A Volcanic View of Mercury

An oblique view of pyroclastic vents on Mercury via MESSENGER

Here on Earth we’re used to seeing volcanoes as towering mountains with steam-belching peaks or enormous fissures oozing lava. But on Mercury volcanic features often take the form of sunken pits surrounded by bright reflective material. They look like craters from orbit but are more irregularly-shaped, and here we have a view from MESSENGER of a cluster of them amidst a rugged landscape that stretches all the way to the planet’s limb.

The image above shows a group of pyroclastic vents on Mercury, located just north and east of the 180-mile (290-km) -wide, double-ringed Rachmaninoff crater. The vents lie in the center of a spread of high-reflectance material, sprayed out by ancient eruptions. This bright blanket of material stands out against Mercury’s surface so well, it has even been spotted in Earth-based observations!

An older vent can be seen at the bottom right, looking like a crater but with non-circular walls. North is to the left.

So why do Mercury’s volcanoes look so different than Earth’s? Planetary scientist David Blewett from Johns Hopkins University Applied Physics Laboratory explains:

“Volcanism on Mercury (and also the Moon) appears to have been dominated by flood lavas, in which large quantities if highly fluid (low-viscosity) magma erupts and flows widely to cover a large area. In this type of eruption, no large ‘volcano’ edifice is constructed,” David wrote in an email. “The lunar maria and many of Mercury’s smooth plains deposits were formed in this manner.”
“On both the Moon and Mercury there are also examples of explosive activity in which eruptions from a vent showered the surroundings with pyroclastic material (volcanic ash),” he added. “The vents and bright pyroclastic halos seen near Rachmaninoff on Mercury are examples, as well as numerous ‘dark mantle deposits’ on the Moon.”
(Do you have a question about Mercury? Check out the MESSENGER Q&A page here.)

The discovery and investigation of vents like these is extremely valuable to scientists, as they provide information on Mercury’s formation, composition, and the nature of volatiles in its interior. (Plus the oblique angle is very cool! Makes you feel like you’re flying along with MESSENGER over Mercury’s surface.)

See below for a wider view of the region and context of the placement of these vents to Rachmaninoff.

MESSENGER image of Rachmaninoff crater obtained in September 2009
MESSENGER image of Rachmaninoff crater obtained in September 2009

See these and more images from Mercury on the MESSENGER website here.

Added 9/24: Want to see a volcanic vent in 3D? Click here.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

An Unexpected Ending for Deep Impact

Comet Tempel 1 a minute after being struck by Deep Impact's impactor on July 4, 2005 (NASA/JPL-Caltech/UMD)

After almost 9 years in space that included an unprecedented July 4th impact and subsequent flyby of a comet, an additional comet flyby, and the return of approximately 500,000 images of celestial objects, NASA’s Deep Impact/EPOXI mission has officially been brought to a close.

The project team at NASA’s Jet Propulsion Laboratory has reluctantly pronounced the mission at an end after being unable to communicate with the spacecraft for over a month. The last communication with the probe was Aug. 8. Deep Impact was history’s most traveled comet research mission, having journeyed a total of about 4.7 billion miles (7.58 billion kilometers).

“Deep Impact has been a fantastic, long-lasting spacecraft that has produced far more data than we had planned,” said Mike A’Hearn, the Deep Impact principal investigator at the University of Maryland in College Park. “It has revolutionized our understanding of comets and their activity.”

Artist's rendering of the Deep Impactor flyby spacecraft (NASA)
Artist’s rendering of the Deep Impactor flyby spacecraft (NASA)

Launched in January 2005, the spacecraft first traveled about 268 million miles (431 million kilometers) to the vicinity of comet Tempel 1. On July 3, 2005, the spacecraft deployed an impactor into the path of comet to essentially be run over by its nucleus on July 4. This caused material from below the comet’s surface to be blasted out into space where it could be examined by the telescopes and instrumentation of the flyby spacecraft.  Sixteen days after that comet encounter, the Deep Impact team placed the spacecraft on a trajectory to fly back past Earth in late December 2007 to put it on course to encounter another comet, Hartley 2 in November 2010, thus beginning the spacecraft’s new EPOXI mission.

“Six months after launch, this spacecraft had already completed its planned mission to study comet Tempel 1,” said Tim Larson, project manager of Deep Impact at JPL. “But the science team kept finding interesting things to do, and through the ingenuity of our mission team and navigators and support of NASA’s Discovery Program, this spacecraft kept it up for more than eight years, producing amazing results all along the way.”

The spacecraft’s extended mission culminated in the successful flyby of comet Hartley 2 on Nov. 4, 2010. Along the way, it also observed six different stars to confirm the motion of planets orbiting them, and took images and data of the Earth, the Moon and Mars. These data helped to confirm the existence of water on the Moon, and attempted to confirm the methane signature in the atmosphere of Mars.  One sequence of images is a breathtaking view of the Moon transiting across the face of Earth.

This image of comet ISON C/2012 S1 from NASA’s Deep Impact/EPOXI  spacecraft clearly shows the coma and nucleus on Jan. 17 and 18, 2013 beyond the orbit of Jupiter. Credit: NASA.
This image of comet ISON C/2012 S1 from NASA’s Deep Impact/EPOXI spacecraft clearly shows the coma and nucleus on Jan. 17 and 18, 2013 beyond the orbit of Jupiter. Credit: NASA.

The spacecraft’s extended mission culminated in the successful flyby of comet Hartley 2 on Nov. 4, 2010. In January 2012, Deep Impact performed imaging and accessed the composition of distant comet C/2009 P1 (Garradd).

It took images of comet ISON this year and collected early images of comet ISON in June.

After losing contact with the spacecraft last month, mission controllers spent several weeks trying to uplink commands to reactivate its onboard systems. Although the exact cause of the loss is not known, analysis has uncovered a potential problem with computer time tagging that could have led to loss of control for Deep Impact’s orientation. That would then affect the positioning of its radio antennas, making communication difficult, as well as its solar arrays, which would in turn prevent the spacecraft from getting power and allow cold temperatures to ruin onboard equipment, essentially freezing its battery and propulsion systems.

Without battery power, the Deep Impact spacecraft is now adrift and silent, spinning out of control through the solar system.

Launch of Deep Impact aboard a Boeing Delta II from Cape Canaveral AFB on Jan. 12, 2005 (NASA)
Launch of Deep Impact aboard a Boeing Delta II rocket from Cape Canaveral AFS on Jan. 12, 2005 (NASA)

“Despite this unexpected final curtain call, Deep Impact already achieved much more than ever was envisioned. Deep Impact has completely overturned what we thought we knew about comets and also provided a treasure trove of additional planetary science that will be the source data of research for years to come.”

– Lindley Johnson, Program Executive for the Deep Impact mission

It’s a sad end for a hardworking spacecraft, but over the course of its 8 1/2 years in space Deep Impact provided many significant results for the science community. Here are the top five, according to the mission’s principal investigator Michael A’Hearn.

Read more about the Deep Impact mission here.

Source: NASA press release

Antares Picture Perfect Blastoff Launches Commercial Space Race

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)
Story updated[/caption]

WALLOPS ISLAND, VA – The new ‘Commercial Space Era’ received a resounding boost today when a privately developed Antares rocket lofting the first ever Cygnus commercial cargo resupply craft thundered to space from America’s newest launch pad at NASA Wallops along the Eastern Shore of Virginia.

The history making launch marks the first time that a spacecraft launched from Virginia is blazing a path to the International Space Station (ISS) – thereby scoring a milestone achievement to keep the orbiting lab complex stocked up with supplies and science experiments from American soil. This is the maiden flight of Cygnus.

Move over SpaceX ! Your space competition from Orbital Sciences has arrived!

It was a ‘picture perfect’ blastoff for the two stage Antares booster at 10:58 a.m. EDT this morning (Sept. 18) from the commercial Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.

The blastoff of Antares was stunningly beautiful with intensely bright flames spewing from the rockets rear. And the incredibly loud roar of the first stage engines reverberated widely and wowed hoards of spectators gathered throughout the local viewing area in Chincoteague, Va. – and woke late sleepers some folks told me later today!

The rumbling thunder of Antares sounded as loud as a space shuttle.

Launch of the Antares rocket at 10:58 a.m. EDT Sept 18 with Cygnus cargo resupply ship bound for the ISS NASA Wallops, VA.  Credit: Ken Kremer (kenkremer.com)
Launch of the Antares rocket at 10:58 a.m. EDT Sept 18 with Cygnus cargo resupply ship bound for the ISS NASA Wallops, VA. LADEE Moon shot launch pad at right. Credit: Ken Kremer (kenkremer.com)

Antares and Cygnus were built by Orbital Sciences Corporation and its team of industrial partners using seed money from NASA’s COTS commercial transportation initiative aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS.

America lost 100% of its capability to send humans and cargo to the ISS when NASA’s space shuttles were retired in 2011. Orbital Sciences and their competitor SpaceX, were awarded NASA contracts to restore the unmanned cargo resupply capability.

Thales Alenia Space in Italy designed and constructed the 17 foot ( 5 meter) long Cygnus module under contract with Orbital.

“Thales Alenia has actually built 50% of the pressurized modules currently comprising the ISS,” said Luigi Quaglino, Thales Alenia Senior Vice President.

“This is a historic accomplishment for commercial spaceflight with the picture perfect launch of Antares and Cygnus headed for the space station,” said Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, at a post launch briefing for reporters at NASA Wallops.

In fact this was the heaviest cargo load ever delivered to the ISS by a commercial vehicle, said Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.

A revolutionary new day has dawned in space by opening up new pathways enabling space exploration And it’s not a moment too soon given the continuing significant reductions to NASA’s budget.

Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer (kenkremer.com)
Antares rocket lifts off at 10:58 a.m. EDT Sept 18 with commercial Cygnus cargo resupply ship bound for the International Space Station (ISS) from Mid-Atlantic Regional Spaceport Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer (kenkremer.com)

COTS was aimed at revolutionizing how we reach space by privatizing routine space operations that thereby allows NASA to focus more on exploration beyond low earth orbit, getting people back to the Moon and beyond to deep space destinations including Asteroids and Mars.

Today’s Antares launch is the culmination of the COTS contract that NASA awarded to Orbital back in 2008.

Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls
Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls

“Today marks a milestone in our new era of exploration as we expand the capability for making cargo launches to the International Space Station from American shores,” said NASA Administrator Charles Bolden in a statement.

“Orbital’s extraordinary efforts are helping us fulfill the promise of American innovation to maintain our nation’s leadership in space.”

The Cygnus spacecraft is healthy and successfully unfurled its life giving solar panels starting 1.5 minutes after separation from the second stage that took place about 10 minutes after launch, said Culbertson.

Antares placed Cygnus into its intended orbit of about 180 x 160 miles above the Earth, inclined at 51.6 degrees to the equator, Orbital said.

Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls
Antares launch on Sept. 18 from NASA Wallops. Credit: NASA/Bill Ingalls

Cygnus is traveling at 17,500 MPH and is on its way to rendezvous with the space station Sunday, Sept. 22. The cargo vessel will deliver about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the Expedition 37 crew.

The flight, known as Orb-D1 is a demonstration mission to prove that Cygnus can conduct a complex series of maneuvers in space safely bringing it to the vicinity of the ISS.

Mission controllers at Orbital will guide Cygnus to the vicinity of the ISS on Sept. 22.

Antares and Cygnus soar to space on a plume of smoke and ash from NASA Wallops on Sept. 18, 2013 at 10:50 a.m. EDT.  Credit: Ken Kremer (kenkremer.com)
Antares and Cygnus soar to space on a plume of smoke and ash from NASA Wallops on Sept. 18, 2013 at 10:50 a.m. EDT. Credit: Ken Kremer (kenkremer.com)

But its only after carrying out a series of 10 complicated maneuvering tests proving that the vehicle can safely and reliably approach the station up close that NASA and the ISS partners will grant permission to dock.

ISS astronauts Karen Nyberg (NASA) and Luca Parmitano (ESA) will then grapple Cygnus with the station’s Canadian built robotic arm and berth the capsule at an earth facing docking port on Sunday, Sept 22. will then grapple Cygnus with the station’s robotic arm and berth the capsule at an earth facing docking port.

NASA and Orbital Sciences officials brief reporters at the Antares post launch press conference on Sept 18; Robert Lightfoot, NASA Associate Administrator, Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, Frank Culbertson, Orbital Sciences Executive VP. Credit: Ken Kremer (kenkremer.com)
NASA and Orbital Sciences officials brief reporters at the Antares post launch press conference on Sept 18; Robert Lightfoot, NASA Associate Admisistrator, Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo, Frank Culbertson, Orbital Sciences Executive VP. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs – originally built in the Soviet Union as NK-33 model engines for the Soviet era moon rocket.

The upper stage features an ATK Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO. The 2nd stage will be upgraded starting with the 4th Antares flight.

“Antares next flight is scheduled for December sometime between the 8th and 21st”, said Culbertson.

Ken Kremer
…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. & Thales Alenia Space sits inside high bay clean room facility at NASA Wallops Flight Facility, VA for preflight processing. This Cygnus spacecraft arrived from Italy and may launch to the ISS as early as December 2013 from Wallops launch pad 0A. Credit: Ken Kremer (kenkremer.com)
1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. & Thales Alenia Space sits inside high bay clean room facility at NASA Wallops Flight Facility, VA for preflight processing. This Cygnus spacecraft arrived from Italy and may launch to the ISS as early as December 2013 from Wallops launch pad 0A. Credit: Ken Kremer (kenkremer.com)
Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo  at pre-launch rollout of Antares rocket to pad 0A at NASA Wallops.  Credit: Ken Kremer (kenkremer.com)
Alan Lindenmoyer, NASA’s program manager for commercial crew and cargo at pre-launch rollout of Antares rocket to pad 0A at NASA Wallops. Credit: Ken Kremer (kenkremer.com)

Proof! – Frogs Jump at Chance to Board Rockets to Space from NASA Wallops during Antares booster Rollout

NASA Photographer discovers living proof that Frogs are leaping towards the on ramp for rocket ships bound for Earth orbit and beyond at NASA’s Wallops Island, VA, launch pads during rollout of the Antares rocket on Sept 13, 2013. Credit: Ken Kremer (kenkremer.com)

WALLOPS ISLAND, VA – Have you seen the NASA frog? The one that became famous worldwide last week following the historic Moon Shot of the LADEE mission from NASA Wallops Island in Virginia?

The one that the inexplicably appeared in a single photograph from a NASA Wallops remote camera when the pressure wave from the Minotaur rockets exhaust sent it hurtling skywards?

Perhaps you are an unbeliever? And think the frog photo was photoshopped?

Well after a thorough investigation, Universe Today has uncovered undeniable proof that NASA’s resident frogs are indeed jumping at the chance to make history again and leap aboard the next rocket headed to space from NASA Wallops on Sept 18.

How do I know this?

Well on Friday the 13th of September, I was on site at NASA Wallops for a photo shoot of the lengthy rollout of the Orbital Sciences Antares rocket to Launch Pad 0A – and the famous frog was a topic of endless conversation in between our gorgeous views of Antares moving along the road to the launch pad atop the Transporter Erector vehicle.

See my frog and rollout photo gallery herein.

Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)
Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)

Nary a frog was to be found anywhere all day and night along the 1 mile rollout route.

Finally, after much delay the Antares rocket was raised and erected firmly atop the launch mount.

And then at last the great frog discovery was made.

Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard.    Credit: Ken Kremer (kenkremer.com)
Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard. Credit: Ken Kremer (kenkremer.com)

And of course it took a woman, a NASA photographer named Jamie, to do a man’s job – finding and corralling that frog and fearlessly holding the critter in front of all the guys, including me.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

My photos are the proof that the mysterious origin of NASA’s apparently space loving resident frogs has been solved.

Jamie discovered the frog lurking inside a telescope dome used to protect NASA’s launch pad cameras during liftoff.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

She found the frog hiding inside the dome to evade the ever present security patrols on the lookout for intruders. Where is the NSA when you need them?

And quite clearly these are intelligent frogs – eager to blast off to the High Frontier in pursuit of science.

Why?

Because for the past few weeks these space loving frogs have been reading the new pair of signs installed by the launch pad gates right in front of the on ramps directing traffic to the Minotaur and Antares rockets headed to the Moon and the International Space Station.

They were just waiting for the right moment to hop aboard.

Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Everything remains on target for the Sept. 18 blastoff of Orbital Sciences Antares commercial rocket carrying the first fully functional Cygnus commercial resupply vehicle to orbit from NASA’s Wallops Island Facility on a demonstration mission bound for the International Space Station (ISS).

“The weather forecast remains at 75% chance of “GO” with favorable conditions,” said NASA Wallops test director Sarah Daugherty at a news media briefing at Wallops today.

“The launch could be widely visible along the East Coast from New York City to South Carolina.” – Weather permitting

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Learn how and where to view the Antares launch by reading my “How to see the Antares Launch” story.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Stay tuned to Universe Today for complete coverage of the Antares/Cygnus Orb-D1 mission to the ISS and my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)

Sleek GOCE Spacecraft Will Have Uncontrolled Re-entry into Earth’s Atmosphere

GOCE in orbit. Credit: ESA

The sleek and sexy-looking GOCE spacecraft has been mapping Earth’s gravity for over four years, but soon its xenon fuel will run out and the satellite will end up re-entering our atmosphere. But no one can say for sure when or where the 1-ton satellite will fall.

The Gravity field and steady-state Ocean Circulation Explorer has been orbiting Earth at super-low orbits, mapping out variations in Earth’s gravity with extreme detail. Launched in March 2009, the GOCE spacecraft was designed to fly low and has spent most of its mission roughly 500 km below most other Earth-observing missions, at an altitude of 255 km (158 miles), but has recently been at the lowest altitude of any research satellite at 224 km (139 miles).

With its sleek, aerodynamic design, some have called it the ‘Ferrari of space,’ but we’ve just called it sexy, like a satellite straight out of a James Bond movie.

And the satellite has delivered with unique results of Earth’s ‘geoid’ — precise measurements of ocean circulation, sea-level change and ice dynamics, greatly improving our knowledge and understanding of the Earth’s internal structure. The mission has also been studying air density and wind in space. Its data also produced the first global high-resolution map of the boundary between Earth’s crust and mantle, called the Mohorovicic, or “Moho” discontinuity.

Mission managers predict that in mid-October 2013 the spacecraft will run out of fuel and the satellite will begin its descent towards Earth. There will be no remaining fuel to guide its re-entry, and while most of GOCE is predicted to disintegrate in the atmosphere, several parts might reach Earth’s surface. Experts predict as much as 25% of the spacecraft will survive reentry, as many parts are made of advanced materials, such as carbon-carbon composites.

But when and where these parts might land cannot yet be predicted, ESA says.

As the re-entry time nears, better predictions will be made. Re-entry is expected to happen about three weeks after the fuel is depleted.

ESA says that taking into account that two thirds of Earth are covered by oceans and vast areas are thinly populated, the danger to life or property is very low.

Recently, other larger satellites have made uncontrolled re-entries, such as NASA’s 6-ton UARS spacecraft and Germany’s 2.4-ton ROSAT in 2011 and the 13-ton failed Russian Mars probe, Phobos-Grunt in 2012.

About 40 tons of human-made space debris reach the ground per year, but the spread and size mean the risk of an individual being struck is lower than being hit by a meteorite.

An international campaign will be monitoring the descent, involving the Inter-Agency Space Debris Coordination Committee. The situation is being continuously watched by ESA’s Space Debris Office, which will issue re-entry predictions and risk assessments.

ESA says they will keep the relevant safety authorities permanently updated.

Additional info: ESA, BBC

How to See the Historic Antares/Cygnus Launch to Space Station on Sept. 18

Top of the Rock - New York City. Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT - weather permitting - after blastoff from NASA Wallops, VA. Credit: Orbital Sciences See more Antares launch trajectory viewing graphics below

Top of the Rock – New York City
Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT – weather permitting – after blastoff from NASA Wallops, VA. Credit: Orbital Sciences
See more Antares launch trajectory viewing graphics below[/caption]

WALLOPS ISLAND, VA – “All Systems Are GO” for the Sept. 18 launch of Orbital Sciences Antares commercial rocket carrying the first ever fully functional Cygnus commercial resupply vehicle to orbit on the history making first flight blasting off from NASA’s Wallops Island Facility– along the eastern shore of Virginia and bound for the International Space Station (ISS).

Here’s our guide on “How to See the Antares/Cygnus Launch” – complete with viewing maps and trajectory graphics from a variety of prime viewing locations courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus spaceship aimed at keeping the ISS fully operational for science research.

And although the launch is slated for late morning it should still be visible to millions of spectators along a lengthy swath of the US East Coast from North Carolina to Connecticut – weather permitting – who may have never before witnessed such a mighty rocket launch.

The daylight liftoff of the powerful two stage Antares rocket is scheduled for Wednesday, Sept 18 at 10:50 a.m. EDT from Launch Pad 0A at the Mid-Atlantic Regional Spaceport at NASA Wallops Island, Virginia. The launch window extends 15 minutes to 11:05 a.m.

Up top is the view as anticipated from “The Top of the Rock” or Rockefeller Center in New York City. See below the extraordinary image of LADEE’s launch from “Top of the Rock” by Ben Cooper to compare the day and night time sighting delights.

In anticipation of liftoff, the Antares rocket was rolled out to Pad 0A on Friday morning Sept. 13 and I was on hand for the entire event – see my rollout photos here and upcoming.

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares.
Credit: Ken Kremer (kenkremer.com)

Here’s a hi res version of the viewing map courtesy of NASA Wallops Flight Facility:

Antares/Cygnus Launch - Hi Res Visibility map The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA.  will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station.  Credit: NASA Wallops Flight Facility
Antares/Cygnus Launch – Hi Res Visibility map
The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA. will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station. Credit: NASA Wallops Flight Facility

The Antares launch follows closely on the heels of the spectacularly bright Sept. 6 nighttime Moon shot blastoff of the Minotaur V rocket that successfully injected NASA’s LADEE lunar orbiter into its translunar trajectory.

And just as was the case with the Minotaur V and LADEE, you don’t have to be watching locally to join in and experience all the fun and excitement. As with any NASA launch, you can also follow along with up to the minute play by play by watching the NASA TV webcast online or on smartphones, iPods or laptops.

Atlantic City
Atlantic City

It’s hard to say exactly how long and how bright the rockets flames and exhaust trail will be visible since it depends on the constantly changing lighting, prevailing clouds and overall weather conditions.

But one thing is for sure. If you don’t go outside and watch you’re giving up a great opportunity.

And keep in mind that Antares will be moving significantly slower than the Minotaur V.

Herein are a series of graphics showing the Antares trajectory and what you should see during firings of both stages from the perspective of standing on the ground or skyscrapers at a variety of popular destinations including Annapolis, the US Capitol, Lincoln Memorial, National Air and Space Museum, Atlantic City, NJ, New York City and more.

Capitol East-Front Steps
Capitol East-Front Steps
Goddard Space Flight Center - GSFC
Goddard Space Flight Center – GSFC
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

The goal of the mission is to demonstrate the safe and successful launch, rendezvous and docking of the privately developed Cygnus cargo carrier with the International Space Station (ISS) and delivery of 1300 pounds of essential supplies, food, clothing, spare parts and science gear to the six person resident human crews – currently Expedition 37.

Although it’s the 2nd launch of Antares following the maiden flight in April, this is the first flight of the Cygnus commercial delivery system. The demonstration and testing will be the same as what SpaceX accomplished in 2012 with their competing Falcon 9/Dragon architecture.

The mission is designated Orb-D1 and is funded with seed money by NASA’s COTS program to replace the cargo delivery duties of NASA’s now retired Space Shuttle orbiters.

Lincoln Memorial
Lincoln Memorial
Richmond
Richmond

For those who are traveling to witness the launch locally in the Chincoteague, Va., area, there will be two public viewing sites said Jeremy Eggers, NASA Wallops Public Affairs Officer in an interview with Universe Today.

“There will be are two local sites open to the public,” Eggers told me. “Folks can watch at either the NASA Wallops Flight facility Visitors Center (http://sites.wff.nasa.gov/wvc) or the beach at Assateague National Seashore (http://www.nps.gov/asis/index.htm).”

“There will be loudspeakers to follow the progress of the countdown, but no TV screens as done with the LADEE launch.”

National Air & Space Udvar-Hazy Museum
National Air & Space Udvar-Hazy Museum
Annapolis
Annapolis

So far the weather outlook is promising with a 75% chance of “GO” with favorable conditions at launch time.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Be sure to watch for my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Compare this actual launch view to the graphic calculated for Antares (above) as seen from the exact same location atop Rockefeller Center. Credit: Ben Cooper/Launchphotography.com

Curiosity Rolls into Intriguing ‘Darwin’ at ‘Waypoint 1’ on Long Trek to Mount Sharp

Curiosity’s views a rock outcrop after arriving for a short stay at ‘Waypoint 1’- dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech

Curiosity’s views a rock outcrop at ‘Darwin’ after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392) – dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech
Story updated – see close up mosaic views of Darwin outcrop below[/caption]

NASA’s Curiosity Mars rover has just rolled into an intriguing site called ‘Darwin’ at ‘Waypoint 1’- having quickly picked up the driving pace since embarking at last on her epic trek to mysterious Mount Sharp more than two months ago. Did life giving water once flow here on the Red Planet?

Because the long journey to Mount Sharp – the robots primary destination – was certain to last nearly a year, the science team carefully choose a few stopping points for study along the way to help characterize the local terrain. And Curiosity has just pulled into the first of these so called ‘Waypoints’ on Sept 12 (Sol 392), the lead scientist confirmed to Universe Today.

Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today.

“Darwin is named after a geologic formation of rocks from Antarctica.”

She has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.

Altogether, the team selected five ‘Waypoints’ to investigate for a few days each as Curiosity travels in a southwestward direction on the road from the first major science destination in the ‘Glenelg’ area to the foothills of Mount Sharp, says Grotzinger.

“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.

Curiosity's Progress on Rapid Transit Route from 'Glenelg' to Mount Sharp.  Triangles indicate geologic ‘Waypoint’ stopping points along the way.  Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA
Curiosity’s Progress on Rapid Transit Route from ‘Glenelg’ (start at top) to Mount Sharp entry point (bottom). Triangles indicate geologic ‘Waypoint’ stopping points along the way. Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA

‘Waypoint 1’ is an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead. See route map herein.

In fact the team is rather excited about ‘Waypoint 1’ that’s dominated by the tantalizing rocky outcrop discovered there nicknamed ‘Darwin’.

Although Curiosity will only stay a short time at each of the stops, the measurements collected at each ‘Waypoint’ will provide essential clues to the overall geologic and environmental history of the six wheeled rover’s touchdown zone.

“Waypoint 1 was chosen to help break up the drive,” Grotzinger explained to Universe Today.

“It’s a chance to study outcrops along the way.”

The images from MRO are invaluable in aiding the rover handlers planning activities, selecting Curiosity’s driving route and targeting of the most fruitful science forays during the long trek to Mount Sharp – besides being absolutely crucial for the selection of Gale Crater as the robots landing site in August 2012.

The ‘Darwin’ outcrop may provide more data on the flow of liquid water across the crater floor.

Evolving Excitement Over 'Darwin' Rock Outcrop at 'Waypoint 1'.   For at least a couple of days, the science team of NASA's Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called "Darwin."   This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems
Evolving Excitement Over ‘Darwin’ Rock Outcrop at ‘Waypoint 1’. For at least a couple of days, the science team of NASA’s Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called “Darwin.” This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems

The scientists goal is to compare the floor of Gale Crater to the sedimentary layers of 3 mile high (5 kilometer high) Mount Sharp.

Waypoint 1 is just over 1 mile along the approximately 5.3-mile (8.6-kilometer) route from ‘Glenelg’ to the entry point at the base of Mount Sharp.

Curiosity spent over six months investigating the ‘Yellowknife Bay’ area inside Glenelg before departing on July 4, 2013.

What’s the origin of Darwin’s name?

“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.

“Recently we left the Yellowknife Quadrangle, so instead of naming rocks after geological formations in Canada’s north, we now turn to formation names of rocks from Antarctica, and Darwin is one of them.

“That will be the theme until we cross into the next quad,” Grotzinger explained.

Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Inside Yellowknife Bay, Curiosity conducted the historic first interplanetary drilling into Red Planet rocks and subsequent sample analysis with her duo of state of the art chemistry labs – SAM and CheMin.

At Yellowknife Bay, the 1 ton robot discovered a habitable environment containing the chemical ingredients that could sustain Martian microbes- thereby already accomplishing the primary goal of NASA’s flagship mission to Mars.

“We want to know how the rocks at Yellowknife Bay are related to what we’ll see at Mount Sharp,” Grotzinger elaborated in a NASA statement. “That’s what we intend to get from the waypoints between them. We’ll use them to stitch together a timeline — which layers are older, which are younger.”

On Sept. 5, Curiosity set a new one-day distance driving record for the longest drive yet by advancing 464 feet (141.5 meters) on her 13th month on the Red Planet.

As Curiosity neared Waypoint 1 she stopped at a rise called ‘Panorama Point’ on Sept. 7, spotted an outcrop of light toned streaks informally dubbed ‘Darwin and used her MastCam telephoto camera to collect high resolution imagery.

Curiosity will use her cameras, spectrometers and robotic arm for contact science and a “full bore science campaign” involving in-depth mineral and chemical composition analysis of Darwin and Waypoint 1 for the next few Sols, or Martian days, before resuming the trek to Mount Sharp that dominates the center of Gale Crater.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years.  This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer

She will not conduct any drilling here or at the other waypoints, several team members have told me, unless there is some truly remarkable ‘Mars-shattering’ discovery.

Why is Curiosity now able to drive longer than ever before?

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today.

“This will increase our ability to drive. But how much it helps really depends on the terrain.”

And so far the terrain has cooperated.

“We are on a general heading of southwest to Mount Sharp,” said Erickson. See the NASA JPL route map.

“We have been going through various options of different planned routes.”

As of today (Sol 394), Curiosity remains healthy, has traveled 2.9 kilometers and snapped over 82,000 images.

If all goes well Curiosity could reach the entry point to Mount Sharp sometime during Spring 2014, at her current driving pace.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers,LADEE, Cygnus, Antares, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Timelapse: Watch the MAVEN Spacecraft Being Built Before Your Eyes

Artist depiction of the MAVEN spacecraft. Credit: NASA

Watch a year of incredibly detailed work in building the MAVEN spacecraft — sped up to take just 10 minutes. It’s the dance known as ATLO: Assembly, Test, and Launch Operations, set to a jazzy beat. The next spacecraft to Mars, the Mars Atmosphere and Volatile EvolutioN or MAVEN began ATLO procedures a year ago on Sept. 11, 2012. It was shipped to Kennedy Space Center’s Payload Hazardous Servicing Facility on Aug. 2, 2013 to begin preparations for its scheduled launch on Nov. 18, 2013.

Find out more about MAVEN in one of our previous articles about preparations for the mission, or at NASA’s MAVEN website.

A Mercurial Milestone: 1,000 Featured Images from MESSENGER!

The MESSENGER team celebrates 1,000 featured images of the innermost planet!

It’s been nearly two and a half years since the NASA-sponsored MESSENGER mission entered orbit around Mercury — the first spacecraft ever to do so — and today the MESSENGER team celebrated the 1,000th featured image on the mission site with a mosaic of discovery highlights, seen above.

“I thought it sensible to produce a collage for the 1,000th web image because of the sheer volume of images the team has already posted, as no single picture could encompass the enormous breadth of Mercury science covered in these postings,” explained MESSENGER Fellow Paul Byrne, of the Carnegie Institution of Washington. “Some of the images represent aspects of Mercury’s geological characteristics, and others are fun extras, such as the U.S. Postal Service’s Mercury stamp. The ‘1,000’ superimposed on the collage is a reminder of the major milestone the team has reached in posting 1,000 featured images — and even a motivation to post 1,000 more.”

See the very first image MESSENGER obtained from orbit below:

The Mercury Dual Imaging System (MDIS) team has posted a new image to the MESSENGER website approximately once per business day since March 29, 2011, when this first image of Mercury's surface obtained from orbit was made public.
The Mercury Dual Imaging System (MDIS) team has posted a new image to the MESSENGER website approximately once per business day since March 29, 2011, when this first image of Mercury’s surface obtained from orbit was made public.

“During this two-year period, MESSENGER’s daily web image has been a successful mechanism for sharing results from the mission with the public at large,” said Nancy Chabot, MDIS Instrument Scientist at the Johns Hopkins University Applied Physics Laboratory (APL). Chabot has been leading the release of web images since MESSENGER’s first flyby of Mercury in January 2008.

Read more: 5 Mercury Secrets Revealed by MESSENGER

“The first image I released was this one, as MESSENGER approached Mercury for the mission’s first Mercury flyby,” said Chabot. “Mercury was just a small crescent in the image, but it was still very exciting for me. We were obtaining the first spacecraft images of Mercury since Mariner 10 transmitted its final image in 1975, and this was just the beginning of the flood of images that followed.”

One of the first spacecraft images of Mercury since Mariner 10 transmitted its final image in 1975
One of the first spacecraft images of Mercury since Mariner 10 transmitted its final image in 1975

The herculean effort involved in posting a new image every business day was made possible by a small team of scientists in addition to Chabot and Byrne, including APL’s David Blewett, Brett Denevi, Carolyn Ernst, Rachel Klima, Nori Laslo, and Heather Meyer.

“Creating images and captions for the MESSENGER Image Gallery has been fun and interesting,” Blewett said. “Working on a Gallery release gives me a chance take a break from my regular research and look all around Mercury’s surface for an image that the general public might find to be engaging from a scientific, artistic, or humorous perspective (and sometimes all three!).”

Watch: Take a Spin Around Mercury

“The posting of the 1,000th image of Mercury on our web gallery is a wonderful benchmark, but there’s much more to come,” adds MESSENGER Principal Investigator Sean Solomon of Columbia University’s Lamont-Doherty Earth Observatory. “MESSENGER’s altitude at closest approach is steadily decreasing, and in a little more than six months our spacecraft will be able to view Mercury at closer range than ever before with each orbit. Stay tuned!”

Source: MESSENGER news release

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. The MESSENGER spacecraft launched on August 3, 2004, and entered orbit about Mercury on March 17, 2011 (March 18, 2011 UTC).

LADEE Launch: Images and Videos from Our Readers

LADEE and the Milky Way: Launch of the LADEE Rocket from Wallops Flight Facility in Virginia. Credit and copyright: Jeff Berkes/Jeff Berkes Photography.

NASA’s newest mission to the Moon, LADEE, launched from Wallops Island in Virginia, lighting up the sky along the US East Coast, allowing millions to see the Minotaur V rocket’s brilliance with their own eyes. Some of our readers captured the views as they cheered on the Lunar Atmosphere and Dust Environment Explorer as it sailed safely to orbit.

See more images and video below, but first a quick update on how LADEE is doing: there was concern shortly after launch as during technical checkouts the LADEE spacecraft commanded itself to shut down the reaction wheels used to position and stabilize the spacecraft. According to the LADEE mission operations team at NASA’s Ames Research Center in Moffett Field, Calif., this was determined to be the result of fault protection limits put in place prior to launch to safeguard the reaction wheels. The limits that caused the powering off of the wheels soon after activation were disabled, and the reaction wheels were successfully brought back online.

“Our engineers will determine the appropriate means of managing the reaction wheel fault protection program. Answers will be developed over time and will not hold up checkout activities,” said Butler Hine, LADEE project manager.

Everything else is checking out fine so far, so enjoy these views:

This video was taken by Richard Drumm, part of the NASA Social LADEE launch event, so he and the group were about 2 miles from the launchpad:

LADEE launch over World War II bunker from Cape May, New Jersey. This is a 7-image composite. Credit and copyright: Jack Fusco.
LADEE launch over World War II bunker from Cape May, New Jersey. This is a 7-image composite. Credit and copyright: Jack Fusco.
LADEE first stage separation, as seen from Fenwick Island, Delaware, about 50 miles away from Wallops Island Launch Complex. ‘I was completely floored to see how bright and dramatic the launch was from 50 miles away!’ said the photographer.  Credit and copyright: Marion Haligowski.
LADEE first stage separation, as seen from Fenwick Island, Delaware, about 50 miles away from Wallops Island Launch Complex. ‘I was completely floored to see how bright and dramatic the launch was from 50 miles away!’ said the photographer. Credit and copyright: Marion Haligowski.
LADEE launch as seen from Chesapeake Bay, Maryland. Credit and copyright: Dan @awkwardrobots.
LADEE launch as seen from Chesapeake Bay, Maryland. Credit and copyright: Dan @awkwardrobots.
LADEE spacecraft launching to the moon, as see on the roadside by Mount Olive, New Jersey. Credit and copyright: Scott MacNeill.
LADEE spacecraft launching to the moon, as see on the roadside by Mount Olive, New Jersey. Credit and copyright: Scott MacNeill.

This timelapse of the launch is from Chris Moran:

Rocket to the Moon from Wallops Island, VA, as seen from Gaithersburg, Maryland. Credit and copyright: Zach Stern.
Rocket to the Moon from Wallops Island, VA, as seen from Gaithersburg, Maryland. Credit and copyright: Zach Stern.
LADEE launch as seen from Louisa, Virginia. Credit and copyright: David Murr.
LADEE launch as seen from Louisa, Virginia. Credit and copyright: David Murr.

Closeup view of launch via markyj on Instagram:

LADEE launch video , as seen from Bristol, Pennsylvania, courtesy of Ron Roberts:

If you missed the launch, here’s the “official” NASA video:

Photograph of LADEE's launch aboard a Minotaur V on Sept. 6, 2013. Image credit: NASA Wallops/Chris Perry
Photograph of LADEE’s launch aboard a Minotaur V on Sept. 6, 2013. Image credit: NASA Wallops/Chris Perry

Read more about the launch in our post-launch article here.

You can see more great images in NASA’s Flickr pool for the LADEE launch here.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.