Sol 494) after 16 months roving the Red Planet.

Curiosity’s handlers will be diligently watching the wear and tear on the 20 inch diameter wheels. She needs to rove along a smoother path forward to minimize wheel damage by sharp rocks.

Here’s our latest wheel mosaic from Dec. 26, 2013 (Sol 494) showing a several centimeter wide puncture in the left front wheel, which seems to have suffered the most damage.

The Mount Sharp and wheel mosaics were assembled by the imaging team of Marco Di Lorenzo and Ken Kremer.

Up close view of puncture in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo
Up close view of puncture in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 26, 2013 (Sol 494) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo

“Taking stock this holiday season. I’m planning smoother paths for the new year,” Curiosity tweeted.

The team hopes the intrepid robot arrives at the base of Mount Sharp around the middle of this new year 2014, if all goes well.

Shortly thereafter the robot begins a new phase with the dramatic ascent up the chosen entryway which the team dubs the ‘Murray Buttes’ – fittingly named in honor of Bruce Murray, a Caltech planetary geologist, who worked on science teams of NASA’s earliest missions to Mars in the 1960s and ’70s.

The rocky road ahead towards the base of Mount Sharp and the Murray Buttes entry point is shown in this mosaic from Dec. 26, 2013 (Sol 494).  Curiosity needs to rove along a smoother path forward to minimize wheel damage by sharp rocks.  Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer
The rocky road ahead towards the base of Mount Sharp and the Murray Buttes entry point is shown in this mosaic from Dec. 26, 2013 (Sol 494). Curiosity needs to rove along a smoother path forward to minimize wheel damage by sharp rocks. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer

Murray also was the director of NASA’s Jet Propulsion Laboratory from 1976 to 1982 and co-founded the Planetary Society in 1980. He passed away on Aug. 29, 2013.

“Bruce Murray contributed both scientific insight and leadership that laid the groundwork for interplanetary missions such as robotic missions to Mars, including the Mars rovers, part of America’s inspirational accomplishments. It is fitting that the rover teams have chosen his name for significant landmarks on their expeditions,” said NASA Mars Exploration Program Manager Fuk Li, of NASA’s Jet Propulsion Laboratory (JPL) , Pasadena, Calif.

Curiosity has already accomplished her primary goal of discovering a habitable zone on Mars that could support Martian microbes if they ever existed.

NASA’s rover Curiosity uncovered evidence that an ancient Martian lake had the right chemical ingredients, including clay minerals that could have sustained microbial life forms for long periods of time – and that these habitable conditions persisted on the Red Planet until a more recent epoch than previously thought.

Meanwhile, NASA’s Opportunity rover is ascending Solander Point on the opposite side of Mars.

And a pair of newly launched orbiters are streaking to the Red Planet; NASA’s MAVEN and India’s MOM.

And China’s new Yutu lunar rover and Chang’e-3 lander are napping through the lunar night.

For a great compilation of the top space events in 2013- read this article.

Stay tuned here for Ken’s continuing Curiosity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, Mars rover and MOM news.

Ken Kremer

…………….

Learn more about Curiosity, MAVEN, MOM, Mars rovers, SpaceX, Orbital Sciences Antares Jan. 7 launch, and more at Ken’s upcoming presentations

Jan 6-8: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 7” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Space Science Stories to Watch in 2014

Orion moves towards its first EFT-1 spaceflight later this year. (Credit: NASA).

There’s an old Chinese proverb that says, “May you live in interesting times,” and 2013 certainly fit the bill in the world of spaceflight and space science. The past year saw spacecraft depart for Mars, China land a rover on the Moon, and drama in low Earth orbit to repair the International Space Station. And all of this occurred against a landscape of dwindling budgets, government shutdowns that threatened launches and scientific research, and ongoing sequestration.

But it’s a brave new world out there. Here are just a few space-related stories that we’ll watching in 2014:

An artist's conception of ESA's Rosetta and Philae spacecraft approaching comet 67P/Churyumov-Gerasimenko. (Credit: ESA-J. Huart, 2013)
An artist’s conception of ESA’s Rosetta and Philae spacecraft approaching comet 67P/Churyumov-Gerasimenko. (Credit: ESA-J. Huart, 2013)

Rosetta to Explore a Comet: On January 20, 2014, the European Space Agency will hail its Rosetta spacecraft and awaken it for its historic encounter with comet 67P/Churyumov-Gerasimenko later this year in August. After examining the comet in detail, Rosetta will then dispatch its Philae lander, equipped complete with harpoons and ice screws to make the first ever landing on a comet. Launched way back in 2004, Rosetta promises to provide the cosmic encounter of the year.

The October 19th, 2014 passage of comet C/2013 A1 Siding Springs past Mars. (Credit: NASA/JPL-Caltech)
The October 19th, 2014 passage of comet C/2013 A1 Siding Springs past Mars. (Credit: NASA/JPL-Caltech)

A1 Siding Springs vs. Mars: A comet discovery back in 2013 created a brief stir when researchers noted that comet C/2013 A1 Siding Springs would make a very close passage of the planet Mars on October 19th, 2014. Though refinements from subsequent observations have effectively ruled out the chance of impact, the comet will still pass 41,300 kilometres from the Red Planet, just outside the orbit of its outer moon Deimos. Ground-based observers will get to watch the +7th magnitude comet close in on Mars through October, as will a fleet of spacecraft both on and above the Martian surface.

A recent tweet from @NewHorizons_2015, a spacecraft that launched just weeks before Twitter in 2006.
A recent tweet from @NewHorizons_2015, a spacecraft that, ironically, launched just weeks before Twitter in 2006.

Spacecraft En Route to Destinations: Though no new interplanetary missions are set to depart the Earth in 2014, there are lots of exciting missions currently underway and headed for worlds yet to be explored. NASA’s Dawn spacecraft is headed towards its encounter with 1 Ceres in February 2015. Juno is fresh off its 2013 flyby of the Earth and headed for orbital insertion around Jupiter in August 2016. And in November of this year, New Horizons will switch on permanently for its historic encounter with Pluto and its retinue of moons in July 2015.    

LUX & the Hunt for Dark Matter: It’s all around us, makes up the bulk of the mass budget of the universe, and its detection is THE name of the game in modern astrophysics. But just what is dark matter? Some tantalizing– and hotly contested –data came out late last year from of an unusual detector deep underground near Lead, South Dakota. The Large Underground Xenon experiment (LUX) looks for Weakly Interacting Massive Particles (WIMPs) interacting with 370 kilograms of super-cooled liquid Xenon. LUX requires its unique locale to block out interference from incoming cosmic rays. LUX is due to start another 300 day test run in 2014, and the experiment will add another piece to the puzzle posed by dark matter to modern cosmology, whether or not detections by LUX prove to be conclusive.   

The LIGO Livingston Observatory. (Photos by Author)
The LIGO Livingston Observatory. (Photos by Author)

 The Hunt for Gravity Waves: Another story to watch may come out of Caltech’s twin gravity wave observatories when its Advanced LIGO system goes online later this year. Established in 2002, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is comprised of two detectors: one in Hanford Washington and one outside of Livingston, Louisiana. The detectors look for gravity waves generated by merging binary pulsars and black holes. Though no positive detections have yet been made, Advanced LIGO with boast ten times the sensitivity and may pave the way for a new era of gravitational wave astronomy.

An artist concept of MAVEN in orbit around Mars. (Credit: NASA's Goddard Spaceflight Center).
An artist concept of MAVEN in orbit around Mars. (Credit: NASA’s Goddard Spaceflight Center).

 Spacecraft reach Mars: 2014 is an opposition year for the Red Planet, and with it, two new missions are slated to begin operations around Mars: India’s Mars Orbiter Mission (MOM) also known as Mangalyaan-1 is slated to enter orbit on September 24th, and NASA’s MAVEN or Mars Atmosphere and Volatile Evolution Mission is set to arrive just 2 days earlier on September 22nd. MOM and MAVEN will join the Curiosity and Opportunity rovers, ESA’s Mars Express,  NASA’s Odyssey spacecraft and  the Mars Reconnaissance Orbiter in the quest to unlock the secrets of the Red Planet.

Space Tourism Takes Off: Virgin Galactic’s SpaceShipTwo passed a key milestone test flight in late 2013. Early 2014 may see the first inaugural flights by Virgin Galactic out of the Mohave Spaceport and the start of sub-orbital space tourism. SpaceShipTwo will carry two pilots and six passengers, with seats going for $250,000 a pop. Hey, room for any space journalists in there? On standby, maybe?

The First Flight of Orion: No, it’s not the first flight of the proposed sub-light interplanetary spacecraft that was to be propelled by atomic bombs… but the September launch of the Orion Multi-Purpose Crew Vehicle is the first step in replacing NASA’s capability to launch crews into space. Exploration Flight Test 1 (EFT-1) will be a  short uncrewed flight and test the capsule during reentry after two orbits. It’s to be seen if the first lunar orbital mission using an Orion MPCV will occur by the end of the decade.

Launch of the SpaceX CRS-2 mission to the ISS in early 2013. (Photo by author).
Launch of the SpaceX CRS-2 mission to the ISS in early 2013. (Photo by author)

 The First Flight of the Falcon Heavy: 2014 will be a busy year for SpaceX, starting with the launch of Thaicom-6 out of Cape Canaveral this Friday on January 3rd. SpaceX is now “open for business,” and expect to see them conducting more satellite deployments for customers and resupply missions to the International Space Station in the coming year. They’ll also be moving ahead with tests of their crew-rated version of the Dragon capsule in 2014. But one of the most interesting missions to watch for is the demo flight of the Falcon 9 Heavy slated to launch out of Vandenberg Air Force Base by the end of 2014.… more to come!

The Sunjammer Space Sail: An interesting mission moves in 2014 towards a January 2015 launch: LGarde’s Sunjammer solar sail. Sunjammer will test key solar sail technologies as well as deliver the Solar Wind Analyzer (SWAN) and the MAGIC Magnetometer to the L1 Earth-Sun Lagrange point. Sunjammer will launch on a Falcon-9 rocket and deploy a 1200 square metre solar sail weighing only 32 kilograms. This will be a great one for ground satellite-spotters to track as well as it heads out!

Gaia Opens for Business: Launched on a brilliant night-shot out of the Kourou Space Center in French Guiana on December 19th of last year, the European Space Agency’s Gaia space observatory will begin its astrometry mission in 2014, creating most accurate map yet constructed of our Milky Way Galaxy. But we also anticipate exciting new discoveries due to spin-offs from this mission, to include the discovery of new exoplanets, asteroids, comets and much more.

And as in years previous, the quest to explore brave new worlds will be done against the backdrop of tightening budgets. Just like in household budgets, modern spaceflight is a continual conflict between what we would wish and what we can afford. In recent years, no mission seems to be safe, and there have even been occasional congressional rumblings to pull the plug on missions already underway. Interesting times, indeed… 2014 promises to be an extraordinary time in spaceflight and space science, both on Earth and beyond.

Yutu Flexes Robot Arm then Enters Hibernation During Long Lunar Night

Portion of 1st panorama around Chang’e-3 landing site showing China’s Yutu rover leaving tracks in the lunar soil as it drives across the Moon’s surface on Dec. 15, 2013. Images taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

1st Chang’e-3 Lunar Panorama
Portion of 1st panorama around Chang’e-3 landing site showing China’s Yutu rover leaving tracks in the lunar soil as it drives across the Moon’s surface on Dec. 15, 2013. Images taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic.
Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
See below robotic arm screenshots – – Story updated [/caption]

As night fell on the Earth’s Moon, China’s Yutu rover and mothership lander have both entered a state of hibernation determined to survive the frigidly harsh lunar night upon the magnificently desolate gray plains.

Yutu went to sleep at 5:23 a.m. Dec. 26, Beijing time, upon a command sent by mission control at the Beijing Aerospace Control Center (BACC), according to China’s State Administration of Science, Technology and Industry for National Defence (SASTIND).

The Chang’e-3 lander began its long nap hours earlier at 11:00 a.m. Beijing time on Christmas Day, Dec. 25.

The vehicles must now endure the lunar night, which spans 14 Earth days in length, as well as the utterly low temperatures which plunge to below minus 180 degrees Celsius.

Yutu rover points mast with cameras and high gain antenna to inspect lunar soil around landing site in this photo taken by Chang’e-3 lander. Credit: CNSA
Yutu rover points mast with cameras and high gain antenna downwards to inspect lunar soil around landing site in this photo taken by Chang’e-3 lander. Credit: CNSA

Scientists completed a series of engineering tests on the probes to ensure they were ready to withstand the steep temperature drop, said Wu Fenglei of the Beijing Aerospace Control Center, to the Xinhua state news agency.

Since there is no sunlight, the solar panels can’t provide any power and have been folded back.

So they face a massive engineering challenge to endure the extremely cold lunar night.

Therefore in order to survive the frigid lunar environment, a radioisotopic heat source is onboard to provide heat to safeguard the rovers and landers delicate computer and electronics subsystems via the thermal control system.

They are situated inside a warmed box below the deck that must be maintained at a minimum temperature of about minus 40 degrees Celsius to prevent debilitating damage.

Yutu prepares to flex robotic arm in this screen shot from a  CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo
Yutu prepares to flex robotic arm in this screen shot from a CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo

So the two spacecraft still have to prove they can hibernate and eventually emerge intact from the unforgiving lunar night.

Just prior to going to sleep, the 140 kg Yutu rover flexed its robotic arm and Chinese space engineers at BACC completed an initial assessment testing its joints and control mechanisms.

The short robotic arm appears similar in form and function to the one on NASA’s famous Spirit and Opportunity Mars rovers.

It is equipped with an alpha particle X-ray instrument (APXS) – on the terminus – to determine the composition of lunar rocks and soil.

Yutu flexes robotic arm with APXS spectrometer towards rock in this screen shot from a  CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo
Yutu flexes robotic arm with APXS spectrometer towards rock in this screen shot from a CCTV video animation. Credit: CNSA/CCTV/screenshot by R. Mackelenbergh/K. Kremer/M. Di Lorenzo

The robotic pair of spacecraft safely soft landed on the Moon on Dec. 14 at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region. It is located in the upper left portion of the moon as seen from Earth. You can easily see the landing site with your own eyes.

Barely seven hours after the history making touchdown, ‘Yutu’ was painstakingly lowered from its perch atop the lander and then successfully drove all six wheels onto the moon’s surface on Dec. 15.

Yutu left noticeable tracks behind, several centimeters deep, as the wheels cut into the loose lunar regolith.

The Chang’e-3 lander and rover then conducted an initial survey of the stark lunar landing site, pockmarked with craters and small boulders.

They took an initial pair of portraits of one another. Read my earlier report – here.

The four legged lunar lander also snapped the missions first panoramic view of the touchdown spot at Mare Imbrium using three panoramic cameras (Pancams) pointing in different directions. Read my earlier report – here.

See the eerie panoramic view of the landing site showing Yutu’s first moments on the alien lunar surface in our screenshot mosaic above – and here.

See the dramatic video with an astronauts eye view of the lunar descent and touchdown in my prior story – here.

Yutu, which translates as ‘Jade Rabbit’, was then directed to travel in a semicircular path around the right side of the lander and is heading to the south.

Its currently napping about 40 meters to the south.

China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander.  Credit: CNSA/CCTV
China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander. Credit: CNSA/CCTV

‘Jade Rabbit’ will resume the lunar trek upon awakening, along with the stationary lander, from their extended two week slumber around Jan 12, 2014.

Yutu will depart the Chang’e-3 landing zone forever and rove the moon’s surface for investigations expected to last at least 3 months – and perhaps longer depending on its robustness in the unforgiving space environment.

The robotic rover will use its suite of four science instruments to survey the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts, perhaps a decade from now.

NASA’s Lunar Reconnaissance Orbiter (LRO) imaged the Chang’e-3 landing site in western Mare Imbrium around Christmas time on 24 and 25 December with its high resolution LROC camera and we’ll feature them here when available.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

The best is surely yet to come!

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

Rough Red Planet Rocks Rip Rover Curiosity Wheels

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com See below complete 6 wheel mosaic and further wheel mosaics for comparison

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two here in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
See below complete 6 wheel mosaic and further wheel mosaics for comparison
[/caption]

Rough edged rocks on the Red Planet are clearly taking their toll on rover Curiosity’s hi tech wheels as she speeds towards her ultimate goal – humongous Mount Sharp – in search of the ingredients necessary to sustain potential Martian microbes.

Several of the NASA rovers six big aluminum wheels have suffered some significant sized rips, tears and holes up to several centimeters wide – in addition to numerous dents – as she has picked up the driving pace across the rugged, rock filled Martian terrain this past fall and put over 4.5 kilometers (3 mi.) on the odometer to date.

It’s rather easy to spot the wheel damage to the 1 ton behemoth by examining the mosaic imagery we have created – See above and below – from newly transmitted raw imagery and comparing that to older imagery taken at earlier points in the mission. Check our Sol 177 wheels mosaic below.

The latest imagery from Mars captured just prior to Christmas is delivering an undesired holiday present of sorts to team members that might well cause the scientists and engineers to alter Curiosity’s extraterrestrial road trip to traverse smoother terrain and thereby minimize future harm.

So the wheel damage is certainly manageable at this point but will require attention.

The team of Marco Di Lorenzo and Ken Kremer have assembled the new Mastcam and MAHLI raw images of the wheels captured on Sol 490 (Dec. 22) into fresh color mosaics – shown herein.

Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show rover’s underbelly and some recent damage to several of its six wheels - most noticeably the two at right in middle and front. Far fewer holes are visible in imagery  captured earlier in the Curiosity’s Martian traverse - see below. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com   See below more wheel mosaics for comparison
Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Dec. 22, 2013 (Sol 490) were assembled to show some recent damage to several of its six wheels – most noticeably the two at right in middle and front. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
See below more wheel mosaics for comparison
Photomosaic from Sol 177 (Feb. 3, 2013) shows rover Curiosity’s six wheels relatively intact with far fewer holes and dents compared to Sol 490 mosaic taken on Dec 22. 2013.  Rover is working in Yellowknife Bay here and had not yet begun long trek to Mount Sharp. Sol 177 raw images assembled to mosaic were taken by the MAHLI camera on Curiosity’s arm.  Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Photomosaic from Sol 177 (Feb. 3, 2013) shows rover Curiosity’s six wheels relatively intact with far fewer holes and dents compared to Sol 490 mosaic taken on Dec 22. 2013. Rover is working in Yellowknife Bay here and had not yet begun long trek to Mount Sharp. Sol 177 raw images assembled to mosaic were taken by the MAHLI camera on Curiosity’s arm. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Indeed the rovers handlers have already directed the SUV sized Curiosity to snap close up images of the 20 inch diameter wheels with the high resolution color cameras located on the Mast as well as the Mars Hand Lens Imager (MAHLI) camera at the end of the rover’s maneuverable robotic arm.

“We want to take a full inventory of the condition of the wheels,” said Jim Erickson of NASA’s Jet Propulsion Laboratory, project manager for the NASA Mars Science Laboratory Project, in a NASA statement.

Up close view of hole in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo
Up close view of hole in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo

The rover team certainly expected some wear and tear to accumulate along the rock strewn path to the base of Mount Sharp – which reaches 5.5 km (3.4 mi) into the Martian sky.

But the volume of sharp edged rocks encountered in the momentous trek across the floor of Curiosity’s Gale Crater landing site apparently has picked up- as evidenced by the new pictures – and consequently caused more damage than the engineers anticipated.

“Dents and holes were anticipated, but the amount of wear appears to have accelerated in the past month or so,” Erickson noted.

“It appears to be correlated with driving over rougher terrain. The wheels can sustain significant damage without impairing the rover’s ability to drive. However, we would like to understand the impact that this terrain type has on the wheels, to help with planning future drives.”

The team is now inspecting the new imagery acquired of the wheels and will decide if a course alteration to Mount Sharp is in order.

The left front wheel may have suffered the most harm.

Up close view shows a tear in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo
Up close view shows a tear in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490) Credit: NASA/JPL/MSSS/Ken Kremer -kenkremer.com/Marco Di Lorenzo

“Routes to future destinations for the mission may be charted to lessen the amount of travel over such rough terrain, compared to smoother ground nearby,” says NASA.

Following a new, post Christmas drive today, Dec. 26, 2013 (Sol 494) Curiosity’s odometer stands at 4.6 kilometers.

Curiosity has already accomplished her primary goal of discovering a habitable zone on Mars that could support Martian microbes if they ever existed.

NASA’s rover Curiosity uncovered evidence that an ancient Martian lake had the right chemical ingredients that could have sustained microbial life forms for long periods of time – and that these habitable conditions persisted on the Red Planet until a more recent epoch than previously thought.

Right now the researchers are guiding Curiosity along a 10 km (6 mi) path to the lower reaches of Mount Sharp – which they hope to reach sometime in mid 2014.

NASA's Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
NASA’s Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

Stay tuned here for Ken’s continuing Curiosity, Chang’e-3, LADEE, MAVEN, Mars rover and MOM news.

Ken Kremer

Yutu Moon Rover Sets Sail for Breathtaking New Adventures

China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander. Credit: CNSA/CCTV

China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Yutu portrait taken by the Chang’e-3 lander. Credit: CNSA/CCTV
See below Yutu’s departing portrait of Chang’e-3 lander emblazoned with Chinese national flag
Story updated[/caption]

China’s now famous ‘Yutu’ moon rover has set sail for what promises to be breathtaking new adventures on Earth’s nearest neighbor, after completing a final joint portrait session with the Chang’e-3 lander that safely deposited her on the lunar surface only a week ago.

Yutu’s upcoming journey marks humanity’s first lunar surface visit in nearly four decades since the Soviet Union’s Luna 24 sample return vehicle visited. America’s last lunar landing mission with the Apollo 17 astronauts departed 41 years ago on Dec. 14, 1972.

The Chang’e-3 mothership and Yutu rover have resumed full operations after awakening from a sort of self induced slumber following commands from Mission Control back in Beijing.

The lander and rover finished up their 5th and final dual picture taking session – in living lunar color – on Sunday, Dec. 22, according to CCTV, China’s state run broadcast network.

“Ten pictures have been taken at five spots so far, and all of them are better than we expected,” said Wu Weiren, chief designer of the China Lunar Probe Program, to CCTV.

See the newly released portraits from photo session 5 – above and below.

The rover and lander have taken photos of each other for the fifth and final time. The back side of Chang'e 3 lander as seen by rover Yutu with Chinese national flag at left imaged for the first time.  Credit: CNSA/CCTV
The rover and lander have taken photos of each other for the fifth and final time. The back side of Chang’e 3 lander as seen by rover Yutu with Chinese national flag at left imaged for the first time.
Credit: CNSA/CCTV

After arriving on the moon, Yutu and the lander took an initial pair of portraits of one another. Read my earlier report – here.

Yutu was then directed to travel in a semicircular path around the lander and to the south, making tracks several centimeters deep into the loose lunar regolith.

But within two days of the historic Dec. 14 touchdown, the two spacecraft took a four-day break that lasted from Dec. 16 to Dec. 20, during which China’s space engineers shut down their subsystems, according to China’s State Administration of Science, Technology and Industry for National Defense (SASTIND).

Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer See the complete panorama below   Story updated
Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer See the complete panorama below

The vehicles took a ‘nap” to deal with direct solar radiation that significantly raised their temperatures. Yutu’s sunny side exceeded 100 degrees centigrade while the shaded side was simultaneously below zero, reported SASTIND.

“The break had been planned to last until Dec. 23, but the scientists decided to restart Yutu now for more research time, based on the recent observations and telemetry parameters,” said Pei Zhaoyu, spokesman for the Chinese lunar program, according to China’s Xinhua state news agency.

Both robots then snapped additional photos of one another during the traverse from each of five specific and preplanned locations.

See accompanying traverse map below – written in Chinese.

Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang'e 3 imagery from space and ground.  Credit: CNSA/BACC
Path of Yutu rover from Dec. 14 landing to Dec. 21. Landscape textured with Chang’e 3 imagery from space and ground. Credit: CNSA/BACC

These images taken by Yutu were designed to show the 1200 kg Chang’e-3 lander from the front, side and back sides as it drove around the right side – for better illumination – at a distance of about 10 meters.

The final image of the Chang’e-3 lander taken by Yutu also captured China’s national flag emblazoned on the lander for the first time, since this was the first time it was in view of the rover’s camera eyes.

See the accompanying traverse graphic here – written in Chinese.

Yutu and the Chang'e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept.  Credit: China Space
Yutu and the Chang’e 3 lander were scheduled to take photos of each other from locations outlined in this artists concept. Credit: China Space

Having fulfilled the last of their joint tasks, the two spacecraft can therefore each begin their own lunar exploration missions, working independently of one another exactly as planned from the outset of China’s inaugural moon landing feat.

Yutu will depart the Chang’e-3 landing zone forever and begin its own lunar trek that’s expected to last at least 3 months – and perhaps longer if it’s delicate electronic components survive the moon’s utterly harsh and unforgiving space environment.

“They will begin to conduct scientific explorations of the geography and geomorphology of the landing spot and nearby areas, and materials like minerals and elements there. We will also explore areas 30 meters and 100 meters beneath the lunar soil. The exploration will continue longer than we planned, because all the instruments and equipments are working very well,” noted Wu Weiren.

The robotic pair of spacecraft safely soft landed on the Moon on Dec. 14 at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region.

Barely seven hours after the history making touchdown, ‘Yutu’ was painstakingly lowered from its perch atop the lander and then successfully drove all six wheels onto the moon’s surface on Dec. 15.

The Chang’e-3 mothership captured a panoramic view of the stark lunar terrain surrounding the spacecraft after ‘Yutu’ drove some 9 meters away from the lander.

See the eerie panoramic view of the landing site showing Yutu’s first moments on the alien lunar surface in my prior story – here.

See the dramatic video with an astronauts eye view of the lunar descent and touchdown in my prior story – here.

1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

The 120 kg Yutu rover is almost the size of a golf cart. It measures about 1.5 m x 1 m on its sides and stands about 1.5 m (nearly 5 feet) tall – virtually human height.

Yutu, which translates as ‘Jade Rabbit’ will use its suite of four science instruments to survey the moon’s geological structure and composition to locate the moon’s natural resources for use by potential future Chinese astronauts, perhaps a decade from now.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken KremerLanding site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013. Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013. [/caption]

China’s 1st Lunar Lander snaps 1st landing site Panorama

Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer See the complete panorama below Story updated

Portion of 1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
See the complete panorama below
Story updated[/caption]

China’s inaugural Chang’e-3 lunar lander has snapped the missions first panoramic view of the touchdown spot at Mare Imbrium.

Chinese space officials have now released the dramatic surface imagery captured by the Chang’e-3 mothership on Dec. 15, via a video news report on CCTV.

To make it easier to see and sense ‘the new view from the Moon’, we have created screen shots from the rather low resolution TV broadcast and assembled them into a photo mosaic of the landing site – see above and below mosaics by Marco Di Lorenzo and Ken Kremer.

The Chang’e-3 mothership imaged the stark lunar terrain surrounding the spacecraft after the ‘Yutu’ rover perched atop successfully drove all six wheels onto the moon’s surface on Dec. 15, barely 7 hours after the momentous landing on Dec. 14.

The individual images were taken by three cameras positioned around the robotic lander.

1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

Chinese scientists then pieced them together to form the lander’s first panoramic view of the lunar surface, according to CCTV.

“This picture is made of 60 pictures taken 3 times by the rover. The rover used three angles: vertical, 15 degrees tilted up, and 15 degrees down…so that we get an even farther view,” said Liu Enhai, Designer in Chief, Chang’E-3 Probe System, in a CCTV interview

The panoramic view shows ‘Yutu’ and its wheel tracks cutting a semi circular path at least several centimeters deep into the loose lunar regolith at the landing site at Mare Imbrium, located near the Bay of Rainbows.

After making its soft landing, the Chang’e-3’s lander took pictures around its landing spot. Credit: CCTV
After making its soft landing, the Chang’e-3’s lander took pictures around its landing spot. Credit: CCTV

A significant sized crater, several meters wide, is seen off to the left of Yutu and located only about 10 meters away from the Chang’e-3 lander.

Several more craters are visible in the pockmarked surface around the lander.

Mission leaders purposely equipped the lander with terrain recognition radar and software so that it could steer clear of hazards like craters and large boulders and find a safe spot to land.

Wheel tracks from Yutu moon rover. Credit: CNSA/CCTV
Wheel tracks from Yutu moon rover. Credit: CNSA/CCTV

Indeed just prior to touchdown, the lander actually hovered at an altitude of 100 meters for about 20 seconds to avoid the craters and rock fields which could have doomed the mission in its final moments.

See the dramatic Chang’e-3 landing video in my earlier report – here.

Here is our annotated screen shot from the landing video showing the eventual landing site in the distance:

This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer.  See the entire stunning Chang’e-3 lunar landing video – below
This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer.

The 140 kilogram Yutu rover then turned around so that the lander and rover could obtain their first portraits of one another.

“The rover reached the point of X after it went down from the lander, then it established contact with the ground. Then it went to point A, where the rover and lander took pictures of each other. Then it reached point B, where it’s standing now.” said Liu Jianjun, Deputy Chief Designer, Chang’E-3 Ground System, to CCTV.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Chinese President Xi Jinping and space agency leaders have hailed the Chang’e-3 mission as a complete success for China.

The Yutu rover, which translates as ‘Jade Rabbit’ will use its science instruments to survey the moon’s geological structure and composition on a minimum three month mission to locate the moon’s natural resources for use by potential future Chinese astronauts.

The lander will conduct in-situ exploration at the landing site for at least one year, say Chinese officials.

Hopefully, China will quickly start releasing full resolution imagery and video taken by the Chang’e-3 lander and Yutu rover at a dedicated mission website, like NASA does, rather than issuing photos of imagery from projection screens and televisions – so that we all can grasp the full beauty of their tremendous lunar feat.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken KremerLanding site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013. Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013. [/caption]

Stunning Chang’e-3 Lunar Landing Video gives Astronauts Eye View of Descent & Touchdown

This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer. See the entire stunning Chang’e-3 lunar landing video – below

This screen shot from one photo of many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013 shows the probe approaching the Montes Recti mountain ridge and approximate location of the landing site in Mare Imbrium. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Image and video rotated 180 degrees.
Credit: Xinhua/CCTV/post processing and annotations Marco Di Lorenzo /Ken Kremer
See the entire stunning Chang’e-3 lunar landing video – below
Story updated

[/caption]

China accomplished a major technological and scientific feat when the country’s ambitious Chang’e-3 robotic spacecraft successfully soft landed on the Moon on Dec. 14 – on their very first attempt to conduct a landing on an extraterrestrial body.

Along the way the descent imaging camera aboard the Chang’e-3 lander was furiously snapping photos during the last minutes of the computer guided descent.

For a firsthand look at all the thrilling action, be sure to check out the stunning landing video, below, which gives an astronauts eye view of the dramatic descent and touchdown by China’s inaugural lunar lander and rover mission.

The video was produced from a compilation of descent camera imagery. The version here has been rotated 180 degrees – so you don’t have to flip yourself over to enjoy the ride.

And it truly harkens back to the glory days of NASA’s manned Apollo lunar landing program of the 1960’s and 1970’s.

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang'e-3 on the screen of the Beijing Aer Control Center in Beijing.   This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body.  Credit: Xinhua/CCTV
This is one photo from many of the moons surface snapped by the on-board descent imaging camera of the Chinese lunar probe Chang’e-3 on Dec. 14, 2013. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV
See the entire stunning Chang’e-3 lunar landing video – herein

The dramatic Chang’e-3 soft landing took place at Mare Imbrium at 8:11 am EST, 9:11 p.m. Beijing local time, 1311 GMT, which is to the east of the announced landing site on the lava filled plains of the Bay of Rainbows, or Sinus Iridum region.

The precise landing coordinates were 44.1260°N and 19.5014°W -located below the Montes Recti mountain ridge and about 40 kilometers south of the 6 kilometer diameter crater known as Laplace F – see image below.

Landing site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013.
Landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013.

The video begins as Chang’e-3 is approaching the Montes Recti mountain ridge which is about 90 km in length. Its peaks rise to nearly 2 km.

Chang’e-3 carried out the rocket powered descent to the Moon’s surface by firing the landing thrusters starting at the altitude of 15 km (9 mi) for a soft landing targeted to a preselected area in Mare Imbrium.

The vehicles thrusters then fire to pivot the lander towards the surface at about the 2:40 minute mark when it’s at an altitude of roughly 3 km.

Infographic shows the process of the soft-landing on the moon of China's lunar probe Chang'e-3 on Dec. 14, 2013. Credit: SASTIND/Xinhua /Zheng Yue
Infographic shows the process of the soft-landing on the moon of China’s lunar probe Chang’e-3 on Dec. 14, 2013. Credit: SASTIND/Xinhua /Zheng Yue

The powered descent was autonomous and preprogrammed and controlled by the probe itself, not by mission controllers on Earth stationed at the Beijing Aerospace Control Center (BACC) in Beijing.

Altogether it took about 12 minutes using the variable thrust engine which can continuously vary its thrust power between 1,500 to 7,500 newtons.

The variable thrust engine enabled Chang’e-3 to reduce its deceleration as it approached the moons rugged surface.

Photo taken on Dec. 14, 2013 shows the landing spot of lunar probe Chang'e-3  indicated on the screen of the Beijing Aerospace Control Center in Beijing, capital of China. Credit: Xinhua/Li
Photo taken on Dec. 14, 2013 shows the landing spot of lunar probe Chang’e-3 indicated on the screen of the Beijing Aerospace Control Center in Beijing, capital of China. Credit: Xinhua/Li

The 1200 kg lander was equipped with unprecedented terrain recognition equipment and software to hover above the landing site and confirm it was safe before proceeding.

This enabled the craft to avoid hazardous rock and boulder fields as well as craters in the pockmarked terrain that could spell catastrophe even in the final seconds before touchdown, if the vehicle were to land directly on top of them.

The descent engine continued firing to lower the lander until it was hovering some 100 meters above the lunar surface – at about the 5:10 minute mark.

Chang'e-3 hovered 100m high for 20 seconds before committing to land. This allows the on-board computer to make sure it doesn't land in a crater or an uneven place.  Credit: China Space
Chang’e-3 hovered 100m high for 20 seconds before committing to land. This allows the on-board computer to make sure it doesn’t land in a crater or an uneven place. Credit: China Space

After hovering for about 20 seconds and determining it was safe to proceed, the lander descended further to about 3 meters. The engine then cut off and the lander free fell the remaining distance. The impact was cushioned by shock absorbers.

There is a noticeable dust cloud visible on impact as the Chang’e-3 mothership touched down atop the plains of Mare Imbrium.

Chang'e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013.  Note landing ramp at bottom. Credit: CCTV
Chang’e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013. Note landing ramp at bottom. Credit: CCTV

Barely 7 hours later, China’s first ever lunar rover ‘Yutu’ rolled majestically down a pair of ramps and onto the Moon’s soil on Sunday, Dec. 15 at 4:35 a.m. Beijing local time.

The six wheeled ‘Yutu’, or Jade Rabbit, rover drove straight off the ramps and sped right into the history books as it left a noticeably deep pair of tire tracks behind in the loose lunar dirt.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

The stunning feat was broadcast on China’s state run CCTV.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft back in 1976.

America’s last visit to the Moon’s surface occurred with the manned Apollo 17 landing mission – crewed by astronauts Gene Cernan and Harrison ‘Jack’ Schmitt , who coincidentally ascended from the lunar soil on Dec. 14, 1972 – exactly 41 years ago.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken KremerMoon map showing landing site of Chinese lunar probe Chang'e-3 on Dec. 14, 2013 below Montes Recti in Mare Imbrium beside Sinus Iridum, or the Bay of Rainbows .  Credit: China Space Moon map showing landing site of Chinese lunar probe Chang’e-3 on Dec. 14, 2013 below Montes Recti in Mare Imbrium beside Sinus Iridum, or the Bay of Rainbows . Credit: China Space[/caption]

Image shows the trajectory of the lunar probe Chang'e-3 approaching the landing site  on Dec. 14.
Image shows the trajectory of the lunar probe Chang’e-3 approaching the landing site on Dec. 14.

ESA’s Gaia Mission Launches to Map the Milky Way

Soyuz VS06, with Gaia space observatory, lifted off from Europe's Spaceport, French Guiana, on 19 December 2013. (ESA–S. Corvaja)

Early this morning, at 09:12 UTC, the cloudy pre-dawn sky above the coastal town of Kourou, French Guiana was brilliantly sliced by the fiery exhaust of a Soyuz VS06, which ferried ESA’s “billion-star surveyor” Gaia into space to begin its five-year mission to map the Milky Way.

Ten minutes after launch, after separation of the first three stages, the Fregat upper stage ignited, successfully delivering Gaia into a temporary parking orbit at an altitude of 175 km (108 miles). A second firing of the Fregat 11 minutes later took Gaia into its transfer orbit, followed by separation from the upper stage 42 minutes after liftoff. 46 minutes later Gaia’s sunshield was deployed, and the spacecraft is now cruising towards its target orbit around L2, a gravitationally-stable point in space located 1.5 million km (932,000 miles) away in the “shadow” of the Earth.

The launch itself was really quite beautiful, due in no small part to the large puffy clouds over the launch site. Watch the video below:

A global space astrometry mission, Gaia will make the largest, most precise three-dimensional map of our galaxy by surveying more than a billion stars over a five-year period.

“Gaia promises to build on the legacy of ESA’s first star-mapping mission, Hipparcos, launched in 1989, to reveal the history of the galaxy in which we live,” says Jean-Jacques Dordain, ESA’s Director General.

Soyuz VS06, with Gaia, lifted off from French Guiana, 19 December 2013. (ESA - S. Corvaja)
Soyuz VS06 with Gaia (ESA – S. Corvaja, 2013)

Repeatedly scanning the sky, Gaia will observe each of the billion stars an average of 70 times each over the five years. (That’s 40 million observations every day!) It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition.

By taking advantage of the slight change in perspective that occurs as Gaia orbits the Sun during a year, it will measure the stars’ distances and, by watching them patiently over the whole mission, their motions across the sky.

The motions of the stars can be put into “rewind” to learn more about where they came from and how the Milky Way was assembled over billions of years from the merging of smaller galaxies, and into “fast forward” to learn more about its ultimate fate.

“Gaia represents a dream of astronomers throughout history, right back to the pioneering observations of the ancient Greek astronomer Hipparchus, who catalogued the relative positions of around a thousand stars with only naked-eye observations and simple geometry. Over 2,000 years later, Gaia will not only produce an unrivaled stellar census, but along the way has the potential to uncover new asteroids, planets and dying stars.”

– Alvaro Giménez, ESA’s Director of Science and Robotic Exploration

Gaia will make an accurate map of the stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)
Gaia will make an accurate map of a billion stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)

Of the one billion stars Gaia will observe, 99% have never had their distances measured accurately. The mission will also study 500,000 distant quasars, search for exoplanets and brown dwarfs, and will conduct tests of Einstein’s General Theory of Relativity.

“Along with tens of thousands of other celestial and planetary objects,” said ESA’s Gaia project scientist Timo Prusti, “this vast treasure trove will give us a new view of our cosmic neighbourhood and its history, allowing us to explore the fundamental properties of our Solar System and the Milky Way, and our place in the wider Universe.”

Follow the status of Gaia on the mission blog here.

Source: ESA press release and Gaia fact sheet

Gaia's launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA's facility in French Guiana (ESA)
Gaia’s launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA’s facility in French Guiana (ESA)

Visions of Earth through the Yutu Rover’s Eyes

Earth eclipses the sun from Chang'e 3's location in the Sea of Rains on April 15, 2014. At the same time, we'll see a total lunar eclipse from the ground. Stellarium

Last night I used my telescope to eye-hike the volcanic plains of the Sea of Rains (Mare Imbrium) where the Yutu rover and lander sit beneath a blistering sun. With no atmosphere to speak of and days that last two weeks, noontime temperatures can hit 250 degrees Fahrenheit (122 C) . That’s hot enough that mission control at the Beijing Aerospace Command and Control Center has decided to draw the shades and give the rover a nap from science duties until December 23 when things cool down a bit.

While studying the subtle gray hues of the Imbrium lava flows I got to wondering what the sky might look like if I could don a spacesuit and visit the landing site “where the skies are not cloudy all day” (to quote a famous song). With no atmosphere to speak of, stargazing can be done both day and night on the moon though I suspect it’s better at night when there’s less glare from your surroundings. Night, defined as the time from sunset to sunrise (no twilights here), lasts about 14.5 Earth days. Days are equally long.

Lunar landscape photographed by the Chang'e 3 lander on Dec. 15, 2013. Credit: CCTV
Lunar landscape photographed by the Chang’e 3 lander on Dec. 15, 2013. Credit: CCTV

 

From Yutu’s point of view, it’s very nearly lunar noon today (Dec. 19) with the sun halfway up in the southern sky.  Looking at the map of the sky from the lander’s location, you’ll see a few familiar constellations and one very familiar planet – Earth!

Phases of the moon and Earth are complementary. When the moon is full, Earth's a crescent. This map shows the Earth in Capricornus on Dec. 20 as thin blue crescent. Stellarium
Phases of the moon and Earth are complementary. When the moon is full, Earth’s a crescent. This map shows the Earth in Capricornus on Dec. 20 as thin blue crescent. Stellarium

Today Earth appears as a very thin crescent a short distance to the left or east of the sun. Because the moon takes just as long to rotate on its axis as it does to revolve around the Earth, the same face of the moon always faces our planet. Because the two are in synchrony, astronomers call it synchronous rotation.

From the perspective of someone standing on the moon, Earth stands still in one spot of sky throughout the 29.5 day lunar day-night cycle. Well, not perfectly still. Because the moon’s orbit is inclined about 5 degrees to Earth’s orbit and its speed varies along its non-circular orbit, Earth describes a little circle in the lunar sky about 10 degrees in diameter every four weeks.

As the sun slowly moves off to the west, our blue planet remains nearly stationary from Yutu’s perspective and undergoes all the familiar phases we see the moon experience back here on Earth: an evening crescent to start followed by a first quarter Earth, Full Earth last quarter and finally, New Earth. I like the ring of that last one.

The lunar landscape at the rover's location is bathed in pale blue light on Dec. 31, 2013 during "Full Earth". Stellarium
The lunar landscape at the rover’s location is bathed in pale blue light on Dec. 31, 2013 during a Full Earth. Stellarium

Yutu and the lander will see the sun drift to the west while Earth moves east, rises higher in the lunar sky and putting on the pounds phase-wise. Today Earth’s glides across the border of Sagittarius into Capricornus. The next Full Earth happens on New Year’s Eve when the sun is directly opposite the Earth in the lunar sky.

Full Earth always happens around local midnight or about one week before sunrise during the long lunar day. On the moon the sun is up for about  two weeks and then disappears below the horizon for another two weeks before rising again.  At Full Earth time, the sun remains hidden around the lunar backside. When the nights are blackest, the bright ball of Earth spreads a welcome blue glow over the desolate landscape.

Earth covering the sun with a flash of the "diamond ring effect" just before total solar eclipse on April 15 and Oct. 8 next year. Stellarium
Simulated eclipse of the sun by the Earth just before totality on April 15 and Oct. 8 next year. On both dates, we’ll see a  total lunar eclipse from the ground.  Stellarium

Things really get interesting during lunar eclipses when the moon moves behind the Earth into the planet’s shadow. The next one’s on April 15, 2014. Here on the ground we’ll see the moon gradually munched into by Earth’s  shadow until totality, when sunlight from all the sunrises and sunsets around the rim of the planet are refracted by the atmosphere into the shadow, coloring the moon a coppery red.

Two pictures of the ring of sunset-sunrise fire around the Earth as it totally eclipsed the sun from the moon. Credit: NASA
Two pictures of the ring of sunset-sunrise fire around the Earth as it totally eclipsed the sun from the moon. Credit: NASA

Yutu will see just the opposite. Looking back toward the Earth from inside its shadow, the rover will witness a total eclipse of the sun by the Earth. If by some wonder the Chinese are able to photograph the event, we’ll see photos of the black ball of Earth rimmed in red fire from sunset and sunrise light refracted by our atmosphere. My interpretation using sky mapping software only hints at the wonder of the scene. Beijing Aerospace, if you’re reading this, please make it happen.


Earth eclipses the sun filmed by Japan’s Kaguya lunar orbiter. There are really two eclipses here – the Earth eclipsed by the limb of the moon at the video’s start followed by the solar eclipse.

On two other occasions, our robotic emissaries have photographed solar eclipses from Luna. NASA’s Surveyor 3 snapped a couple crude pictures of the April 24, 1967 eclipse from inside a crater in Mare Cognitium, the Sea that has Become Known. Japan’s orbiting Kaguya probe did the job much more eloquently on video during the February 9, 2009 penumbral lunar eclipse. In a penumbral eclipse (seen from Earth) the moon misses Earth’s dark inner shadow called the umbra, passing only through the outer penumbra, but because the Earth is three times larger than the sun (seen from the moon), it easily covered the sun completely in the complementary total solar eclipse.

And the best thing about watching eclipses from the moon? Guaranteed clear skies!