Was There a Time When the Moon was Habitable?

Artist's concept of a terraformed moon. According to a new study, the Moon may have had periods of habitability in its past where it had an atmosphere and liquid water on its surface. Credit: Ittiz

To put it simply, the Earth’s Moon is a dry, airless place where nothing lives. Aside from concentrations of ice that exist in permanently-shaded craters in the polar regions, the only water on the moon is believed to exist beneath the surface. What little atmosphere there is consists of elements released from the interior (some of which are radioactive) and helium-4 and neon, which are contributed by solar wind.

However, astronomers have theorized that there may have been a time when the Moon might have been inhabitable. According to a new study by an astrophysicist and an Earth and planetary scientist, the Moon may have had two early “windows” for habitability in the past. These took place roughly 4 billion years ago (after the Moon formed) and during the peak in lunar volcanic activity (ca. 3.5 billion years ago).

Continue reading “Was There a Time When the Moon was Habitable?”

Mars Meets the MiniMoon During the Longest Total Lunar Eclipse of the Century

lunar eclipse
A blood red moon captured during the total lunar eclipse of January 31st, 2018. Image credit and copyright: Eliot Herman

lunar eclipse
A blood red moon captured during the total lunar eclipse of January 31st, 2018. Image credit and copyright: Eliot Herman

The Blood Moon cometh.

One of the top astronomy events of 2018 occurs on the evening of Friday, July 27th, when the Moon enters the shadow of the Earth for a total lunar eclipse. In the vernacular that is the modern internet, this is what’s becoming popularly known as a “Blood Moon,” a time when the Moon reddens due to the refracted sunlight from a thousand sunsets falling upon it. Standing on the surface of the Moon during a total lunar eclipse (which no human has yet to do) you would see a red “ring of fire” ’round the limb of the eclipsed Earth.

This is the second total lunar eclipse for 2018, and the middle of a unique eclipse season bracketed by two partial solar eclipses, one on July 13th, and another crossing the Arctic and Scandinavia on August 11th.

The path of the Moon through the Earth’s shadow Friday, along with visibility prospects worldwide. Credit: NASA/GSFC

The July 27th total lunar eclipse technically begins around 17:15 Universal Time (UT), when the Moon enters the bright penumbral edge of the Earth’s shadow. Expect the see a slight shading on the southwest edge of the Moon’s limb about 30 minutes later. The real action begins around 18:24 UT, when the Moon starts to enter the dark inner umbra and the partial phases of the eclipse begin. Totality runs from 19:30 UT to 21:13 UT, and the cycle reverses through partial and penumbral phases, until the eclipse ends at 23:29 UT.

Centered over the Indian Ocean region, Africa, Europe and western Asia get a good front row seat to the entire total lunar eclipse. Australia and eastern Asia see the eclipse in progress at moonset, and South America sees the eclipse in progress at moonrise just after sunset. Only North America sits this one out.

Now, this total lunar eclipse is special for a few reasons.

First off, we’ll have the planet Mars at opposition less than 15 hours prior to the eclipse. This means the Red Planet will shine at a brilliant magnitude -2.8, just eight degrees from the crimson Moon during the eclipse, a true treat and an easy crop to get both in frame. We fully expect to see some great images of Mars at opposition along with the eclipsed Moon.

Mars versus the eclipsed Moon on Friday. Credit: Stellarium

How close can the two get? Well, stick around until April 27th, 2078 and you can see the Moon occult (pass in front of) Mars during a penumbral lunar eclipse as seen from South America.

And speaking of occultations, the Moon occults some interesting stars during totality Friday, the brightest of which is the +5.9 magnitude double star Omicron Capricorni (SAO 163626) as seen from Madagascar and the southern tip of Africa. Omicron Capricorni has a wide separation of 22″.

The occultation path of Omicron Capricorni during Friday’s eclipse. Credit: Occult 4.2.

The second unique fact surrounding this eclipse is one you’ve most likely already heard: it is indeed the longest one for this century… barely. This occurs because the Moon reaches its descending node along the ecliptic on July 27th at 22:40 UT, just 21 minutes after leaving the umbral shadow of the Earth. This makes for a very central eclipse, nearly piercing the umbral shadow of the Earth right through its center.

Totality on Friday lasts for 1 hour, 42 minutes and 57 seconds. This was last beat on July 16th, 2000 with a duration of 1 hour, 46 minutes and 24 seconds (2001 is technically the first year of the 21st century). The duration for Friday’s eclipse won’t be topped until June 9th 2123 (1 hour 46 minutes six seconds), making it the longest for a 123 year span.

The longest total lunar eclipse over the span of 5,000 years from 2000 BC to 3000 AD was on May 31st, 318 AD at 106.6 minutes in duration.

A Minimoon Eclipse

Finally, a third factor is assisting this eclipse in its longevity is the onset of the MiniMoon: The Moon reaches apogee at July 27th, 5:22 UT, 14 hours and 37 minutes prior to Full and the central time of the eclipse. This is the most distant Full Moon of the year for 2018 (406,222 km at apogee) the 2nd most distant apogee for 2018. Apogee on January 15th, beats it out by only 237 kilometers. This not only gives the Moon a slightly smaller size visually at 29.3′, versus 34.1′ near perigee, less than half of the 76′ arcminute diameter of the Earth’s shadow. This also means that the Moon is moving slightly slower in its orbit, making a more stately pass through the Earth’s shadow.

Going, going… the stages of a lunar eclipse. Credit: Dave Dickinson.

What will the Moon look like during the eclipse? Not all total lunar eclipses are the same, but I’d expect a dark, brick red hue from such a deep eclipse. The color of the Moon during a eclipse is described as its Danjon number, ranging from a bright (4) to dark murky copper color (0) during totality.

Tales of the Saros

This particular eclipse is member 38 of the 71 lunar eclipses in saros series 129, running from June 10th, 1351 all the way out to the final eclipse in the series on July 24th, 2613 AD. If you caught the super-long July 16th, 2000 eclipse (the longest for the 20th century) then you saw the last one in the series, and the next one for the series occurs on August 7th, 2036. Collect all three, and you’ve completed a triple exeligmos series, a fine word in Scrabble to land on a triple word score.

Photographing the Moon

If you can shoot the Moon, you can shoot a total lunar eclipse, though a minimum focal length lens of around 200mm is needed to produce a Moon much larger that a dot. The key moment is the onset of totality, when you need to be ready to rapidly dial the exposure settings down from the 1/100th of a second range down to 1 second or longer. Be careful not to lose sight of the Moon in the viewfinder all together!

Are you watching the eclipse during moonrise or moonset? This is a great time to shoot the eclipsed Moon along with foreground objects… you can also make an interesting observation around this time, and nab the eclipsed Moon and the Sun above the local horizon at the same time in what’s termed a selenelion. This works mainly because the Earth’s shadow is larger than the apparent diameter of the Moon, allowing it to be cast slightly off to true center after sunrise or just before sunset. Gaining a bit of altitude and having a low, flat horizon helps, as the slight curve of the Earth also gives the Sun and Moon a tiny boost. For this eclipse, the U2-U3 umbral contact zone for a selenelion favors eastern Brazil, the UK and Scandinavia at moonrise, and eastern Australia, Japan and northeastern China at moonset.

Incidentally, a selenelion is the second visual proof you see during a lunar eclipse that the Earth is indeed round, the first being the curve of the planet’s shadow seen at all angles as it falls across the Moon.

Another interesting challenge would be to capture a transit of the International Space Station during the eclipse, either during the partial or total phases… to our knowledge, this has never been done during a lunar eclipse. This Friday, South America gets the best shots at a lunar eclipse transit of the ISS:

ISS transit paths (revised) during Friday’s eclipse, including times in UT and Moon phases. The northern and southern limits of the paths mark the point where the Moon is no longer visible. Created by the author using CalSky. (Thanks to PAHLES in comments below for pointing out the errors in the first map!)

Be sure to check CalSky for a transit near you.

Watch Friday’s eclipse live online. Credit: Gianluca Masi/Virtual Telescope Project.

Live on the wrong continent, or simply have cloudy skies? Gianluca Masi and the Virtual Telescope Project 2.0 have you covered, with a live webcast of the eclipse from the heart of Rome, Italy on July 27th starting at 18:30 UT.

Be sure to catch Friday’s total lunar eclipse, either in person or online… we won’t have another one until January 21st, 2019.

Learn about eclipses, occultations, the motion of the Moon and more in our new book: Universe Today’s Guide to the Cosmos: Everything You Need to Know to Become an Amateur Astronomer now available for pre-order.

A Spectacular Grazing Occultation for Aldebaran at Dawn

aldebaran moon
Aldebaran versus the crescent Moon from April 2017. Image credit and copyright: frankastro

aldebaran moon
Aldebaran versus the crescent Moon from April 2017, post grazing occultation. Image credit and copyright: frankastro.

An unusual celestial spectacle unfolds for observers around the Great Lakes region next Tuesday at dawn. The Moon has been faithfully occulting (passing in front of) the bright star Aldebaran for every lunation now since January 29th, 2015. These split-second events have touched on nearly every farflung corner of the Earth. Now the United States and Canada get to see the penultimate event, as the waning crescent Moon occults Aldebaran one last time for North America.

Many news outlets are advertising this as the “last occultation of Aldebaran until 2033” which isn’t entirely true: the Moon will occult Aldebaran twice more worldwide, once on August 6th and September 3rd. Both of these events, however, involve a thin crescent Moon and occur over high Arctic climes, so I wouldn’t be surprised if they go unwitnessed by human eyes. The next cycle of Aldebaran occultations then resumes on August 18th, 2033.

July 10th occultation
The footprint for the July 10th occultation of Aldebaran by the Moon. Note that this is a daytime event across the Arctic, except for the tiny lower left corner of the footprint falling over the Great Lakes region at dawn. Credit: Occult 4.2.

Four stars brighter than +1st magnitude lie along the Moon’s celestial path in our current epoch: Antares in Scorpius, Regulus in Leo, Spica in Virgo, and Aldebaran in the eye of Taurus the Bull. Fun fact: this celestial situation is also slowly changing, partly because of the slow 26,000 year-plus long top-like wobble of the Earth’s axis known as the Precession of the Equinoxes, but also because of stellar proper motion, which is slowly bringing stars into and out of the Moon’s path over millennia. For example, until 117 BC, the Moon could also occult Pollux in the constellation of Gemini the Twins.

The circumstances for the July 10 event: The morning of July 10th sees the 11% illuminated, waning crescent Moon meet the +0.9 magnitude star Aldebaran under pre-dawn skies. When the Moon is waning, the bright limb leads the way, covering up the star during ingress and revealing once again during egress. The Moon moves its own half a degree (30 arcminute) diameter once every hour, and how long you’ll see Aldebaran covered up depends on your location. The geographic “sweet spot” for the occultation is eastern Minnesota, northeastern Iowa, northern Wisconsin, Lake Superior, the Upper Peninsula of Michigan, Ontario and northern Quebec… though the farther east you are, the brighter the skies will be, until the occultation begins under dark to twilight dawn skies and ends after sunrise.

Tales from the Graze Line

Folks based along a narrow path running for Iowa, across Wisconsin and Michigan into Ontario and Quebec are in for a very special treat, as Aldebaran just grazes in southern limb of the Moon. Instead of one single wink out, Aldebaran will flash multiple times, as it shines down through the jagged valleys along the limb of the Moon, an amazing sight to witness and catch on video.

Graze line
A close study of the southern graze line for the July 10th event. Credit: IOTA/Google Maps

Here are some times and circumstances for selected cities in the path of the occultation:

Location Ingress Egress Moon altitude Sun altitude Duration
Minneapolis 8:30 8:47 1deg/3deg -16deg/-14deg 17 minutes
Green Bay 8:39 8:40 5deg/5 deg -13deg <1 minute
Thunder Bay 8:32 8:54 5deg/8 deg -12deg/-9 deg 22 minutes
Fort Dodge, Iowa N/A 8:37 0.1 deg -18 deg <1 minute

Notes: all locations listed are in the Central (CDT) time zone (UT-5 for summer time). All times listed are in Universal Time (UT), with the Moon and Sun altitude listed for the beginning and end of the event, rounded to the nearest minute.

Not on the graze line? Well, the rest of us will see a very photogenic near miss on the morning of July 10th… and you might just be able to track Aldebaran up into the daytime sky (make sure you physically block the Sun out of view) if you’ve got clear blue, high contrast skies.

The Moon also occults several fainter stars across the V-shaped Hyades open star cluster around the same time worldwide, as well. One such notable event is the occultation of the +3.7 magnitude star Gamma Tauri for the United Kingdom:

Gamma tauri
The footprint for the July 10th Gamma Tauri event. Credit: Occult 4.2

You can follow the July 10th occultation using nothing more than a Mk-1 eyeball, as you can see both the star and the Moon… though binoculars or a telescope will definitely help, as Aldebaran will be tough to pick out against the bright limb of the Moon. Occultations—especially grazing events—really lend themselves to video astrophotography and are simple to capture through a telescope. Just be sure to balance the exposure setting so you can follow the star all the way up to the bright limb of the Moon.

moon graze
The grazing occultation of Aldebaran on July 10th. The direction of motion for the Moon spans one hour. Credit: Stellarium.

Occultations have inspired those who witnessed them back through pre-telescopic times. A Greek coin from 120 BC may depict an occultation of Jupiter by the Moon. Sultan Alp Arslan was said to have been inspired by a close pairing of Venus and the crescent Moon after the Battle of Manzikert in 1071 AD, adopting the celestial spectacle of the star and crescent which adorns several national flags today.

Also, keep an eye out for an optical illusion described in The Rime of the Ancient Mariner (the poem, not the song by Iron Maiden inspired by the epic tale of the same name), where the protagonist witnesses:

“While clome above the Eastern Bar,

The horned Moon, with one bright Star,

Almost atween the tips.”

This illusion is often referred to as the Coleridge Effect.

Don’t miss this fine occultation of Aldebaran… it’ll be awhile before we see the Moon meet the star again.

-Extra credit: if anyone is planning a live stream of the occultation next Tuesday, let us know.

-The International Occultation Timing Association (IOTA) welcomes observations of any occultations worldwide… in the case of a lunar graze, observations can be used to map out the profile of mountains and valleys along the edge of the Moon.

NASA Cubesat Takes a Picture of the Earth and Moon

The first image captured by one of NASA's Mars Cube One (MarCO) CubeSats. The image, which shows both the CubeSat's unfolded high-gain antenna at right and the Earth and its moon in the center, was acquired by MarCO-B on May 9. Credit: NASA/JPL-Caltech

In 1990, the Voyager 1 spaceprobe took a picture of Earth when it was about 6.4 billion km (4 billion mi) away. In this image, known as the “pale blue dot“, Earth and the Moon appeared as mere points of light because of the sheer distance involved. Nevertheless, it remains an iconic photo that not only showed our world from space, but also set  long-distance record.

As it turns out, NASA set another long-distance record for CubeSats last week (on May. 8th, 2018) when a pair of small satellites called Mars Cube One (MarCO) reached a distance of 1 million km (621,371 mi) from Earth. On the following day, one of the CubeSats (MarCO-B, aka. “Wall-E”) used its fisheye camera to take its own “pale blue dot” photo of the Earth-Moon system.

The two CubeSats were launched on May 5th along with the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander, which is currently on its way to Mars to explore the planet’s interior structure. As the first CubeSats to fly to deep pace, the purpose of the MarCO mission is to demonstrate if CubeSats are capable of acting as a relay with long-distance spacecraft.

An artist’s rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. Credit: NASA/JPL-Caltech

To this end, the probes will be responsible for monitoring InSight as it makes its landing on Mars in late November, 2018. The photo of Earth and the Moon was taken as part of the process used by the engineering team to confirm that the spacecraft’s high-gain antenna unfolded properly. As Andy Klesh, MarCO’s chief engineer at NASA’s Jet Propulsion Laboratory, indicated in a recent NASA press release:

“Consider it our homage to Voyager. CubeSats have never gone this far into space before, so it’s a big milestone. Both our CubeSats are healthy and functioning properly. We’re looking forward to seeing them travel even farther.”

This technology demonstration, and the long-distance record recently set by MarCO satellites, provides a good indication of just how far CubeSats have come in the past few years. Originally, CubeSats were developed to teach university students about satellites, but have since become a major commercial technology. In addition to providing vast amounts of data, they have proven to be a cost-effective alternative to larger, multi-million dollar satellites.

The MarCO CubeSats will be there when the InSight lander accomplishes the most difficult part of its mission, which is entering Mars’ extremely thin atmosphere (which makes landings extremely challenging). As the lander travels to Mars, MarCO-A and B will travel along behind it and (should they make it all the way to Mars) radio back data about InSight as it enters the atmosphere and descends to the planet’s surface.

Artist’s interpretation of the InSight mission on the ground on Mars. Credit: NASA

The job of acting as a data relay will fall to NASA’s Mars Reconnaissance Orbiter (MRO), which has been in orbit of Mars since 2006. However, the MarCOs will also be monitoring InSight to see if future missions will be capable of bringing their own relay to Mars, rather than having to rely on an orbiter that is already there. They may also demonstrate a number of experimental technologies, which includes their radio and propulsion systems.

The main attraction though, are the high-gain antennas which will be providing information on InSights’ progress. At the moment, the team has received early confirmation that the antennas have successfully deployed, but they will continue to test them in the weeks ahead. If all goes according to plan, the MarCOs could demonstrate the ability of CubeSats to act not only as relays, but also their ability to gather information on other planets.

In other words, if the MarCOs are able to make it to Mars and track InSight’s progress, NASA and other agencies may contemplate mounting full-scale missions using CubeSats – sending them to the Moon, Mars, or even beyond. Later this month, the MarCOs will attempt their first trajectory correction maneuvers, which will be the first such maneuver are performed by CubeSats.

In the meantime, be sure to check out this video of the MarCO mission, courtesy of NASA 360:

Further Reading: NASA

How Many of Earth’s Moons Crashed Back Into the Planet?

Artist's concept of a collision between proto-Earth and Theia, believed to happened 4.5 billion years ago. Credit: NASA

For decades, scientists have pondered how Earth acquired its only satellite, the Moon. Whereas some have argued that it formed from material lost by Earth due to centrifugal force, or was captured by Earth’s gravity, the most widely accepted theory is that the Moon formed roughly 4.5 billion years ago when a Mars-sized object (named Theia) collided with a proto-Earth (aka. the Giant Impact Hypothesis).

However, since the proto-Earth experienced many giant-impacts, several moons are expected to have formed in orbit around it over time. The question thus arises, what happened to these moons? Raising this very question, a team an international team of scientist conducted a study in which they suggest that these “moonlets” could have eventually crashed back into Earth, leaving only the one we see today.

Continue reading “How Many of Earth’s Moons Crashed Back Into the Planet?”

See The Finest Sights Before You Die With “Wonders of the Night Sky”

Credit: Bob King

Framed by stars reflected by water, a kayaker leans back to take in the grandeur of the night sky. The photo appears in my new book in the chapter titled “Stars on Water.” Credit: Bob King

After months parked in front of a computer, I’m thrilled to announce the publication of my new book. The full title is — get ready for this — Wonders of the Night Sky You Must See Before You Die: The Guide to Extraordinary Curiosities of Our Universe. In a nutshell, it’s a bucket list of cosmic things I think everyone should see sometime in their life. 

I couldn’t live without the sky. The concerns of Earth absorb so much of our lives that the sky provides an essential relief valve. It’s a cosmos-sized wilderness that invites both deep exploration and reflection. Galileo would kill to come back for one more clear night if he could.

Cover of Wonders of the Night Sky. 57 different sights are featured.

To me, the stars are irresistible, but my sense is that many people don’t look up as much as they’d like. We forget. Get busy. Bad weather intervenes. So I thought hard about the essential “must-sees” for any watcher of the skies. Some are obvious, like a total solar eclipse or Saturn through a telescope, but others are just as interesting — if sometimes off the beaten path.

For instance, we always hear about asteroids in the news. What does a real one look like from your own backyard? I give directions and a map for seeing the brightest of them, Vesta. And if you’ve ever looked up at the Big Dipper and wondered how to find the rest of the Great Bear, I’ll get you there. I love red stars, so you’re going to find out where the reddest one resides and how to see it yourself. There’s also a lunar Top 10 for small telescope users and chapters on the awesome Cygnus Star Cloud and how to see a supernova.

You can see most of the sky wonders described in the book from the northern hemisphere, but I included several essential southern sights like the Southern Cross.

The 57 different sights are a mix of naked-eye objects plus ones you’ll need an ordinary pair of binoculars or small telescope to see. At the end of each chapter, I provide directions on how and when to find each wonder. Because we live in an online world with so many wonderful tools available for skywatchers, I make extensive use of mobile phone apps that allow anyone to stay in touch with nearly every aspect of the night sky.

For the things that need a telescope, the resources section has suggestions and websites where you can purchase a nice but inexpensive instrument. Of course, you may not want to buy a telescope. That’s OK. I’m certain you’ll still enjoy reading about each of these amazing sights to learn more about what’s been up there all your life.

Northern spectacles like the Perseus Double Cluster can’t be missed.

While most of the nighttime sights are visible from your home or a suitable dark sky site, you’ll have to travel to see others. Who doesn’t like to get out of the house once in a while? If you travel north or south, new places mean new stars and constellations. I included chapters on choice southern treats like Alpha Centauri, the Southern Cross and the Magellanic Clouds, the closest and brightest galaxies to our own Milky Way.

One of my favorite parts of the book is the epilogue, where I share a lesson my dog taught me about the present moment and cosmic time. I like to joke that if nothing else, the ending’s worth the price of the book.

The author with his 10-inch Dobsonian reflector. Credit: Linda Hanson

The staff at Page Street Publishing did a wonderful job with the layout and design, so “Wonders” is beautiful to look at. Everyone who’s flipped through it likes the feel, and several people have even commented on how good it smells!  And for those who understandably complained that the typeface in my first book, Night Sky with the Naked Eye, made it difficult to read, I’ve got good news for you. The new book’s type is bigger and easy on the eyes.

“Wonders” is 224 pages long, printed in full color and the same size as my previous book. Unlike the few but longer chapters of the first book, the new one has many shorter chapters, and you can dip in anywhere. I think you’ll love it.

The publication date is April 24, but you can pre-order it right now at Amazon, BN and Indiebound. I want to thank Fraser Cain here at Universe Today for letting me tell you a little about my book, and I look forward to the opportunity to share my night-sky favorites with all of you.

Tiangong 1 Falls, Blue Moon Rises and Mars Takes Aim At Saturn

Bob King

A couple watches the Moon rise from the icy shore of Lake Superior in Duluth earlier this month on March 1. Credit: Bob King

I apologize for the end-of-the-world title, but everything in it is true. And the world will still be here after it’s all done. On Friday (March 31) at 7:36 a.m. Central Time, the Moon will be full for the second time this month, which makes it a Blue Moon according to popular usage. Enjoy it. What with January’s Blue Moon and now this, we’ve chewed through all our Blue Moons till Halloween 2020.

I look forward to every full moon. Watching a moonrise, we get to see all manner of amazing atmospheric distortions play across the squat, orange disk. Once the sky’s dark, its outpouring of light makes walking at night a pleasure.

When a full moon occurs in spring, it hurries south down the ecliptic, the imaginary circle in the sky defining Earth’s orbit around the Sun. For northern hemisphere skywatchers, this southward sprint delays its rising by more an hour each night, forcing a quick departure from the evening sky. And that means blessed darkness for hunting down favorite galaxies and star clusters.


Tiangong 1 and a reentry simulation

As the Moon rolls along, the hapless Chinese space station Tiangong 1 hurtles toward Earth. Drag caused by friction with the upper atmosphere continues to shrink the spacecraft’s orbit, bringing it closer and closer to inevitable breakup and incineration. Since the Chinese National Space Administration (CNSA) lost touch with Tiangong 1 in March 2016, mission control can no longer power thrusters to de-orbit it at chosen time over a safe location like the ocean. The 9.3-ton (8,500 kg) station will burn up somewhere anywhere over a vast swath of the planet between latitudes 43°N and 43°S. Included within this zone are the southern half of Europe, the southern two-thirds of the U.S., India, Australia and much of Africa and South America.

Not until the day of or even hours before will have a clear idea of when and where the station will meet its fate. According to the latest update from the Aerospace Corp., which monitors falling spacecraft, reentry is expected on Easter Sunday (April 1) at 10:30 UT / 5:30 a.m. Central Time plus or minus 16 hours. This morning (March 29), the space station is circling Earth at about 118 miles (190 km) altitude. The lowest a satelllite can still make a complete orbit of the planet is about 62 miles (100 km). Below that, break-up begins.

A high definition TV camera on an aircraft took this photo of the cargo ship ATV-1 reentering the atmosphere in September 2008. Tiangong 1 is about the same size and will likely shatter and burn in similar fashion. Credit: ESA/NASA

For up-to-the-minute updates on when to expect Tiangong 1’s orbit to decay and the machine to plunge to Earth, check out Joseph Remis’ Twitter page. Most of the space station is expected to burn up on reentry, but larger chunks might survive all the way to the ground. Since much more of the Earth’s surface is water these remnants will likely end up in the drink … but you never know. If Tiangong-1 does come down over a populated area, observers on the ground will witness a spectacular, manmade fireball day or night.

Mars (right) and Saturn pair up in Sagittarius this morning, March 29 at dawn seen from Duluth, Minn. The two planets were 2.2° apart. Details: 35mm lens, f/2.8, 13 second exposure at ISO 800. Credit: Bob King

On the quieter side but nearly as eye-catching, Mars will overtake Saturn in the coming week, passing just 1° south of the ringed planet in a thrilling dawn conjunction on April 2. If the weather forecast doesn’t look promising that morning, the two planets will remain within 2° of each other now through April 6th, providing plenty of opportunities for a look.

You can easily tell them apart by color: Mars is distinctly red-orange and Saturn looks creamy white. Both are bright at around magnitude 0 though Mars is now a hair brighter by two-tenths of a magnitude. Will you be able to see the difference?

Mars passes close to Saturn on Monday, April 2. Look low in the southeastern sky shortly before and at dawn. Try getting a picture of the lovely couple by setting up your camera on a tripod and doing a series of time exposures from 5-30 seconds at f/3.5 and ISO 800. No fancy telephoto equipment is needed: a 35-55mm lens is perfect. Created with Stellarium

In most telescopes at low magnification both planets will comfortably fit in the same field of view. Saturn’s rings are tilted nearly wide open and quite beautiful. Mars appears gibbous and though still rather small, it’s brightening rapidly and drawing closer in time for its closest approach to Earth since 2003. Wishing you clear skies!

Here Are Some Amazing Pictures of the January 2018 Lunar Eclipse

Long exposure photo of the super blue moon, taken by Marc Leatham in Cypress, CA. Credit: Marc Leatham

On Wednesday, January 31st (i.e. today!), a spectacular celestial event occurred. For those who live in the western part of North America, Alaska, and the Hawaiian islands, it was visible in the wee hours of the morning – and some people were disciplined enough to roll out of bed to see it! This was none other than the highly-anticipated “Super Blue Moon“, a rare type of full moon that on this occasion was special for a number of reasons.

For one, it was the third in a series of “supermoons”, where a Full Moon coincides with the Moon being closer in its orbit to Earth (aka. perigee) and thus appears larger. It was also the second full moon of the month, which is  otherwise known as a “Blue Moon“. Lastly, for those in right locations, the Moon also passed through the Earth’s shadow, giving it a reddish tint (known as a “Red Moon” or “Blood Moon”).

The super blue moon, taken by Kevin Gill in Los Angeles, CA, with a Canon EOS 60D mounted on a Celestron NexStar 6se. Credit: @apoapsys

In short, you could say that what was occurred this morning was a “super blue blood moon.” And as you can see, some truly awesome pictures were taken of this celestial event from all over the world. Here is a collection of pictures that a number of skilled photographers and star gazers have chosen to share with us. Enjoy!

A collage of images showing the transition of the super blue moon, taken by Braden Ottenbreit of Saskatchewan, Canada. Credit: @bradenottenbreit

Long exposure photo of the super blue moon, taken by Marc Leatham in Cypress, CA. Credit: @marcleatham

Early morning photo snapped outside of Pucklechurch, Bristol, by photographer Tim Graham. Credit: @timgrahamphotorgraphy

The lunar eclipse captured in Shiraz, Iran, by Alireza Nadimi using a Nikon D610A – Sigma 120-400 Apo. Credit: @ar.nadimi

The phases of the lunar eclipse of the Super Blue Blood Moon, taken by astrophographer Rami Ammoun. Credit: @rami_ammoun

Super blue moon taken by Bray Falls in Arizona. Credit: @astrofalls

The super blue moon, as photographed from Los Angeles by Tom Masterson using a Tamron 150-600mm and Canon 6D Hutech UV/IR mod. Credit: @transientastro

A long-exposure shot of the super blue moon above San Francisco by Taylor Meehan. Credit: @tm18210

Composite image showing the sequence of the eclipse, as seen from downtown Houston. Credit: @sergiorill

A composite of the phases of our super blue moon lunar eclipse. Credit: @jeffycan

“Thanks to everyone who used the #universetoday hashtag on Instagram to let us know about your pictures. There are many many more in there, so check it out.”

Lava Tube Openings Found Near the Moon’s North Pole

Artist's impression of a lunar base created with 3-d printing techniques. Credits: ESA/Foster + Partners

Between NASA, the Chinese National Space Agency, the European Space Agency and Roscosmos, there’s no shortage of plans for returning to the Moon and creating a permanent base there. Naturally, these plans have given rise to questions of where such bases should be built. So far, the top contenders have been lava tubes that have been spotted in various locations across the surface of the Moon and in the polar regions.

Whereas the polar regions are permanently shaded and appear to have abundant ice water, stable lava tubes would offer protection against the elements and harmful radiation. However, according to a new discovery presented at NASA’s Lunar Science for Landed Missions Workshop, it appears that there is a location on the Moon that ticks off both boxes – a possible lava tube that is located in the norther polar region!

This discovery was detailed in an abstract titled “Philolaus Crater: Exploring Candidate Lava Tubes And Skylights Near The Lunar North Pole“. The author was Pascal Lee, the co-founder and chairman of the Mars Institute, a planetary scientist at the SETI Institute, and the Principal Investigator of the Haughton-Mars Project (HMP) at NASA’s Ames Research Center.

NASA Lunar Reconnaissance Orbiter image showing some of the newly discovered lava tube skylight candidates at Philolaus Crater near the North Pole of the Moon. Credit: NASA/LRO/SETI Institute/Mars Institute/Pascal Lee

These pits were identified based on an analysis of imaging data from NASA’s Lunar Reconnaissance Orbiter (LRO). These images indicated the presence of small pits in the northeastern floor of the Philolaus Crater, a 70 km (43 mi)-diameter impact crater located about 550 km (340 mi) from the Moon’s North Pole. These pits could potentially be “skylights”, holes in the surface that lead to subterranean recesses.

Each pit appears to be a rimless depression measuring roughly 15 to 30 meters (50 to 11 ft) across and have shadowed interiors. Moreover, the pits are located along winding channels known as “sinous rilles” that are present along the floor of the Philolaus Crater. On the moon, these channels are thought to be the result of subterranean lava tubes that have since collapsed, or partially collapsed.

If water ice is present in the region, then these skylights could allow future explorers access to subsurface water ice that is less tainted by regolith. This presents a number of opportunities for research, and future long-term missions to the lunar surface. As Pascal Lee explained:

“The highest resolution images available for Philolaus Crater do not allow the pits to be identified as lava tube skylights with 100 percent certainty, but we are looking at good candidates considering simultaneously their size, shape, lighting conditions and geologic setting.”

In recent years, over 200 pits have been discovered by other researchers on the Moon, many of which were identified as possible skylights leading to underground lava tubes. However, this latest discovery is the first to place a possible skylight and lava tube within the Moon’s polar regions. These regions have become the focal point of research in recent years due to the fact that water ice is known to exist in the polar regions.

Within these permanently-shadowed cratered regions – particularly the South Pole-Aitken Basin – water ice is known to exist within the regolith. As a result, multiple proposals have been made to create lunar bases in the polar regions. However, there remains the challenge of how to get to that water (which would require drilling) and the fact that a permanently-shadowed region would not allow access to solar power.

This new discovery is therefore exciting for three reasons. For one, it would allow for much easier access to lunar polar ice that would be much more pure than anything drilled from the surface. Second, solar power would be available nearby, just outside each skylight. And third, these openings could provide access to a stable lava tube that contains water ice itself, much as lava tubes on Earth do.

Philolaus Crater also offers two additional bonuses when it comes a lunar settlement. Given that the crater formed in the Copernican Era (i.e. the last 1.1 billion years) it is relatively young as lunar craters go. As such, it would offer scientists with plenty of opportunities to study the Moon’s more recent geological history. Also, since the Philolaus Crater is on the near-side on the Moon, it would allow direct communications with Earth.

And as Lee added, a base in this location would also allow for some amazing views:

“We would also have a beautiful view of Earth. The Apollo landing sites were all near the Moon’s equator, such that the Earth was almost directly overhead for the astronauts. But from the Philolaus skylights, Earth would loom just over the crater’s mountainous rim, near the horizon to the southeast.”

Looking ahead, Lee and his colleagues indicate that further exploration is needed to verify whether or not these pits are lava tube skylights and whether or not they contain ice. In the future, astronauts and robots could be sent to the polar regions of the Moon in order to seek out and explore caves that have been identified from orbit. As Lee explained, this will have benefits that go far beyond lunar exploration.

“Exploring lava tubes on the Moon will also prepare us for the exploration of lava tubes on Mars,” he said. “There, we will face the prospect of expanding our search for life into the deeper underground of Mars where we might find environments that are warmer, wetter, and more sheltered than at the surface.”

And as Bill Diamond – president and CEO of the SETI Institute – explained, this discovery highlights the true nature of exploration, which goes well beyond orbiters and robotic explorers:

“This discovery is exciting and timely as we prepare to return to the Moon with humans. It also reminds us that our exploration of planetary worlds is not limited to their surface, and must extend into their mysterious interiors”.

The Lunar Science for Landed Missions Workshop was convened by the Solar System Exploration Research Virtual Institute (SSERVI) at NASA’s Ames Research Center. The purpose of the workshop was to examine the range of scientific investigations that could be conducted on the Moon, including in-situ science, network science and sample return missions.

Further Reading: SETI

I Didn’t Realize the Scale of Their Rocket Program. China is Planning More than 40 Space Launches in 2018

The first Long March 5 rocket being rolled out for launch at Wenchang in late October 2016. Credit: Su Dong/China Daily

It’s no secret that China’s growth in the past few decades has been reflected in space. In addition to the country’s growing economic power and international influence, it has also made some very impressive strides in terms of its space program. This includes the development of the Long March rocket family, the deployment of their first space station, and the Chinese Lunar Exploration Program (CLEP) – aka. the Chang’e program.

Given all that, one would not be surprised to learn that China has some big plans for 2018. But as the China Aerospace Science and Technology Corporation (CASC) announced last Tuesday (on January 2nd, 2018), they intend to double the number of launches they conducted in 2017. In total, the CASC plans to mount over 40 launches, which will include the Long March 5 returning to flight, the Chang’e 4 mission, and the deployment of multiple satellites.

In 2017, China hoped to conduct around 30 launches, which would consist of the launch of a new Tianzhoui-1 cargo craft to the Tiangong-2 space lab and the deployment of the Chang’e 5 lunar sample return mission. However, the latter mission was postponed after the Long March 5 rocket that would have carried it to space failed during launch. As such, the Chang’e 5 mission is now expected to launch next year.

China Aerospace Science and Technology Corporation (CASC) conference that took place on Jan. 2nd, 2018. Credit: spacechina.com

That failed launch also pushed back the next flight of Long March 5, which had conducted its maiden flight in November of 2016. In the end, China closed the year with 18 launches, which was four less than the national record it set in 2016 – 22 launches. It also came in third behind the United States with 29 launches (all of which were successful) and Russia’s 20 launches (19 of which were successful).

Looking to not be left behind again, the CASC hopes to mount 35 launches in 2018. Meanwhile, the China Aerospace Science Industry Corporation (CASIC) – a defense contractor, missile maker and sister company of CASC – will carry out a number of missions through its subsidiary, ExPace. These will include four Kuaizhou-1A rocket launches in one week and the maiden flight of the larger Kuaizhou-11 rocket.

In addition, Landspace Technology – a Beijing-based private aerospace company – is also expected to debut its LandSpace-1 rocket this year. In January of 2017, Landspace signed a contract with Denmark-based satellite manufacturer GOMspace to become the first Chinese company to develop its own commercial rockets that would provide services to the international marketplace.

But of course, the highlights of this year’s launches will be the Long March 5’s return to service, and the launch of the Chang’e 4 mission. Unlike the previous Chang’e missions, Chang’e 4 will be China’s first attempt to mount a lunar mission that involves a soft landing. The mission will consist of a relay orbiter, a lander and a rover, the primary purpose of which will be to explore the geology of the South Pole-Aitken Basin.

China’s Chang’e 4 mission will land on the far side of the Moon and conduct studies on the South Pole-Aitken Basin. Credit: NASA Goddard

For decades, this basin has been a source of fascination for scientists; and in recent years, multiple missions have confirmed the existence of water ice in the region. Determining the extent of the water ice is one of the main focuses of the rover mission component. However, the lander will also to be equipped with an aluminum case filled with insects and plants that will test the effects of lunar gravity on terrestrial organisms.

These studies will play a key role in China’s long-term plans to mount crewed missions to the Moon, and the possible construction of a lunar outpost. In recent years, China has indicated that it may be working with the European Space Agency to create this outpost, which the ESA has described as an “international Moon village” that will be the spiritual successor to the ISS.

The proposed launch of the Long March 5 is also expected to be a major event. As China’s largest and most powerful launch vehicle, this rocket will be responsible for launching heavy satellites, modules of the future Chinese space station, and eventual interplanetary missions. These include crewed missions to Mars, which China hopes to mount between the 2040s and 2060s.

According to the GB times, no details about the Long March 5’s return to flight mission were revealed, but there have apparently been indications that it will involve the large Dongfanghong-5 (DFH-5) satellite bus. In addition, no mentions have been made of when the Long March 5B will begin conducting missions to Low Earth Orbit (LEO), though this remains a possibility for either 2018 or 2019.

The second flight of the Long March 5 lifting off from Wenchang on July 2nd, 2017. Credit: CNS

Other expected missions of note include the deployment of more than 10 Beidou GNSS satellites – which are basically the Chinese version of GPS satellites –  to Medium Earth Orbits (MEOs). A number of other satellites will be sent into orbit, ranging from Earth and ocean observation to weather and telecommunications satellites. All in all, 2018 will be a very busy year for the Chinese space program!

One of the hallmarks of the modern space age is the way in which emerging powers are taking part like never before. This of course includes China, whose presence in space has mirrored their rise in terms of global affairs. At the same time, the Indian Space Research Organization (IRSO), the European Space Agency, JAXA, the Canadian Space Agency, the South African Space Agency, and many others have been making their presence felt as well.

In short, space exploration is no longer the province of two major superpowers. And in the future, when crewed interplanetary missions and (fingers crossed!) the creation of colonies on other planets becomes a reality, it will likely entail a huge degree of international cooperation and public-private partnerships.

Further Reading: GB Times, Space China