How Mars Failures Helped the Curiosity Rover Land

Curiosity's risky landing built on lessons learned from the mistakes of past missions, according to NASA. Credit: NASA

Mars is a graveyard; a spot where many a spacecraft slammed into the surface or perhaps, burned up in the atmosphere. This added drama to the Mars Curiosity rover landing last August.

Roger Gibbs, deputy manager for NASA’s Mars Exploration Program at the Jet Propulsion Laboratory, shared how NASA implemented “lessons learned” from Mars 6 (which died on this day in 1974) and other failed Mars missions when creating Curiosity’s game plan. We’ll get more into Curiosity in a moment, but here are the basic principles NASA uses.

Vigorous peer review. NASA wants its Mars teams to be close-knit. From working together and designing a challenging mission together, they form a common language that will serve them well during the challenging landing and mission. But that same closeness can lead to blind spots, so NASA undertakes regular peer reviews with scientists outside of the mission and sometimes even outside of the country. “The peers will come in. They are not vested in this. They haven’t become too engaged in that culture. They will ask pressing questions, and sometimes obnoxious and challenging questions,” Gibbs said.

Building for unknown dangers. Mars is an alien environment to NASA, not just because it’s outside of Earth but also because it has risks we may not know of. In the early days, some spacecraft miscalculated and grazed the atmosphere because we didn’t understand how much the thin gases expand in space, Gibbs said. So the engineers need to recalibrate the computer models with the latest information. “We model the atmosphere of Mars and say, what’s the density, what are the winds and speeds, how fast to change if a dust storm happens and the atmosphere warms up, and how much the atmosphere rises or”blooms.”

Mars Polar Lander
The Mars Polar Lander, which crashed and failed on Mars. Credit: NASA

Verifying and validating. Those words sound similar, but in NASA parlance they have entirely different meanings. Verification means they are making sure the design is meeting what they intend to meet. If NASA wants a change in velocity of 1,000 meters per second, for example, as the spacecraft inserts itself into orbit, it designs a system that can meet those specifications with fuel, thrusters and mass. The validation comes next. “It’s asking if 1,000 meters is the right number,” Gibbs said. “It’s a distinction that is sometimes lost on people, but it’s important.”

So how did this process help Curiosity? Well, this especially came to play when the team was designing the so-called “seven minutes of terror” — those final moments before the rover touched the ground. The team not only used parachutes, but also a device called a “sky crane” that used rockets and a sort of cable that lowered the rover carefully to the surface.

Imagine the measurements that must have taken, taking into account how different the Mars environment is from Earth. To gain understanding, the team reviewed again all the past mishap reports from failed Mars missions, such as the Mars Polar Lander and the European Space Agency’s Beagle 2.

Then, according to Gibbs, they spent “a lot of effort” on doing the verification and validation. Curiosity’s landing would be extremely difficult to model, but the team threw every bit of data they had in there.

The NASA team threw in every bit of data they could to model the Mars Curiosity landing. Credit: NASA
The NASA team threw in every bit of data they could to model the Mars Curiosity landing. Credit: NASA

They created an atmospheric model of Mars, modelled the trajectory of the incoming spacecraft, and tried to figure out how the various systems would respond to the environment. Next, they tried to tweak the variables to see how far they could change without posing a danger to the mission.

“There’s a paranoia where the folks will ask, did we do it to the best of our knowledge,” Gibbs acknowledged.  “What is it that we’re missing?”

If Curiosity had failed, NASA would have opened an inquiry board to figure out what had happened. These boards produce final reports that can be downloaded by anyone. Then, the agency would have tried to prevent the same situation from happening the next time a rover landed.

“It’s a lot easier to learn from someone else’s bad experience, by reading the report understanding the root cause,” Gibbs said.

Looking Into the Moon’s Permanently Shadowed Craters

This shaded relief image shows the Moon's Shackleton Crater, a 21-km-wide crater permanently shadowed crater near the lunar south pole. The crater’s interior structure is shown in false color based on data from NASA's LRO probe. Scientists suspect that there's a lot of water ice hidden in the crater's shadow. Credit: NASA

There are some craters on the Moon that never see the light of day. But that doesn’t stop the Lunar Reconnaissance Orbiter from shedding new light on some the darkest mysteries on the lunar surface. With its battery of instruments, LRO has been collecting data so that we can learn more about what we can’t see with our eyes or with optical telescopes. The video provides more details, but by studing the Moon, we’ll improve our understanding of the solar system, bringing new discoveries to light.

For more info, see the LRO website.

Berth of a Dragon after Thruster Failure Recovery Establishes American Lifeline to ISS

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.

Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.

“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.

Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.

SpaceX Dragon holding at 10m capture point. ISS crew standing by for "go" to perform grapple. Credit: NASA
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA

“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.

The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.

Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.

Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA

Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.

The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.

Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.

Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.

The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.

And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.

“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.

“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”

“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”

“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.

ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013.  Credit: NASA
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA

Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.

NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.

Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.

Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013.  Credit:
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:

Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.

Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.

NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.

“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.

“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”

The SpaceX CRS-3 flight is slated to blast off in September 2013.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

The Vela Pulsar as a Spirograph

This image compresses the Vela movie sequence into a single snapshot by merging pie-slice sections from eight individual frames. Credit: NASA/DOE/Fermi LAT Collaboration

I loved my Spirograph when I was young, and obviously Eric Charles, a physicist with the Fermi Gamma-ray Space Telescope team did too. Charles has taken data from Fermi’s Large Area Telescope and turned it into a mesmerizing movie of the Vela Pulsar. It actually is a reflection of the complex motion of the spacecraft as it stared at the pulsar.

The video shows the intricate pattern traced by the Fermi Gamma-ray Space Telescope’s view of the Vela Pulsar over the spacecraft’s 51 months in orbit.

Fermi orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light — gamma rays — from sources across the universe. The Fermi telescope has given us our best view yet of the bizarre world of the high energy Universe, which include supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars.

Francis Reddy from the Goddard Spaceflight Center describes the movie:

The Vela pulsar outlines a fascinating pattern in this movie showing 51 months of position and exposure data from Fermi’s Large Area Telescope (LAT). The pattern reflects numerous motions of the spacecraft, including its orbit around Earth, the precession of its orbital plane, the manner in which the LAT nods north and south on alternate orbits, and more. The movie renders Vela’s position in a fisheye perspective, where the middle of the pattern corresponds to the central and most sensitive portion of the LAT’s field of view. The edge of the pattern is 90 degrees away from the center and well beyond what scientists regard as the effective limit of the LAT’s vision. Better knowledge of how the LAT’s sensitivity changes across its field of view helps Fermi scientists better understand both the instrument and the data it returns.

The pulsar traces out a loopy, hypnotic pattern reminiscent of art produced by the colored pens and spinning gears of a Spirograph, a children’s toy that produces geometric patterns.

The Vela pulsar spins 11 times a second and is the brightest persistent source of gamma rays the LAT sees. While gamma-ray bursts and flares from distant black holes occasionally outshine the pulsar, the Vela pulsar is like a persistant beacon, much like the light from a lighthouse.

Find out more about this movie and the Fermi Telescope here.

Curiosity Mars Rover Eats 1st Sample of Gray Rocky Powder

NASA's Mars rover Curiosity took this image of Curiosity's sample-processing and delivery tool just after the tool delivered a portion of powdered rock into the rover's Sample Analysis at Mars (SAM) instrument. This Collection and Handling for In-situ Martian Rock Analysis (CHIMRA) tool delivered portions of the first sample ever acquired from the interior of a rock on Mars into both SAM and the rover's Chemistry and Mineralogy (CheMin) instrument. Credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity rover has eaten the 1st ever samples of gray rocky powder cored from the interior of a Martian rock.

The robotic arm delivered aspirin sized samples of the pulverized powder to the rover’s Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments this past weekend on Feb. 22 and 23, or Sols 195 and 196 respectively.

Both of Curiosity’s chemistry labs have already begun analyzing the samples – but don’t expect results anytime soon because of the complexity of the operation involved.

“Analysis has begun and could take weeks,’ NASA JPL spokesman Guy Webster told Universe Today.

The samples were collected from the rover’s 1st drilling site known as ‘John Klein’ – comprised of a red colored slab of flat, fine-grained, sedimentary bedrock shot through with mineral veins of Calcium Sulfate that formed in water.

“Data from the instruments have confirmed the deliveries,” said Curiosity Mission Manager Jennifer Trosper of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into ‘John Klein’ that produced a slurry of gray tailings

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with  her ultimate destination; Mount Sharp.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The gray colored tailings give a completely fresh insight into Mars that offers a stark contrast to the prevailing views of reddish-orange rusty, oxidized dust.

The eventual results from SAM and CheMin may give clues about what exactly does the color change mean. One theory is that it might be related to different oxidations states of iron that could potentially inform us about the habitability of Mars insides the rover’s Gale Crater landing site.

“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years,” said Louise Jandura of JPL and Curiosity’s chief engineer for the sampling system.

Additional portions of the first John Klein sample could be delivered to SAM and CheMin if the results warrant. The state-of-the-art instruments are testing the gray powder to elucidate the chemical composition and search for simple and complex organic molecules based on carbon, which are the building blocks of life as we know it.

Curiosity’s Mastcam camera snapped this photo mosaic of 1st drill holes into Martian rock at John Klein outcrop inside Yellowknife Bay basin where the robot is currently working. Notice the gray powdery tailings from the rocks interior. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity’s Mastcam camera snapped this photo mosaic of 1st drill holes into Martian rock at John Klein outcrop inside Yellowknife Bay basin where the robot is currently working. Notice the gray powdery tailings from the rocks interior. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

The Curiosity science team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life.

Curiosity is nearly 7 months into her 2 year long primary mission. So far she has snapped over 45,000 images.

“The mission is discovery driven,” says John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.

The rover will likely remain in the John Klein area for several more weeks to a month or more to obtain a more complete scientific characterization of the area which has seen repeated episodes of flowing water.

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

Ken Kremer

The Mars Spacecraft That Was Almost Destroyed On The Launchpad

Artist's conception of Mariner 6. Credit: NASA

On this day (Feb. 25) in 1969, Mariner 6 was hefted off of Earth on a path to Mars. What’s less known is the spacecraft nearly was destroyed only 10 days beforehand as the rocket began to collapse. This NASA account succinctly summarizes what must have been a terrifying moment:

A faulty switch opened the main valves on the Atlas stage. This released the pressure which supported the Atlas structure, and as the booster deflated it began to crumple. Two ground crewman started pressurizing pumps, saving the structure from further collapse. The Mariner 6 spacecraft was removed, put on another Atlas/Centaur, and launched on schedule. The two ground crewman, who had acted at risk of the 12-story rocket collapsing on them, were awarded Exceptional Bravery Medals from NASA.

Who were these exceptional people? Universe Today asked around at NASA for some answers, and got the gentlemen’s names: Billy McClure and Charles Beverlin, who were NASA contractors at General Dynamics. It appears that these two men were the first to receive an Exceptional Bravery Medal from the agency.

McClure, a Second World War veteran, died in 2009 at the age of 85. It appears that the medal was a highlight in McClure’s life, according to an account by his great-granddaughter Hanna Smith, who referred to him as “Grandad”:

“Grandad was flown to California to receive copies of the first pictures ever taken of Mars and to be personally thanked by the Vice President of the United States,” she wrote in a 2012 article. McClure retired from General Dynamics after 31 years of service. His son, also named Billy McClure, was a worker on the U.S. shuttle program.

The agency had no contact information for Beverlin given that he was not a NASA employee.

As for Mariner 6, the mission made it to Mars at a time when spacecraft failures were fast and frequent. The spacecraft’s closest approach to Mars was 2,131 miles (3,431 km) and it successfully beamed images and information back to Earth. It’s images finally squashed the notion of Martian “canals” — once proposed by astronomer Percival Lowell — and showed the surface of Mars to be very different from that of the Moon, in contrast to the results from Mariner 4. Mariner 6 also helped identify the makeup of the south polar cap (predominantly carbon dioxide, and its radio science refined estimates of the mass, radius and shape of Mars.

Just think, this cratered image of Mars below was only possible through an act of bravery from two men.

Mariner 6 image of Sinus Sabaeus and Deucalionis Regio on Mars. Credit: NASA/JPL
Mariner 6 image of Sinus Sabaeus and Deucalionis Regio on Mars. Credit: NASA/JPL

European Asteroid Smasher Could Bolster Planetary Defense

US-European Asteroid Impact and Deflection mission – AIDA.

Planetary Defense is a concept very few people heard of or took seriously – that is until last week’s humongous and totally unexpected meteor explosion over Russia sent millions of frightened residents ducking for cover, followed just hours later by Earth’s uncomfortably close shave with the 45 meter (150 ft) wide asteroid named 2012 DA14.

This ‘Cosmic Coincidence’ of potentially catastrophic space rocks zooming around Earth is a wakeup call that underscores the need to learn much more about the ever present threat from the vast array of unknown celestial debris in close proximity to Earth and get serious about Planetary Defense from asteroid impacts.

The European Space Agency’s (ESA) proposed Asteroid Impact and Deflection Assessment mission, or AIDA, could significantly bolster both our basic knowledge about asteroids in our neighborhood and perhaps even begin testing Planetary Defense concepts and deflection strategies.

After two years of work, research teams from the US and Europe have selected the mission’s target – a so called ‘binary asteroid’ named Didymos – that AIDA will intercept and smash into at about the time of its closest approach to Earth in 2022 when it is just 11 million kilometers away.

“AIDA is not just an asteroid mission, it is also meant as a research platform open to all different mission users,” says Andres Galvez, ESA studies manager.

Asteroid Didymos could provide a great platform for a wide variety of research endeavors because it’s actually a complex two body system with a moon – and they orbit each other. The larger body is roughly 800 meters across, while the smaller one is about 150 meters wide.

Didymos with its Moon
Didymos with its Moon. Credit: ESA

So the smaller body is some 15 times bigger than the Russian meteor and 3 times the size of Asteroid 2012 DA14 which flew just 27,700 km (17,200 mi) above Earth’s surface on Feb. 15, 2013.

The low cost AIDA mission would be comprised of two spacecraft – a mother ship and a collider. Two ships for two targets.

The US collider is named the Double Asteroid Redirection Test, or DART and would smash into the smaller body at about 6.25 km per second. The impact should change the pace at which the objects spin around each other.

ESA’s mothership is named Asteroid Impact Monitor, or AIM, and would carry out a detailed science survey of Didymos both before and after the violent collision.

“The project has value in many areas,” says Andy Cheng, AIDA lead at Johns Hopkins’ Applied Physics Laboratory, “from applied science and exploration to asteroid resource utilisation.” Cheng was a key member of NASA’s NEAR mission that first orbited and later landed on the near Earth Asteroid named Eros back in 2001.

Recall that back in 2005, NASA’s Deep Impact mission successfully lobbed a projectile into Comet Tempel 1 that unleashed a fiery explosion and spewing out vast quantities of material from the comet’s interior, including water and organics.

NASA’s Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005.  ESA and NASA are now proposing the AIDA mission to smash into Asteroid Didymos.  CREDIT: NASA/JPL-Caltech/UMD
NASA’s Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005. ESA and NASA are now proposing the AIDA mission to smash into Asteroid Didymos. CREDIT: NASA/JPL-Caltech/UMD

ESA has invited researchers to submit AIDA experiment proposals on a range of ideas including anything that deals with hypervelocity impacts, planetary science, planetary defense, human exploration or innovation in spacecraft operations. The deadline is 15 March.

“It is an exciting opportunity to do world-leading research of all kinds on a problem that is out of this world,” says Stephan Ulamec from the DLR German Aerospace Center. “And it helps us learn how to work together in international missions tackling the asteroid impact hazard.”

The Russian meteor exploded without warning in mid air with a force of nearly 500 kilotons of TNT, the equivalent of about 20–30 times the atomic bombs detonated at Hiroshima and Nagasaki.

Over 1200 people were injured in Russia’s Chelyabinsk region and some 4000 buildings were damaged at a cost exceeding tens of millions of dollars. A ground impact would have decimated cities like New York, Moscow or Beijing with millions likely killed.

ESA’s AIDA mission concept and NASA’s approved Osiris-REx asteroid sample return mission will begin the path to bolster our basic knowledge about asteroids and hopefully inform us on asteroid deflection and Planetary Defense strategies.

Ken Kremer

Near-Earth asteroid Eros imaged from NASA’s orbiting NEAR spacecraft. Credit: NASA
Near-Earth asteroid Eros imaged from NASA’s orbiting NEAR spacecraft. Credit: NASA

No Glory: NASA Releases Findings from Taurus XL Rocket Failure

Artist concept of the Glory spacecraft in Earth orbit. Credit: NASA Goddard Space Flight Center

NASA has released the findings from a panel that investigated the 2011 crash of the Glory spacecraft after it failed to reach orbit on board an Orbital Sciences Taurus XL rocket, falling into the Pacific Ocean. Early on, the problem was traced to the fairing – the clamshell nosecone that encapsulates the satellite as it travels through the atmosphere — which did not separate from the rocket, weighing the satellite down, preventing its flight toward orbit.

However, the mishap investigation board was not able to identify the definitive cause for the fairing system failure. The rocket and satellite weren’t recovered, so there was no physical evidence to examine. In short, the board confirmed the Taurus launch vehicle’s fairing system failed to open fully and caused the mishap. And the board’s report does recommend ways to prevent future problems associated with the joint system that makes up the fairing.

But the board’s complete report is not available for public release because it contains information restricted by U.S. International Traffic in Arms Regulations (ITAR) and information proprietary to the companies involved.

A similar technical glitch occurred during the 2009 launch of the Orbiting Carbon Observatory (OCO). A replacement, OCO-2 is scheduled to launch in 2014. NASA had originally planned to fly OCO-2 on a Taurus rocket, but changed its plans after the loss of Glory. OCO-2 will now launch on a United Launch Alliance Delta-II. But NASA and Orbital are continuing to investigate the fairing system.

Glory was going to be a three-year mission designed to improve our understanding of Earth’s climate by collecting data on the properties of natural and human-caused aerosols in Earth’s atmosphere and how they might affect climate change, as well as determining the Sun’s affect on climate by measuring the total solar energy entering Earth’s atmosphere.

You can read the summary here. (pdf file).

New Video Shows Fire and ‘Rain’ on the Sun

Screenshot of a dazzling magnetic display on the Sun, a phenomenon known as coronal rain. Credit: NASA/SDO

This footage was obtained by the AIA instrument on the Solar Dynamics Observatory on July 19, 2012. It provides a stunning display of solar activity and shows how wildly different events on the Sun can be. Some come just with a solar flare, some with an additional ejection of solar material called a coronal mass ejection (CME), and some with complex moving structures in association with changes in magnetic field lines that loop up into the Sun’s atmosphere, the corona.

This eruption produced all three.

A moderately powerful solar flare exploded on the Sun’s lower right hand limb, sending out light and radiation. Next came a CME, which shot off to the right out into space. And then, the Sun treated viewers to one of its dazzling magnetic displays — a phenomenon known as coronal rain.

Over the course of the next day, hot plasma in the corona cooled and condensed along strong magnetic fields in the region. Magnetic fields, themselves, are invisible, but the charged plasma is forced to move along the lines, showing up brightly in the extreme ultraviolet wavelength of 304 Angstroms, which highlights material at a temperature of about 50,000 Kelvin. This plasma acts as a tracer, helping scientists watch the dance of magnetic fields on the Sun, outlining the fields as it slowly falls back to the solar surface.

SDO collected one frame every 12 seconds, and the movie plays at 30 frames per second, so each second in this video corresponds to 6 minutes of real time. The video covers 12:30 a.m. EDT to 10:00 p.m. EDT on July 19, 2012.

Take a Spin Around Mercury

Color map of Mercury's varied surface. The 1,550-km-wide Caloris Basin can be seen at upper right.

Created by the MESSENGER mission team at the Johns Hopkins University Applied Physics Laboratory and the Carnegie Institution of Washington, this animation gives us a look at the spinning globe of Mercury, its surface color-coded to reflect variations in surface material reflectance.

Thousands of Wide Angle Camera images of Mercury’s surface were stitched together to create the full-planet views.

While the vibrant colors don’t accurately portray Mercury as our eyes would see it, they are valuable to scientists as they highlight the many different types of materials that make up the planet’s surface. Young crater rays surrounding fresh impact craters appear light blue or white. Medium- and dark-blue “low-reflectance material” (LRM) areas are thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. Small orange spots are materials deposited by explosive volcanic eruptions.

At this point, over 99% of the Solar System’s innermost planet has been mapped by MESSENGER. Read more about the ongoing mission here.

Image/video credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington