New Animation Shows How Mars was Like Earth Billions of Years Ago

Artist concept of an ancient, habitable Mars capable of supporting liquid water on its surface. Credit: Michael Lentz/NASA's Goddard Space Flight Center Conceptual Image Lab

4 billion years ago, the atmosphere of Mars could have been rich in oxygen and thick enough and warm enough to support oceans of liquid water – a critical ingredient for life. A new animation from the Goddard Space Flight Center shows how the surface of Mars might have appeared during this ancient clement period. The artist’s concept video, below, is based on evidence that Mars was once very different and perhaps very Earth-like.

This past summer, a paper studying the compositions of Martian meteorites found on Earth and data from NASA’s rovers suggested that Mars had an oxygen-rich atmosphere very early in the history of the planet.

Scientists have long thought that the ancient riverbeds and what appear to be shorelines provide hints that Mars once supported oceans of water. But there’s not much indication of how the Red Planet was stripped of its thick atmosphere, roughly 3.7 billion years ago.

The end of the video shows the MAVEN spacecraft, the Mars Atmosphere and Volatile Evolution mission, orbiting Mars. This spacecraft is scheduled to launch on Nov. 18, 2013, and it will investigate how Mars lost its atmosphere. It should reach the planet in September 2014.

Below is another new video from NASA, featuring LeVar Burton talking about MAVEN.

How Astronauts Can Explore The Martian Moon Phobos

Projected timeline of the MARS-X project. Credit: MARS-X

OTTAWA, CANADA – Humans would spend more than a year orbiting and bouncing on the Martian moon Phobos under a mission concept developed by students at the International Space University.

The very theoretical MARS-X mission — presented more as a concept than a firm plan — would see technology development taking place from 2018 to 2022, with communications satellites and rovers winging their way to the planet to be used by astronauts.

In 2023 to 2024, the spacecraft would be built in low-Earth orbit, requiring several launches to accomplish the massive task. Astronauts would then depart in 2024, spending eight months in transit before arriving at Phobos. There, the mission would last 495 days, and the astronauts would take five months to get home.

While NASA and Lockheed Martin helped sponsor the students who created the plan as part of their academic work, the concept itself is not yet funded beyond the students’ initial development.

But Piotr Murzionak, a member of the ISU team, said the proposal is one way that could help fuel interest in space exploration, if it was to be executed..

“It paves the way to Mars. It will be the initial step towards the landing mission on the Martian surface, but without the extra risk involved in order to land directly to Mars,” Murzionak said.

A graphic detailing the MARS-X spacecraft and technical performance. Click for larger version. Credit: MARS-X.
A graphic detailing the MARS-X spacecraft and technical performance. Click for larger version. Credit: MARS-X.

The Mars Exploration Vehicle (as the crew vehicle would be called) would use nuclear propulsion and liquid hydrogen to bring two habitats along with it. One of those would (along with several fuel tanks) be used on Phobos for up to 40 days of surface operations.

It would travel during solar maximum in 2024 to reduce the effects of cosmic radiation from outside the solar system, since the sun’s activity would blow the radiation further away. Further, the crew would be protected from solar flares with high-density polyethylene, as well as a temporary solar storm protection chamber lined with 50 centimeters of water.

The habitat would be spun at 4.4 revolutions per minute, with a habitat of 0.38 to 0.53 the force of gravity — about equivalent to what is on Mars. (This would take 2.5 metric tonnes of fuel to do.)

The students estimate this would cost about $20 billion, but it could go to at least double this due to factors such as “the volatility of political systems and the large amount of bureaucracy involved in any such endeavor,” they write in their final report, which is available here.

Murzionak presented the mission concept at the Canadian Space Society annual conference today (Nov. 14) in Ottawa, Canada.

More information: http://www.project-marsx.com/

A Guided Aerial Tour of Curiosity’s Journey So Far on Mars

This scene shows the "Murray Ridge" portion of the western rim of Endeavour Crater on Mars. The ridge is the NASA's Mars Exploration Rover Opportunity's work area for the rover's sixth Martian winter. Image Credit: NASA/JPL-Caltech/Cornell/ASU

Just where has the Curiosity rover traveled so far and where is it going? This new video, narrated by John Grotzinger, the principal investigator for the Mars Science Laboratory mission, provides an aerial tour of the rover’s past, present and future traverses on the Red Planet.

Curosity landed in a flat, “hummocky” area in Gale Crater and is heading towards the Aeolis Mons, also known as Mount Sharp, a mountain 5 kilometers (3 miles) high. Right now the rover is among a cluster of small, steep-sided knobs, or buttes that are quite large — up to about the size of a football field and the height of a goal post. They sit in a gap in a band of dark sand dunes that lie at the foot of the mountain. Deep sand could present a hazard for driving, so this break in the dunes is the access path to the mountain.
These buttes have been named the Murray Buttes in honor of influential planetary scientist Bruce Murray (1931-2013).

“Bruce Murray contributed both scientific insight and leadership that laid the groundwork for interplanetary missions such as robotic missions to Mars, including the Mars rovers, part of America’s inspirational accomplishments,” said NASA Mars Exploration Program Manager Fuk Li from JPL. “It is fitting that the rover teams have chosen his name for significant landmarks on their expeditions.”

Meanwhile at Endeavour Crater, where the Opportunity is still exploring, nearly a decade on, and is now preparing for winter. A feature there has also been named for Bruce Murray, Murray Ridge, part of an uplifted crater rim.

“Murray Ridge is the highest hill we’ve ever tried to climb with Opportunity,” said the mission’s principal investigator, Steve Squyres of Cornell University, Ithaca, N.Y. The ridge has outcrops with clay minerals detected from orbit. It also provides a favorable slope for Martian winter sunshine to hit the rover’s solar panels, an advantage for keeping Opportunity mobile through the winter.

“Bruce Murray is best known for having been the director of JPL, and JPL is where our rovers were built,” Squyres said. “He led JPL during a time when the planetary exploration budget was under pressure and the future for planetary missions was not clear. His leadership brought us through that period with a strong exploration program. He was also a towering figure in Mars research. His papers are still cited abundantly today.”

Back to the video, interestingly, the “fly-through” data comes from a variety of missions representing some of the history of Mars exploration. Doug Ellison, who works with JPL’s Eyes on the Solar System – which uses spacecraft data to create realistic simulated views of spacecraft, planets and other features within our solar system – said on Twitter that the video uses data from Viking to narrow down the color, Mars Express High Resolution Stereo Camera (MEX-HRSC_ and the Mars Reconnassaince Oribiter’s HiRISE camera for topography, and the MRO Context camera (MRO-CTX) and HiRISE for imagery.

Source: JPL

Super-Typhoon Haiyan Causes Catastrophic Death & Destruction – Space Images from NASA, ISRO, Roscosmos & ISS

Super Typhoon Haiyan over the Philippines on November 9, 2013 as imaged from Earth orbit by NASA Astronaut Karen Nyberg aboard the International Space Station. Credit: NASA/Karen Nyberg

Super Typhoon Haiyan over the Philippines on November 9, 2013 as imaged from Earth orbit by NASA Astronaut Karen Nyberg aboard the International Space Station.Category 5 killer storm Haiyan stretches across the entire photo from about 250 miles (400 kilometer) altitude. Credit: NASA/Karen Nyberg
See more Super Typhoon Haiyan imagery and video below
[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MARYLAND – Super Typhoon Haiyan smashed into the island nation of the Philippines, Friday, Nov. 8, with maximum sustained winds estimated at exceeding 195 MPH (315 kilometer per hour) by the U.S. Navy Joint Typhoon Warning Center – leaving an enormous region of catastrophic death and destruction in its terrible wake.

The Red Cross estimates over 1200 deaths so far. The final toll could be significantly higher. Local media reports today say bodies of men, women and children are now washing on shore.

The enormous scale of Super Typhoon Haiyan can be vividly seen in space imagery captured by NASA, ISRO and Russian satellites – as well as astronaut Karen Nyberg flying overhead on board the International Space Station (ISS); collected here.

As Super-Typhoon Haiyan moved over the central Philippines on Nov. 8 at 05:10 UTC/12:10 a.m. EDT, the MODIS instrument aboard NASA's Aqua satellite captured this visible image.   Credit: NASA Goddard MODIS Rapid Response Team
As Super-Typhoon Haiyan moved over the central Philippines on Nov. 8 at 05:10 UTC/12:10 a.m. EDT, the MODIS instrument aboard NASA’s Aqua satellite captured this visible image. Credit: NASA Goddard MODIS Rapid Response Team

Super Typhoon Haiyan is reported to be the largest and most powerful storm ever to make landfall in recorded human history.

Haiyan is classified as a Category 5 monster storm on the U.S. Saffir-Simpson scale.

It struck the central Philippines municipality of Guiuan at the southern tip of the province of Eastern Samar early Friday morning Nov. 8 at 20:45 UTC (4:45 am local time).

As Haiyan hit the central Philippines, NASA says wind gusts exceeded 235 mph (379 kilometers per hour).

The high resolution imagery and precise measurements provided by the worlds constellation of Earth observing space satellites (including NASA, Roscosmos, ISRO, ESA, JAXA) are absolutely essential to tracking killer storms and providing significant advance warning to evacuate residents in affected areas to help minimize the death toll and damage.

More than 800,000 people were evacuated. The storm surge caused waves exceeding 30 feet (10 meters), mudslides and flash flooding.

NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite captured visible, microwave and infrared data on the storm just as it was crossing the island of Leyte in the central Philippines, reports NASA – see image below.

NASA's TRMM satellite data on Nov. 8 at 00:19 UTC showed Haiyan had a well-defined eye surrounded by a symmetric area of moderate rain (green ring with a blue center) with several rainbands wrapping in from the south (green arcs) while crossing the island of Leyte in the central Philippines.  Credit:  NASA/SSAI, Hal Pierce
NASA’s TRMM satellite data on Nov. 8 at 00:19 UTC showed Haiyan had a well-defined eye surrounded by a symmetric area of moderate rain (green ring with a blue center) with several rainbands wrapping in from the south (green arcs) while crossing the island of Leyte in the central Philippines. Credit: NASA/SSAI, Hal Pierce

TRMM data from rain rates are measured by the TRMM Precipitation Radar (PR) and TRMM Microwave Imager (TMI) and combined with infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS) by science teams working at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Coincidentally NASA Goddard has just completed assembly of the next generation weather satellite Global Precipitation Measurement (GPM) observatory that replaces TRMM – and where I inspected the GPM satellite inside the Goddard clean room on Friday.

“GPM is a direct follow-up to NASA’s currently orbiting TRMM satellite,” Art Azarbarzin, GPM project manager, told Universe Today during my exclusive clean room inspection of the huge GPM satellite.

NASA’s next generation Global Precipation Managemnet Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center. GPM is slated to launch In February 2014 and will provide global measurements of rain and snow every 3 hours - as a direct follow-up to NASA’s currently orbiting TRMM satellite; reaching the end of its usable lifetime. Credit: Ken Kremer/kenkremer.com
NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center. GPM is slated to launch In February 2014 and will provide global measurements of rain and snow every 3 hours – as a direct follow-up to NASA’s currently orbiting TRMM satellite; reaching the end of its usable lifetime.
Credit: Ken Kremer/kenkremer.com

“TRMM is reaching the end of its usable lifetime. GPM launches in February 2014 and we hope it has some overlap with observations from TRMM.”

“The Global Precipitation Measurement (GPM) observatory will provide high resolution global measurements of rain and snow every 3 hours,” Dalia Kirschbaum, GPM research scientist, told me at Goddard.

GPM is equipped with advanced, higher resolution radar instruments. It is vital to continuing the TRMM measurements and will help provide improved forecasts and advance warning of extreme super storms like Hurricane Sandy and Super Typhoon Haiyan, Azarbarzin and Kirschbaum explained.

Video Caption: Super Typhoon Haiyan imaged on Nov 6 – 8, 2013 by the Russian Elektro-L satellite operating in geostationary orbit. Credit: Roscosmos via Vitaliy Egorov

The full magnitude of Haiyan’s destruction is just starting to be assessed as rescue teams reach the devastated areas where winds wantonly ripped apart homes, farms, factories, buildings and structures of every imaginable type vital to everyday human existence.

Typhoon Haiyan is moving westward and is expected to forcefully strike central Vietnam in a day or two. Mass evacuations are underway at this time

Ken Kremer

SuperTyphoon Haiyan imaged by the Russian Elektro-L satellite operating in geostationary orbit. Credit: Roscosmos via Vitaliy Egorov
Super Typhoon Haiyan imaged by the Russian Elektro-L satellite operating in geostationary orbit. Credit: Roscosmos via Vitaliy Egorov
Super Typhoon Haiyan's ocean surface winds were measured by the OSCAT radar scatterometer on the Indian Space Research Organization's (ISRO) OceanSAT-2 satellite at 5:30 p.m. PST on Nov. 6. The colors indicate wind speed and arrows indicate wind direction. Credit: ISRO/NASA/JPL-Caltech
Super Typhoon Haiyan’s ocean surface winds were measured by the OSCAT radar scatterometer on the Indian Space Research Organization’s (ISRO) OceanSAT-2 satellite at 5:30 p.m. PST on Nov. 6. The colors indicate wind speed and arrows indicate wind direction. Credit: ISRO/NASA/JPL-Caltech

Orion Service Module Comes Together and Testing Affirms Flight Design for 2014 Blastoff

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

KENNEDY SPACE CENTER, FL – All of the key hardware elements being assembled for NASA’s new Orion spacecraft launching just under one year from now are nearing completion at the Kennedy Space Center (KSC) – at the same time as a crucial and successful hardware test in California this week helps ensure that the Exploration Flight Test-1 (EFT-1) vehicle will be ready for an on-time liftoff.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the moon, Mars and beyond.

In a major construction milestone, Orion’s massive Service Module (SM) was hoisted out from the tooling stand where it was manufactured at the Operations and Checkout Building (O & C) at KSC and moved to the next assembly station where it will soon be mated to the spacecraft adapter cone.

The SM should be mated to the crew module (CM) by year’s end, Orion managers told Universe Today during my recent inspection tour of significant Orion hardware at KSC.

“We are working 24 hours a day, 7 days a week,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today inside the Orion clean room at KSC. “We are moving fast!”

The three panel or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

The Orion CM recently passed a significant milestone when it was “powered on” for the first time at KSC.

“We are bringing Orion to life. Lots of flight hardware has now been installed.”

And on the other side of the country, the Service Module design passed a key hurdle on Wednesday (Nov. 6) when the trio of large spacecraft panels that surround the SM were successfully jettisoned from the spacecraft during a systems test by Lockheed Martin that simulates what would happen during an actual flight several minutes after liftoff.

“Hardware separation events like this are absolutely critical to the mission and some of the more complicated things we do,” said Mark Geyer, Orion program manager at NASA’s Johnson Space Center in Houston. “We want to know we’ve got the design exactly right and that it can be counted on in space before we ever launch.”

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the prime contractor for Orion and responsible for assembly, testing and delivery of the Orion EFT-1 spacecraft to NASA that’s slated for an unmanned test flight targeted to lift off from Cape Canaveral, Florida in September 2014.

The CM rests atop the SM similar to the Apollo Moon landing program architecture.

However in a significant difference from Apollo, the Orion fairings support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight thus maximizing the vehicles size and capability.

The SM also provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

At Lockheed Martin’s Sunnyvale, California facility a team of engineers used a series of precisely-timed, explosive charges and mechanisms attached to the Orion’s protective fairing panels in a flight-like test to verify that the spacecraft can successfully and confidently jettison them as required during the ascent to orbit.

The trio of fairing panels protect the SM radiators and solar arrays from heat, wind and acoustics during ascent.

The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin
The three panels or fairings encapsulating a stand-in for Orion’s service module successfully detach during a test Nov. 6, 2013 at Lockheed Martin’s facility in Sunnyvale, Calif. Image Credit: Lockheed Martin

“This successful test provides the Orion team with the needed data to certify this new fairing design for Exploration Flight Test-1 (EFT-1) next year. The test also provides significant risk reduction for the fairing separation on future Orion manned missions,” said Lance Lininger, engineering lead for Lockheed Martin’s Orion mechanism systems in a statement.

This was the 2nd test of the fairing jettison system. During the first test in June, one of the three fairing panels did not completely detach due to an interference “when the top edge of the fairing came into contact with the adapter ring and kept it from rotating away and releasing from the spacecraft,” said NASA.

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a crane moves the service module for the Orion spacecraft toward a lift station where it will be mated to the spacecraft adapter cone. Photo credit: NASA/Jim Grossmann

2013 has been an extremely busy and productive year for the Orion EFT-1 team.

“There are many significant Orion assembly events ongoing this year,” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles, building the service module and finally mating the crew and service modules (CM & SM),” Price told me.

Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1 Credit: Lockheed Martin
Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1
Credit: Lockheed Martin

The two-orbit, four- hour flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Ken Kremer

India’s Mars Orbiter Mission Rising to Red Planet – Glorious Launch Gallery

Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

With India’s Mars Orbiter Mission (MOM) safely and flawlessly injected into her initial elliptical Earth parking orbit following Tuesday’s (Nov. 5) spectacular launch, the flight has quickly transitioned to the next stage – the crucial series of thruster firings to raise MOM’s orbit around Earth dubbed “Midnight Maneuvers” and achieve escape velocity.

Barely a day after blastoff, ISRO engineers successfully completed the first of six orbit raising “Midnight Maneuver” burns at 01:17 hrs IST today (Nov. 6) with MOM’s liquid fueled thruster – see graphic below.

The goal is to gradually maneuver MOM – India’s 1st mission to the Red Planet – into a hyperbolic trajectory so that the spacecraft will escape from the Earth’s Sphere of Influence (SOI) and eventually arrive at the Mars Sphere of Influence after a 10 month interplanetary cruise.

Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013.  Credit: ISRO
Artists concept shows First Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft with successful thruster firing of the liquid engine on Nov. 6 2013. Credit: ISRO

To do this involves a lot of complicated orbital mechanics calculations, as noted by ISRO’s chief during the launch webcast.

“The journey has only begun. The challenging phase is coming,” said Dr. K. Radhakrishnan, Chairman ISRO.

India’s PSLV rocket is not powerful enough to send MOM on a direct flight to Mars.

The launch “placed MOM very precisely into an initial elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

So ISRO’s engineers devised a clever procedure to get the spacecraft to Mars on the least amount of fuel via six “Midnight Maneuver” engine burns over the next several weeks – and at an extremely low cost.

First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO
First orbit raising Midnight Manouever of ISRO’s Mars Orbiter Mission Spacecraft completed successfully. Credit: ISRO

The 440 Newton engine fires when MOM is at its closest point in orbit above Earth. This increases the ships velocity and gradually widens the ellipse and raises the apogee of the six resulting elliptical orbits around Earth that eventually injects MOM onto the Trans-Mars trajectory.

The 1st firing lasted 416 seconds and raised the spacecraft’s apogee to 28,825 km and perigee to 252 km.

The remaining burns are planned for November 7, 8, 9, 11, and 16.

MOM is expected to achieve escape velocity on Dec. 1 and depart Earth’s sphere of influence tangentially to Earth’s orbit to begin the 300 day long voyage to the Red Planet.

She will follow a path that’s roughly half an ellipse around the sun.

MOM arrives in the vicinity of Mars on September 24, 2014 for the absolutely essential Mars orbital insertion firing by the 440 Newton liquid fueled main engine which slows the probe and places it into a 366 km x 80,000 km elliptical orbit.

If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press center.

Here’s a glorious gallery of launch images of the PSLV-25 rocket & Mars Orbiter Mission (MOM) on Nov. 5, 2013.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff. Credit: ISRO.
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO's) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background.  Credit: IRSO
Gorgeous view of the majestic Polar Satellite Launch Vehicle, PSLV C25 with its passenger, the Indian Space Research Organization’s (ISRO’s) Mars Orbiter Mission (MOM) spacecraft inside. The Mobile service tower is also seen in the background. Credit: IRSO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Surreal view of 'T zero' Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Surreal view of ‘T zero’
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO's Mars Orbiter Mission Spacecraft. Credit: ISRO
Golden smoke engulfs the First Launch Pad as the PSLV C25 takes off with ISRO’s Mars Orbiter Mission Spacecraft. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !  There she goes taking our dreams into deeper space !  Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Celebrating MOM’s Victory over Gravitation !
There she goes taking our dreams into deeper space ! Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013. Credit: ISRO
Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

A Hybrid Solar Eclipse Seen From Earth… and Space

The Elektro-L satellite's view of how the Nov. 3, 2013 solar eclipse effected Earth. Blackness from the eclipse covers Africa. Credit: Elektro-L/Vitaliy EgorovVitaliy Egorov.

The final eclipse for 2013 was a grand event, witnessed across the Atlantic and the heart of Africa this past Sunday. Like so many other photographers along the North American east coast, we were at the ready to greet the partially eclipsed Sun at dawn. And as the shadow of the Moon touched down, teams on land, air and sea were ready to meet with the fleeting umbra as it raced eastward towards sunset over the Horn of Africa region.

But a fleet of spacecraft were also on hand to witness the rare spectacle as well. Turned earthward and sunward, these spacecraft documented not only the passage of the Moon’s shadow over the Earth, but recorded multiple partial solar eclipses from orbit as well.

The first view comes from the Roscosmos Electro-L satellite based in a geostationary orbit over the Indian Ocean:

Electro-L had captured such a view before, during the annular eclipse over Australia earlier this year in May. Roscosmos increased the frame capture rate of Electro-L to twice its usual speed for the sequence. As you watch the Earth pass from a waning gibbous to crescent phase, you can just see the umbra, or central shadow of the Moon, slide into view and come into contact with the sunset terminator over eastern Africa. You can also see the cloud cover that marks the dust storms that plagued eclipse-chasers based around the Lake Turkana region in Kenya.

One of the first public pictures of the umbra of the Moon as seen from space was taken from the Mir space station during a total solar eclipse in 1999. To our knowledge, such a feat has yet to be duplicated aboard the International Space Station. The phase angle of the ISS’s orbit during the eclipse was nearly perpendicular to the Sun-Moon-Earth syzygy, and unfavorable for this particular eclipse.

Thanks to the Russian journalist Vitaliy Egorov for bringing the Electro-L eclipse sequence to the attention of Universe Today!

Next up is a sequence of images from NASA’s Aqua satellite:

Sunday's eclipse and the Moon's umbra as seen from the Aqua satellite. (Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team).
Sunday’s eclipse and the Moon’s umbra off of the west coast of Africa as seen from the Aqua satellite. (Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team).

Launched in 2002, Aqua is part of the “A-train” (as in “Afternoon”) constellation of Earth-observing satellites. Perched in a low-Earth Sun-synchronous orbit, Aqua caught sight of the umbra of the Moon at around 14:45 UT on Sunday, November 3rd as it raced to make first landfall over the nation of Gabon and awaiting eclipse chasers.

Some Sun observing spacecraft caught sight of the eclipse as well. The European Space Agency’s Proba-2 nabbed three partial solar eclipses from its vantage point in low Earth orbit:

PROBA-2 used its SWAP imager to grab the sequences. Orbiting the Earth once every 99 minutes or 14.5 time a day, these “orbital eclipses” are quick, lasting about 10 minutes each in duration.

Finally, EUMETSAT’s MeteoSat-10 meteorological satellite based in a geostationary orbit over Africa captured an outstanding sequence, showing nearly the entire trek of the umbra across the entire path of the eclipse:

The sequence runs from 7:30 to 18:30 UT on November 3rd. Note how the video shows the shadow fade in and sharpen as the eclipse touches down off of the US East Coast and intensifies from an annular to total along the first 15 seconds of its track, only to speed up and flatten towards sunset over Africa. And all in six seconds!

And back here on Earth, we couldn’t resist stitching together the bounty from our own minor eclipse expedition for a stop-motion view of the partially eclipsed Sun rising over the Vehicle Assembly Building at the Kennedy Space Center in Florida:

We’d like to also mention a photo that isn’t a “solar eclipse seen from space…” Y’know the one, which shows the Earth, the Moon’s shadow, and a totally-eclipsed Sun, against a star dappled Milky Way. We won’t dignify it with a link. This has already been debunked by Bad Astronomer himself Phil Plait, but the bogus pic now seems to make its rounds across ye’ ole Web now during every eclipse. Seriously? Do we all crave “link juice” that bad? There are lots of real awesome eclipse photos out there, from Earth & beyond! Please, do your part to tell that well meaning friend/coworker/relative/stranger on Twitter that this “ultimate eclipse photo…” isn’t.

How rare are hybrid solar eclipses? Well, the next solar eclipse that is both annular and total along its track occurs over southeast Asia on April 20th, 2023. It’s interesting to note that this past weekend’s eclipse may have been the first sunrise solar eclipse over the VAB since it was built in 1966. Eclipses in the same 18 years and 11 days- long saros cycle repeat, but move about 120 degrees westward. Thus, follow an eclipse cycle through a “triple saros”— known as an “Exeligmos,” an ultimate scrabble word if you can land it on a triple word score! —and an eclipse’s geometry will roughly line back up over a 54 year 33 day long span. Saros 143 produced a an eclipse crossing a similar path on October 2nd, 1959 (before the VAB was built!) and will repeat its Atlantic sunrise performance on December 6th, 2067! Let’s see, by then I’ll be…

India’s First Mars Mission Launches Flawlessly on Historic Journey to the Red Planet

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

WOW MOM !
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]

India flawlessly launched its first ever mission to Mars today (Nov. 5) to begin a history making ten month long interplanetary voyage to the Red Planet that’s aimed at studying the Martian atmosphere and searching for methane after achieving orbit.

The Mars Orbiter Mission (MOM) thundered to space atop the nations four stage Polar Satellite Launch Vehicle (PSLV) precisely on time at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST) from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota, off India’s east coast.

“Our journey to Mars begins now!” announced an elated ISRO Chairman K. Radhakrishnan at the ISRO spaceport during a live broadcast of MOM’s launch from the mission control center. “We achieved orbit and we can all be proud.”

Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Flawless liftoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

This was the 25th launch of India’s highly reliable 44 meter (144 foot) tall PSLV booster.

The 700,000 pound thrust PSLV rocket launched in its most powerful, extended XL version with six strap on solid rocket motors.

Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO
Launch of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from Sriharikota, India. Credit: ISRO

“I’m extremely happy to announce that the PSLV-C25 vehicle has placed the Mars orbiter spacecraft very precisely into an elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” Radhakrishnan said, after “much meticulous planning and hard work by everyone.”

ISRO announced that MOM separated from the PSLV 4th stage as planned some 44 minutes after liftoff and that the solar panels successfully deployed.

Confirmation of the 4th stage ignition and spacecraft separation was transmitted by ship-borne terminals aboard a pair of specially dispatched tracking ships – SCI Nalanda and SCI Yamuna – stationed by ISRO in the South Pacific Ocean.

India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013.  Credit: ISRO
India’s Mars Orbiter Mission (MOM) streaks to orbit after launch on Nov. 5, 2013. Credit: ISRO

MOM was designed and developed by the Indian Space Research Organization (ISRO) in near record time after receiving approval from the Indian Prime Minister Manmohan Singh in August 2012.

“No mission is beyond our capability”, said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”

A series of six burns over the next month will raise the apogee and put MOM on a trajectory for Mars around December 1.

Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion firing by the main engine on September 24, 2014 will place MOM into an 366 km x 80,000 km elliptical orbit.

If all continues to goes well with MOM, India will join an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).

MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.

The 1,350 kilogram (2,980 pound) MOM orbiter is also known as ‘Mangalyaan’ – which in Hindi means ‘Mars craft.’

Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO
Graphic shows MOM’s initial orbit around Earth after successful Nov. 5 launch. Credit: ISRO

Although the main objective is a demonstration of technological capabilities, the probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

MOM’s 15 kg (33 lb) science suite comprises:

MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos

LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process

TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy

MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition

MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.

Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMars Trace Gas Orbiter.

MOM and MAVEN will arrive nearly simultaneously in Mars orbit next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Although they were developed independently and have different suites of scientific instruments, the MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.

“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.

“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.

The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for about six to ten months and hopefully much longer.

Stay tuned here for continuing MAVEN and MOM news and my MAVEN launch reports from on site at the Kennedy Space Center press center.

Ken Kremer

It’ s a Mind-Blowing Midnight Marvel !  Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) awaits Nov. 5 blastoff.  Credit: ISRO.  Watch ISRO’s Live  Webcast
It’ s a Mind-Blowing Midnight Marvel ! Fueled PSLV rocket and India’s Mars Orbiter Mission (MOM) await Nov. 5 blastoff. Credit: ISRO

…………….

Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

The Eerie Music of Interstellar Space

While it’s true that there’s no air to carry sound in space, starship explosions would be strangely silent and no one can hear you scream, this latest Science @ NASA video reminds us that “space can make music, if you know how to listen.”

And the “how” in this case is with the Plasma Wave Science Experiment aboard the Voyager 1 spacecraft, which is now playing the sounds of interstellar space — with a little help from University of Iowa physics professor and experiment principal investigator Don Gurnett. Watch the video above for a front-row seat (and read more about Voyager’s historic crossing of the heliosphere here.)

Damaged Dream Chaser Can be Fixed and Program to Move Forward with Flight Tests – Video

Left landing gear failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2103. Credit: Sierra Nevada Corp. See video below

Left landing gear tire visibly failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.
Watch approach and landing test video below[/caption]

The privately built Dream Chaser ‘space taxi’ that was damaged after landing during its otherwise successful first ever free-flight glide test on Saturday, Oct 26, is repairable and the program will live on to see another day, says the developer Sierra Nevada Corp., (SNC).

The Dream Chaser engineering test vehicle skidded off the runway and landed sideways when its left landing gear failed to deploy at the last second during touchdown on runway 22L at Edwards Air Force Base, Calif., said Mark Sirangelo, corporate vice president for SNC Space Systems, at a media teleconference.

The primary goal of the Oct. 26 drop test was to see whether the Dream Chaser mini-shuttle would successfully fly free after being released by an Erickson Air-Crane from an altitude of over 12,000 feet and glide autonomously for about a minute to a touchdown on the Mojave desert landing strip.

“We had a very successful day with an unfortunate anomaly at the end of the day on one of the landing gears,” said Sirangelo.

Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station – totally lost following the space shuttle retirement.

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

The unmanned approach and landing test (ALT) accomplished 99% of its objectives and was only marred by the mechanical failure of the left tire to drop down and deploy for a safe and smooth rollout.

SNC released a short 1 minute video of the test flight – see below – showing the helicopter drop, dive, glide and flare to touchdown. The failure of the landing gear to drop is clearly seen. But the video cuts away just prior to touchdown and does not show the aftermath of the skid or damage to the vehicle.

“The Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” said SNC in a statement with the video.

The vehicle is “repairable and flyable again,” Sirangelo noted.

More good news is that the ships interior was not damaged and the exterior can be fixed.

Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.

Left landing gear failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Left landing gear failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

Since there was no pilot in the cockpit no one was injured. That also meant that no evasive action could be taken to drop the gear.

“We don’t think it’s actually going to set us back,” Sirangelo noted. “In some interesting way, it might actually accelerate it.

NASA’s commercial crew initiative aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.

Until an American commercial space taxi is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.

Because Congress continues to significantly cut NASA’s budget further delays can be expected – inevitably meaning more payments to Russia and no savings for the American tax payer.

SNC was awarded $227.5 million in the current round of NASA funding and must successfully complete specified milestones, including up to five ALT drop tests to check the aerodynamic handling in order to receive payment.

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

This particular vehicle had been intended to fly two test flights. Further drop tests were planned with a new test vehicle to be constructed.

The way forward is being evaluated.

“We don’t think there is going to be any significant delay to the program as a result of this. This was meant to be a test vehicle with a limited number of flights,” Sirangelo said.

SNC and NASA have assembled a team to investigate the cause of the anomaly.

“SNC cannot release any further video at this time,” said SNC.

Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.

Ken Kremer