A Partial Lunar Eclipse Ushers in Eclipse Season

partial lunar eclipse
The partial lunar eclipse of June 4th, 2012. Credit: Dave Dickinson
partial lunar eclipse
The partial lunar eclipse of June 4th, 2012. Credit: Dave Dickinson

Live on the wrong continent to witness the August 21st total solar eclipse? Well… celestial mechanics has a little consolation prize for Old World observers, with a partial lunar eclipse on the night of Monday into Tuesday, August 7/8th.

A partial lunar eclipse occurs when the Moon just nicks the inner dark core of the Earth’s shadow, known as the umbra. This eclipse is centered on the Indian Ocean region, with the event occurring at moonrise for the United Kingdom, Europe and western Africa and moonset/sunrise for New Zealand and Japan. Western Australia, southern Asia and eastern Africa will see the entire eclipse.

The path of the Moon through the Earth’s shadow Monday night. Credit: adapted from NASA/GSFC/Fred Espenak

The penumbral phase of the eclipse begins on August 7th at 15:50 Universal Time (UT), though you probably won’t notice a slight tea colored shading on the face of the Moon until about half an hour in. The partial phases begin at 17:23 UT, when the ragged edge of the umbra becomes apparent on the southeastern limb of the Moon. The deepest partial eclipse occurs at 18:22 UT with 25% of the Moon submerged in the umbra. Partial phase lasts 116 minutes in duration, and the entire eclipse is about five hours long.

The viewing prospects for the partial lunar eclipse. Credit: NASA/GSFC/Fred Espenak.

This also marks the start of the second and final eclipse season for 2017. Four eclipses occur this year: a penumbral lunar eclipse and annular solar eclipse this past February, and this month’s partial lunar and total solar eclipse.

Eclipses always occur in pairs, or very rarely triplets with an alternating lunar-solar pattern. This is because the tilt of the Moon’s orbit is inclined five degrees relative to the ecliptic, the plane of the Earth’s orbit around the Sun. The Moon therefore misses the 30′ wide disk of the Sun and the 80′ – 85′ wide inner shadow of the Earth on most passes.

partial lunar eclipse
The partial lunar eclipse of April 26th, 2013. Image credit and copyright: Henna Khan

Fun fact: at the Moon’s 240,000 mile distance from the Earth, the ratio of the apparent size of the Moon and the shadow is approximately equivalent to a basketball and a hoop.

When celestial bodies come into alignment, however, things can get interesting. For an eclipse to occur, the nodes – the point where the Moon’s orbit intersects the ecliptic – need to align with the position of the Moon and the Sun. There are two nodes, one descending with the Moon crossing the ecliptic from north to south, and one ascending. The time it takes for the Moon to return to the same node (27.2 days) is a draconitic month. Moreover, the nodes are moving around the Earth due to drag on the Moon’s orbit mainly by the Sun, and move all the way around the zodiac once every 18.6 years.

Got all that? Let’s put it into practice with this month’s eclipses. First, the Moon crosses its descending node at 10:56 UT on August 8th, just over 16 hours after Monday’s partial eclipse. Two weeks later, however, the Moon crosses ascending node just under eight hours from the central conjunction with the Sun, and a total solar eclipse occurs.

Tales of the Saros

The August 7th lunar eclipse is member number 62 of the 83 lunar eclipses in saros series 119, which started on October 14th, 935 AD and will end with a final shallow penumbral eclipse on March 25th, 2396 AD. If you witnessed the lunar eclipse of July 28th, 1999, then you saw the last lunar eclipse in the same saros. Saros 119 produced its last total lunar eclipse on June 15th, 1927.

The next lunar eclipse, a total occurs on January 31st, 2018, favoring the Pacific rim regions.

 

Partial lunar eclipses have occasionally work their way into history, usually as bad omens. One famous example is the partial lunar eclipse of May 22nd, 1453 which preceded the Fall of Constantinople to the Ottoman Turks by a week. Apparently, a long standing legend claimed that a lunar eclipse would be the harbinger of the fall of Byzantium, and the partially eclipsed Moon rising over the besieged city ramparts seemed to fulfill the prophecy.

In our more enlightened age, we can simply enjoy Monday’s partial lunar eclipse as a fine celestial spectacle. You don’t need any special equipment to enjoy a lunar eclipse, just a view from the correct Moonward facing hemisphere of the Earth, and reasonably clear skies.

See the curve of the Earth’s shadow? This is one of the very few times that you can see that the Earth is indeed round (sorry, Flat Earthers) with your own eyes. And this curve is true for observers watching the Moon on the horizon, or high overhead near the zenith.

This month’s lunar eclipse occurs in the astronomical constellation of Capricornus. The Moon will also occult the +5th magnitude star 29 Capricorni for southern India, Madagascar and South Africa shortly after the eclipse.

The viewing footprint for the 29 Capricorni occultation shortly after the eclipse. Credit: Occult 4.2.

Finally, anyone out there planning on carrying the partial lunar eclipse live, let us know… curiously, even Slooh seems to be sitting this one out.

Update: we have one possible broadcast, via Shahrin Ahmad (@shahgazer on Twitter). Updates to follow!

The final eclipse season for 2017 is now underway, starting Monday night. Nothing is more certain in this Universe than death, taxes and celestial mechanics, as the path of the Moon now sends it headlong to its August 21st destiny and the Great American Total Solar Eclipse.

-We’ll be posting on Universe Today once more pre-total solar eclipse one week prior, with weather predictions, solar and sunspot activity and prospects for viewing the eclipse from Earth and space and more!

-Read more about this year’s eclipses in our 2017 Guide to 101 Astronomical Events.

-Eclipse… science fiction? Read our original eclipse-fueled tales Exeligmos, Shadowfall, Peak Season and more!

Good News for Future Moon Bases. There’s Water Inside the Moon

Evidence from ancient volcanic deposits suggests that lunar magma contained substantial amounts of water, bolstering the idea that the Moon's interior is water-rich. Credit: Olga Prilipko Huber

Since the Apollo program wrapped up in the early 1970s, people all around the world have dreamed of the day when we might return to the Moon, and stay there. And in recent years, however, that actual proposals for a lunar settlement have begun to take shape. As a result, a great deal of attention and research has been focused on whether or not the Moon has indigenous sources of water.

Thanks to missions like Chandrayaan-1 and the Lunar Reconnaissance Orbiter (LRO), scientists know that there are vast amounts of surface ice on the Moon. However, according to a new study, researchers from Brown University have found evidence of widespread water within volcanic deposits on the lunar surface. These findings could indicate that there are also vast sources of water within the Moon’s interior.

For their study – titled “Remote Detection of Widespread Indigenous Water in Lunar Pyroclastic Deposits” – Brown researchers Ralph E. Milliken and Shuai Li combined satellite data with new thermal profiles to search for signs of water away from the polar regions. In so doing, they addressed a long-standing theory about the likelihood of water in the Moon’s interior, as well as the predominant theory of how the Moon formed.

Lunar Crater as imaged by NASA’s Moon Mineralogy Mapper. Credit: SRO/NASA/JPL-Caltech/USGS/Brown Univ.

As noted, scientists have known for years that there are large amounts of frozen water in the Moon’s polar regions. At the same time, however, scientists have held that the Moon’s interior must have depleted of water and other volatile compounds billions of years ago. This was based on the widely-accepted hypothesis that the Moon formed after a Mars-sized object (named Theia) collided with Earth and threw up a considerable amount of debris.

Essentially, scientists believed that it was unlikely that any hydrogen – necessary to form water – could have survived the heat of this impact. However, as of a decade ago, new scientific findings began to emerge that cast doubt on this. The first was a 2008 study, where a team of researches (led by Alberto Saal of Brown University) detected trace amounts of water in samples of volcanic glass that were bought back by the Apollo 15 and Apollo 17 missions.

This was followed by a 2011 study (also from Brown University) that indicated how crystalline structures within those beads contained as much water as some basalt mineral deposits here on Earth. These findings were particularly significant, in that they suggested that parts of the Moon’s mantle could contain as much water as Earth’s. The question though was whether these findings represented the norm, or an anomaly.

As Milliken, an associate professor in Brown’s Department of Earth, Environmental, and Planetary Sciences (DEEPS) and the co-author on the paper, summarized in a recent Brown press release:

“The key question is whether those Apollo samples represent the bulk conditions of the lunar interior or instead represent unusual or perhaps anomalous water-rich regions within an otherwise ‘dry’ mantle. By looking at the orbital data, we can examine the large pyroclastic deposits on the Moon that were never sampled by the Apollo or Luna missions. The fact that nearly all of them exhibit signatures of water suggests that the Apollo samples are not anomalous, so it may be that the bulk interior of the Moon is wet.”

A false colour composite of the distribution of water and hydroxyl molecules over the lunar surface. Credit: ISRO/NASA/JPL-Caltech/Brown Univ/USGS

To resolve this, Milliken and Li consulted orbital data to examine lunar volcanic deposits for signs of water. Basically, orbiters use spectrometers to bounce light off the surfaces of planets and astronomical bodies to see which wavelengths of light are absorbed and which are reflected. This data is therefore able to determine what compounds and minerals are present based on the absorption lines detected.

Using this technique to look for signs of water in lunar volcanic deposits (aka. pyroclastic deposits), however, was a  rather difficult task. During the day, the lunar surface heats up, especially in the latitudes where volcanic deposits are located. As Milliken explained, spectronomers will therefore pick up thermal energy in addition to chemical signatures which this can throw off the readings:

“That thermally emitted radiation happens at the same wavelengths that we need to use to look for water. So in order to say with any confidence that water is present, we first need to account for and remove the thermally emitted component.”

To correct for this, Milliken and Li constructed a detailed temperature profile of the areas of the Moon they were examining. They then examined surface data collected by the Moon Mineralogy Mapper, the spectrographic imager that was part of India’s Chandrayaan-1 mission. They then compared this thermally-corrected surface data to the measurements conducted on the samples returned from the Apollo missions.

Colored areas indicate elevated water content compared with surrounding terrains. Yellows and reds indicate the richest water content. Credit: Milliken lab/Brown University

What they found was that areas of the Moon’s surface that had been previously mapped showed evidence of water in nearly all the large pyroclastic deposits. This included the deposits that were near the Apollo 15 and 17 landing sites where the lunar samples were obtained. From this, they determined that these samples were not anomalous in nature, and that water is distributed across the lunar surface.

What’s more, these findings could indicate that the Moon’s mantle is water-rich as well. Beyond being good news for future lunar missions, and the construction of a lunar settlement, these results could lead to a rethinking of how the Moon formed. This research was part of Shuai Li’s – a recent graduate of the University of Brown and the lead author on the study – Ph.D thesis. As he said of the study’s findings:

“The growing evidence for water inside the Moon suggest that water did somehow survive, or that it was brought in shortly after the impact by asteroids or comets before the Moon had completely solidified. The exact origin of water in the lunar interior is still a big question.

What’s more, Li indicated that lunar water that is located in volcanic deposits could be a boon for future lunar missions. “Other studies have suggested the presence of water ice in shadowed regions at the lunar poles, but the pyroclastic deposits are at locations that may be easier to access,” he said. “Anything that helps save future lunar explorers from having to bring lots of water from home is a big step forward, and our results suggest a new alternative.”

The blue areas show locations on the Moon’s south pole where water ice is likely to exist. Credit: NASA/GSFC

Between NASA, the ESA, Roscosmos, the ISRO and the China National Space Administration (CNSA), there are no shortage of plans to explore the Moon in the future, not to mention establishing a permanent base there. Knowing there’s abundant surface water (and maybe more in the interior as well) is therefore very good news.  This water could be used to create hydrazine fuel, which would significantly reduce the costs of individual missions to the Moon.

It also makes the idea of a stopover base on the Moon, where ships traveling deeper into space could refuel and resupply – a move which would shave billions off of deep-space missions. An abundant source of local water could also ensure a ready supply of drinking and irrigation water for future lunar outposts. This would also reduce costs by ensuring that not all supplies would need to be shipped from Earth.

On top of all that, the ability to conduct experiments into how plants grow in reduced gravity would yield valuable information that could be used for long-term missions to Mars and other Solar bodies. It could therefore be said, without a trace of exaggeration, that water on the Moon is the key to future space missions.

The research was funded by the NASA Lunar Advanced Science and Exploration Research (LASER) program, which seeks to enhance lunar basic science and lunar exploration science.

Further Reading: Brown University

VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit

Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, 2017 tour of NASA's Kennedy Space Center - along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com
Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, tour of NASA’s Kennedy Space Center – along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Vice President Mike Pence, during a whirlwind visit to NASA’s Kennedy Space Center in Florida, vowed that America would fortify our leadership in space under the Trump Administration with impressive goals by forcefully stating that “our nation will return to the moon, and we will put American boots on the face of Mars.”

“American will once again lead in space for the benefit and security of all of our people and all of the world,” Vice President Mike Pence said during a speech on Thursday, July 6, addressing a huge crowd of more than 500 NASA officials and workers, government dignitaries and space industry leaders gathered inside the cavernous Vehicle Assembly Building at the Kennedy Space Center – where Apollo/Saturn Moon landing rockets and Space Shuttles were assembled for decades in the past and where NASA’s new Space Launch System (SLS) megarocket and Orion deep space crew capsule will be assembled for future human missions to the Moon, Mars and beyond.

Pence pronounced the bold space exploration goals and a reemphasis on NASA’s human spaceflight efforts from his new perch as Chairman of the newly reinstated National Space Council just established under an executive order signed by President Trump.

“We will re-orient America’s space program toward human space exploration and discovery for the benefit of the American people and all of the world.”

Vice President Mike Pence speaks before an audience of NASA leaders, U.S. and Florida government officials, and employees inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Pence thanked employees for advancing American leadership in space. Behind the podium is the Orion spacecraft flown on Exploration Flight test-1 in 2014. Credits: NASA/Kim Shiflett

However Pence was short on details and he did not announce any specific plans, timetables or funding during his 25 minute long speech inside the iconic VAB at KSC.

It remains to been seen how the rhetoric will turn to reality and all important funding support.

The Trump Administration actually cut their NASA 2018 budget request by $0.5 Billion to $19.1 Billion compared to the enacted 2017 NASA budget of $19.6 Billion – including cuts to SLS and Orion.

By contrast, the Republican led Congress – with bipartisan support – is working on a 2018 NASA budget of around 19.8 Billion.

“Let us do what our nation has always done since its very founding and beyond: We’ve pushed the boundaries on frontiers, not just of territory, but of knowledge. We’ve blazed new trails, and we’ve astonished the world as we’ve boldly grasped our future without fear.”

“From this ‘Bridge to Space,’ our nation will return to the moon, and we will put American boots on the face of Mars.” Pence declared.

Lined up behind Pence on the podium was the Orion spacecraft flown on Exploration Flight Test-1 (EFT-1) in 2014 flanked by a flown SpaceX cargo Dragon and a mockup of the Boeing CST-100 Starliner crew capsule.

The crewed Dragon and Starliner capsules are being developed by SpaceX and Boeing under NASA contracts as commercial crew vehicles to ferry astronauts to the International Space Station (ISS).

Pence reiterated the Trump Administrations support of the ISS and working with industry to cut the cost of access to space.

Vice President Mike Pence (holding Orion model) tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6 KSC visit – posing with KSC Director/astronaut Robert Cabana, acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio, Lockheed Martin CEO Marillyn Hewson and KSC Deputy Director Janet Petro inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Acting NASA Administrator Robert Lightfoot also welcomed Vice President Pence to KSC and thanked the Trump Administration for its strong support of NASA missions.

“Here, of all places, we can see we’re not looking at an ‘and/or proposition’,” Lightfoot said.

“We need government and commercial entities. We need large companies and small companies. We need international partners and our domestic suppliers. And we need academia to bring that innovation and excitement that they bring to the next workforce that we’re going to use to actually keep going further into space than we ever have before.”

View shows the state of assembly of NASA’s Orion EM-1 deep space crew capsule during inspection tour by Vice President Mike Pence on July 6, 2017 inside the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center. 1st integrated flight with NASA’s SLS megarocket is slated for 2019. Credit: Ken Kremer/kenkremer.com

After the VAB speech, Pence went on an extensive up close inspection tour of KSC facilities led by Kennedy Space Center Director and former shuttle astronaut Robert Cabana, showcasing the SLS and Orion hardware and infrastructure critical for NASA’s plans to send humans on a ‘Journey to Mars’ by the 2030s.

“We are in a great position here at Kennedy, we made our vision a reality; it couldn’t have been done without the passion and energy of our workforce,” said Kennedy Space Center Director Cabana.

“Kennedy is fully established as a multi-user spaceport supporting both government and commercial partners in the space industry. As America’s premier multi-user spaceport, Kennedy continues to make history as it evolves, launching to low-Earth orbit and beyond.”

Vice President Mike Pence holds and inspects an Orion capsule heat shield tile with KSC Director/astronaut Robert Cabana during his July 6, 2017 tour/speech at NASA’s Kennedy Space Center – accompanied by acting NASA administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

Pence toured the Neil Armstrong Operations and Checkout Building (O & C) where the Orion deep space capsule is being manufactured for launch in 2019 on the first integrated flight with SLS on the uncrewed EM-1 mission to the Moon and back – as I witnessed for Universe Today.

Vice President Mike Pence tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6, 2017 KSC visit with KSC Director/astronaut Robert Cabana inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2019 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

There’s a Hard Rock Rain on the Moon, We Can See it From Earth

An artists impression of a lunar explosion - caused by the impact of a meteorite. Credit: NASA/Jennifer Harbaugh

In February of 2015, the National Observatory of Athens and the European Space Agency launched the Near-Earth object Lunar Impacts and Optical TrAnsients (NELIOTA) project. Using the 1.2 meter telescope at the Kryoneri Observatory, the purpose of this project is to the determine the frequency and distribution of Near-Earth Objects (NEOs) by monitoring how often they impact the Moon.

Last week, on May 24th, 2017, the ESA announced that the project had begun to detect impacts, which were made possible thanks to the flashes of light detected on the lunar surface. Whereas other observatories that monitor the Moon’s surface are able to detect these impacts, NELIOTA is unique in that it is capable of not only spotting fainter flashes, but also measuring the temperatures of they create.

Projects like NELIOTA are important because the Earth and the Moon are constantly being bombarded by natural space debris – which ranges in size from dust and pebbles to larger objects. While larger objects are rare, they can cause considerable damage, like the 20-meter object that disintegrated above the Russian city of Chelyabinsk in February of 2013, causing extensive injuries and destruction of property.

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

What’s more, whereas particulate matter rains down on Earth and the Moon quite regularly, the frequency of pebble-sized or meter-sized objects is not well known. These objects remain too small to be detected by telescopes directly, and cameras are rarely able to picture them before they break up in Earth’s atmosphere. Hence, scientists have been looking for other ways to determine just how frequent these potentially-threatening objects are.

One way is to observe the areas of the lunar surface that are not illuminated by the Sun, where the impact of a small object at high speed will cause a bright flash. These flashes are created by the object burning up on impact, and are bright enough to be seen from Earth. Assuming the objects have a density and velocity common to NEOs, the brightness of the impact can be used to determine the size and mass of the object.

As Detlef Koschny – the co-manager of the near-Earth object segment of the ESA’s Space Situational Awareness Program, and a scientist in the Science Support Office – said in an ESA press release:

These observations are very relevant for our Space Situational Awareness program. In particular, in the size range we can observe here, the number of objects is not very well known. Performing these observations over a longer period of time will help us to better understand this number.

Tiny pieces of rock striking the Moon’s surface were witnessed by the NELIOTA project, which was monitoring the dark side of the Moon. Credit: NELIOTA project

After being taken offline in 2016 for the sake of making upgrades, the NELIOTA project officially began conducting operations on March 8th, 2017. Using this refurbished telescope, which is operated by the National Observatory of Athens, NELIOTA is capable of detecting flashes that are much fainter than any current, small-aperture, lunar monitoring telescopes.

The telescope does this by observing the Moon’s night hemisphere whenever it is above the horizon and between phases. At these times – i.e. between a New Moon and the First Quarter, or between the Last Quarter and a New Moon – the surface is mostly dark and flashes are most visible. Incoming light is then split into two colors and the data is recorded by two advanced digital cameras that operate in different color ranges.

This data is then analyzed by automated software, which extrapolates temperatures based on the color data obtained by the cameras. As Alceste Bonanos – the Principal Investigator for NELIOTA – explained, all this sets the 1.2 meter telescope apart:

Its large telescope aperture enables NELIOTA to detect fainter flashes than other lunar monitoring surveys and provides precise color information not currently available from other project. Our twin camera system allows us to confirm lunar impact events with a single telescope, something that has not been done before. Once data have been collected over the 22-month long operational period, we will be able to better constrain the number of NEOs (near-Earth objects) in the decimetre to metre size range.

Images showing the lunar impact flash caught by NELIOTA. Credit: NELIOTA project

The NELIOTA project scientists are currently collaborating with the Science Support Office of ESA to analyze the flashes and measure the temperatures of each flash. From this, they hope to be able to make accurate estimates of the mass and size of each impactor, which they will further corroborate by analyzing the size of the craters these impacts leave behind.

The study of impacts on the Moon will ultimately let scientists know exactly how often larger objects are raining down on Earth. Armed with this information, we will be able to make better predictions on when and how a potentially-threatening object could be entering our atmosphere. As the Chelyabinsk meteor demonstrated, one of the greatest dangers posed by meteorites is a general lack of preparedness. Where people can be forewarned, injury, damage and even deaths can be prevented.

NELIOTA is also contributing to public outreach and education through a number of initiatives. These include public tours of the Kryoneri Observatory – in which the details of the NELIOTA project are shared – as well as presentations to students and the general public about Near-Earth Asteroids. The project team are also training two PhD students in how to operate the Kryoneri telescope and conduct lunar observing, thus creating the next-generation of NEO observers.

This summer (Friday, June 30th), the Observatory will also be hosting a public event to coincide with Asteroid Day 2017. This international event will feature presentations, speeches and educational seminars hosted by astronomical institutions and organizations from all around the world. Save the date!

Further Reading: ESA

Scientists Propose a New Kind of Planet: A Smashed Up Torus of Hot Vaporized Rock

Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone
Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone

There’s a new type of planet in town, though you won’t find it in well-aged solar systems like our own. It’s more of a stage of formation that planets like Earth can go through. And its existence helps explain the relationship between Earth and our Moon.

The new type of planet is a huge, spinning, donut-shaped mass of hot, vaporized rock, formed as planet-sized objects smash into each other. The pair of scientists behind the study explaining this new planet type have named it a ‘synestia.’ Simon Lock, a graduate student at Harvard University, and Sarah Stewart, a professor in the Department of Earth and Planetary Sciences at the University of California, Davis, say that Earth was at one time a synestia.

Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University
Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University

The current theory of planetary formation goes like this: When a star forms, the left-over material is in motion around the star. This left-over material is called a protoplanetary disk. The material coagulates into larger bodies as the smaller ones collide and join together.

As the bodies get larger and larger, the force of their collisions becomes greater and greater, and when two large bodies collided, their rocky material melts. Then, the newly created body cools, and becomes spherical. It’s understood that this is how Earth and the other rocky planets in our Solar System formed.

Lock and Stewart looked at this process and asked what would happen if the resulting body was spinning quickly.

When a body is spinning, the law of conservation of angular momentum comes into play. That law says that a spinning body will spin until an external torque slows it down. The often-used example from figure skating helps explain this.

If you’ve ever watched figure skaters, and who hasn’t, their actions are very instructive. When a single skater is spinning rapidly, she stretches out her arms to slow the rate of spin. When she folds her arms back into her body, she speeds up again. Her angular momentum is conserved.

This short video shows figure skaters and physics in action.

If you don’t like figure skating, this one uses the Earth to explain angular momentum.

Now take the example from a pair of figure skaters. When they’re both turning, and the two of them join together by holding each other’s hands and arms, their angular momentum is added together and conserved.

Replace two figure skaters with two planets, and this is what the two scientists behind the study wanted to model. What would happen if two large bodies with high energy and high angular momentum collided with each other?

If the two bodies had high enough temperatures and high enough angular momentum, a new type of planetary structure would form: the synestia. “We looked at the statistics of giant impacts, and we found that they can form a completely new structure,” Stewart said.

“We looked at the statistics of giant impacts, and we found that they can form a completely new structure.” – Professor Sarah Stewart, Department of Earth and Planetary Sciences at the University of California, Davis.

As explained in a press release from the UC Davis, for a synestia to form, some of the vaporized material from the collision must go into orbit. When a sphere is solid, every point on it is rotating at the same rate, if not the same speed. But when some of the material is vaporized, its volume expands. If it expands enough, and if its moving fast enough, it leaves orbit and forms a huge disc-shaped synestia.

Other theories have proposed that two large enough bodies could form an orbiting molten mass after colliding. But if the two bodies had high enough energy and temperature to vaporize some of the rock, the resulting synestia would occupy a much larger space.

“The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis.

These synestias likely wouldn’t last very long. They would cool quickly and condense back into rocky bodies. For a body the size of Earth, the synestia might only last one hundred years.

The synestia structure sheds some light on how moons are formed. The Earth and the Moon are very similar in terms of composition, so it’s likely they formed as a result of a collision. It’s possible that the Earth and Moon formed from the same synestia.

These synestias have been modelled, but they haven’t been observed. However, the James Webb Space Telescope will have the power to peer into protoplanetary disks and watch planets forming. Will it observe a synestia?

“These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis

In an email exchange with Universe Today, Dr. Sarah Stewart of UC Davis, one of the scientists behind the study, told us that “The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.”

“So the best bet for finding a rocky synestia is young systems where the body is close to the star. For gas giant planets, they may form a synestia for a period of their formation. We are getting close to being able to image circumplanetary disks in other star systems.”

Once we have the ability to observe planets forming in their circumstellar disks, we may find that synestias are more common than rare. In fact, planets may go through the synestia stage multiple times. Dr. Stewart told us that “Based on the statistics presented in our paper, we expect that most (more than half) of rocky planets that form in a manner similar to Earth became synestias one or more times during the giant impact stage of accretion.”

NASA Nixes Proposal Adding Crew to First SLS/Orion Deep Space Flight

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC
Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

KENNEDY SPACE CENTER, FL – After conducting a thorough review examining the feasibility of adding a two person crew to the first integrated launch of America’s new Space Launch System (SLS) megarocket and Orion capsule on a mission that would propel two astronauts to the Moon and back by late 2019, NASA nixed the proposal during a media briefing held Friday.

The announcement to forgo adding crew to the flight dubbed Exploration Mission-1 (EM-1) was made by NASA acting Administrator Robert Lightfoot during a briefing with reporters on May 13.

“We appreciate the opportunity to evaluate the possibility of this crewed flight,” said NASA acting Administrator Robert Lightfoot during the briefing.

“The bi-partisan support of Congress and the President for our efforts to send astronauts deeper into the solar system than we have ever gone before is valued and does not go unnoticed. Presidential support for space has been strong.”

Although the outcome of the study determined that NASA could be “technically capable of launching crew on EM-1,” top agency leaders decided that there was too much additional cost and technical risk to accommodate and retire in the limited time span allowed.

Lightfoot said it would cost in the range of $600 to $900 million to add the life support systems, display panels and other gear required to Orion and SLS in order to enable adding astronauts to EM-1.

“It would be difficult to accommodate changes needed to add crew at this point in mission planning.”

Thus NASA will continue implementing the current baseline plan for EM-1 that will eventually lead to deep space human exploration missions starting with the follow on EM-2 mission which will be crewed.

At the request of the new Trump Administration in February, NASA initiated a comprehensive two month long study to determine the feasibility of converting the first integrated SLS/Orion flight from its baselined uncrewed mission to cislunar space into a crewed mission looping around the Moon.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Had the crewed lunar SLS/Orion flight been approved it would have roughly coincided with the 50th anniversary the first human lunar landing by NASA astronauts Neil Armstrong and Buzz Aldrin during the Apollo 11 mission in July 1969.

Instead NASA will keep to the agencies current flight plan.

The first SLS/Orion crewed flight is slated for Exploration Mission-2 (EM-2) launching no earlier than 2021.

If crew had been added to EM-1 it would have essentially adopted the mission profile currently planned for Orion EM-2.

“If the agency decides to put crew on the first flight, the mission profile for Exploration Mission-2 would likely replace it, which is an approximately eight-day mission with a multi-translunar injection with a free return trajectory,” said NASA earlier. It would be similar to Apollo 8 and Apollo 13.

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

NASA is developing SLS and Orion for sending humans initially to cislunar space and eventually on a ‘Journey to Mars’ in the 2030s.

They are but the first hardware elements required to carry out such an ambitious initiative.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Dynamo At Moon’s Heart Once Powered Magnetic Field Equal To Earth’s

The #MemoriesInDNA project intends to create an archive of human knowledge which will be sent to the Moon. Credit and copyright: John Brimacombe.

When the Apollo astronauts returned to Earth, they came bearing 380.96 kilograms (839.87 lb) of Moon rocks. From the study of these samples, scientists learned a great deal about the Moon’s composition, as well as its history of formation and evolution. For example, the fact that some of these rocks were magnetized revealed that roughly 3 billion years ago, the Moon had a magnetic field.

Much like Earth, this field would have been the result of a dynamo effect in the Moon’s core. But until recently, scientists have been unable to explain how the Moon could maintain such a dynamo effect for so long. But thanks to a new study by a team of scientists from the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center, we might finally have a answer.

To recap, the Earth’s magnetic core is an integral part of what keeps our planet habitable. Believed to be the result of a liquid outer core that rotates in the opposite direction as the planet, this field protects the surface from much of the Sun’s radiation. It also ensures that our atmosphere is not slowly stripped away by solar wind, which is what happened with Mars.

The Moon rocks returned by the Apollo 11 astronauts. Credit: NASA

For the sake of their study, which was recently published in the journal Earth and Planetary Science Letters, the ARES team sought to determine how a molten, churning core could generate a magnetic field on the Moon. While scientists have understood how the Moon’s core could have powered such a field in the past, they have been unclear as to how it could have been maintained it for such a long time.

Towards this end, the ARES team considered multiple lines of geochemical and geophysical evidence to put constraints on the core’s composition. As Kevin Righter, the lead of the JSC’s high pressure experimental petrology lab and the lead author of the study, explained in a NASA press release:

“Our work ties together physical and chemical constraints and helps us understand how the moon acquired and maintained its magnetic field – a difficult problem to tackle for any inner solar system body. We created several synthetic core compositions based on the latest geochemical data from the moon, and equilibrated them at the pressures and temperatures of the lunar interior.”

Specifically, the ARES scientists conducted simulations of how the core would have evolved over time, based on varying levels of nickel, sulfur and carbon content. This consisted of preparing powders or iron, nickel, sulfur and carbon and mixing them in the proper proportions – based on recent analyses of Apollo rock samples.

Artist concept illustration of the internal structure of the moon. Credit: NOAJ

Once these mixtures were prepared, they subjected them to heat and pressure conditions consistent with what exists at the Moon’s core. They also varied these temperatures and pressures based on the possibility that the Moon underwent changes in temperature during its early and later history – i.e. hotter during its early history and cooler later on.

What they found was that a lunar core composed of iron/nickel that had a small amount of sulfur and carbon – specifically 0.5% sulfur and 0.375% carbon by weight – fit the bill. Such a core would have a high melting point and would have likely started crystallizing early in the Moon’s history, thus providing the necessary heat to drive the dynamo and power a lunar magnetic field.

This field would have eventually died out after heat flow led the core to cool, thus arresting the dynamo effect. Not only do these results provide an explanation for all the paleomagnetic and seismic data we currently have on the Moon, it is also consistent with everything we know about the Moon’s geochemical and geophysical makeup.

Prior to this, core models tended to place the Moon’s sulfur content much higher. This would mean that it had a much lower melting point, and would have meant crystallization could not have occurred until much more recently in its history. Other theories have been proposed, ranging from sheer forces to impacts providing the necessary heat to power a dynamo.

Cutaway of the Moon, showing its differentiated interior. Credit: NASA/SSERVI

However, the ARES team’s study provides a much simpler explanation, and one which happens to fit with all that we know about the Moon. Naturally, additional studies will be needed before there is any certainty on the issue. No doubt, this will first require that human beings establish a permanent outpost on the Moon to conduct research.

But it appears that for the time being, one of the deeper mysteries of the Earth-Moon system might be resolved at last.

Further Reading: NASA, Earth and Planetary Science Letters

Finite Light — Why We Always Look Back In Time

Credit: Bob King
Beads of rainwater on a poplar leaf act like lenses, focusing light and enlarging the leaf’s network of veins. Moving at 186,000 miles per second, light from the leaf arrives at your eye 0.5 nanosecond later. A blink of an eye takes 600,000 times as much time! Credit: Bob King

My attention was focused on beaded water on a poplar leaf. How gemmy and bursting with the morning’s sunlight. I moved closer, removed my glasses and noticed that each drop magnified a little patch of veins that thread and support the leaf.

Focusing the camera lens, I wondered how long it took the drops’ light to reach my eye. Since I was only about six inches away and light travels at 186,000 miles per second or 11.8 inches every billionth of a second (one nanosecond), the travel time amounted to 0.5 nanoseconds. Darn close to simultaneous by human standards but practically forever for positronium hydride, an exotic molecule made of a positron, electron and hydrogen atom. The average lifetime of a PsH molecule is just 0.5 nanoseconds.

Light takes about 35 microseconds to arrive from a transcontinental jet and its contrail. Credit: Bob King

In our everyday life, the light from familiar faces, roadside signs and the waiter whose attention you’re trying to get reaches our eyes in nanoseconds. But if you happen to look up to see the tiny dark shape of a high-flying airplane trailed by the plume of its contrail, the light takes about 35,000 nanoseconds or 35 microseconds to travel the distance. Still not much to piddle about.

The space station orbits the Earth in outer space some 250 miles overhead. During an overhead pass, light from the orbiting science lab fires up your retinas 1.3 milliseconds later. In comparison, a blink of the eye lasts about 300 milliseconds (1/3 of a second) or 230 times longer!

The Lunar Laser Ranging Experiment placed on the Moon by the Apollo 14 astronauts. Observatories beam a laser to the small array, which reflects a bit of the light back. Measuring the time delay yields the Moon’s distance to within about a millimeter. At the Moon’s surface the laser beam spreads out to 4 miles wide and only one photon is reflected back to the telescope every few seconds. Credit: NASA

Light time finally becomes more tangible when we look at the Moon, a wistful 1.3 light seconds away at its average distance of 240,000 miles. To feel how long this is, stare at the Moon at the next opportunity and count out loud: one one thousand one. Retroreflecting devices placed on the lunar surface by the Apollo astronauts are still used by astronomers to determine the moon’s precise distance. They beam a laser at the mirrors and time the round trip.

Venus as a super-thin crescent only 10 hours before conjunction on March 25. The planet was just 2.3 light minutes from the Earth at the time. Credit: Shahrin Ahmad

Of the eight planets, Venus comes closest to Earth, and it does so during inferior conjunction, which coincidentally occurred on March 25. On that date only 26.1 million miles separated the two planets, a distance amounting to 140 seconds or 2.3 minutes — about the time it takes to boil water for tea. Mars, another close-approaching planet, currently stands on nearly the opposite side of the Sun from Earth.

With a current distance of 205 million miles, a radio or TV signal, which are both forms of light, broadcast to the Red Planet would take 18.4 minutes to arrive. Now we can see why engineers pre-program a landing sequence into a Mars’ probe’s computer to safely land it on the planet’s surface. Any command – or change in commands – we might send from Earth would arrive too late. Once a lander settles on the planet and sends back telemetry to communicate its condition, mission control personnel must bite their fingernails for many minutes waiting for light to limp back and bring word.

Before we speed off to more distant planets, let’s consider what would happen if the Sun had a catastrophic malfunction and suddenly ceased to shine. No worries. At least not for 8.3 minutes, the time it takes for light, or the lack of it, to bring the bad news.

Pluto and Charon lie 3.1 billion miles from Earth, a long way for light to travel. We see them as they were more than 4 hours ago.  NASA/JHUAPL/SwRI

Light from Jupiter takes 37 minutes to reach Earth; Pluto and Charon are so remote that a signal from the “double planet” requires 4.6 hours to get here. That’s more than a half-day of work on the job, and we’ve only made it to the Kuiper Belt.

Let’s press on to the nearest star(s), the Alpha Centauri system. If 4.6 hours of light time seemed a long time to wait, how about 4.3 years? If you think hard, you might remember what you were up to just before New Year’s Eve in 2012. About that time, the light arriving tonight from Alpha Centauri left that star and began its earthward journey. To look at the star then is to peer back in time to late 2012.

The Summer Triangle rises fully in the eastern sky around 3 o’clock in the morning in late March. Created with Stellarium

But we barely scrape the surface. Let’s take the Summer Triangle, a figure that will soon come to dominate the eastern sky along with the beautiful summer Milky Way that appears to flow through it. Altair, the southernmost apex of the triangle is nearby, just 16.7 light years from Earth; Vega, the brightest a bit further at 25 and Deneb an incredible 3,200 light years away.

We can relate to the first two stars because the light we see on a given evening isn’t that “old.” Most of us can conjure up an image of our lives and the state of world affairs 16 and 25 years ago. But Deneb is exceptional. Photons departed this distant supergiant (3,200 light years) around the year 1200 B.C. during the Trojan War at the dawn of the Iron Age. That’s some look-back time!

Rho Cassiopeia, currently at magnitude +4.5, is one of the most distant stars visible with the naked eye. Its light requires about 8,200 years to reach our eyes. This star, a variable, is enormous with a radius about 450 times that of the Sun. Credit: IAU/Sky and Telescope (left); Anynobody, CC BY-SA 3.0 / Wikipedia

One of the most distant naked eye stars is Rho Cassiopeiae, yellow variable some 450 times the size of the Sun located 8,200 light years away in the constellation Cassiopeia. Right now, the star is near maximum and easy to see at nightfall in the northwestern sky. Its light whisks us back to the end of the last great ice age at a time and the first cave drawings, more than 4,000 years before the first Egyptian pyramid would be built.

This is the digital message (annotated here) sent by Frank Drake to M13 in 1974 using the Arecibo radio telescope.

On and on it goes: the nearest large galaxy, Andromeda, lies 2.5 million light years from us and for many is the faintest, most distant object visible with the naked eye. To think that looking at the galaxy takes us back to the time our distant ancestors first used simple tools. Light may be the fastest thing in the universe, but these travel times hint at the true enormity of space.

Let’s go a little further. On November 16, 1974 a digital message was beamed from the Arecibo radio telescope in Puerto Rico to the rich star cluster M13 in Hercules 25,000 light years away. The message was created by Dr. Frank Drake, then professor of astronomy at Cornell, and contained basic information about humanity, including our numbering system, our location in the solar system and the composition of DNA, the molecule of life. It consisted of 1,679 binary bits representing ones and zeroes and was our first deliberate communication sent to extraterrestrials. Today the missive is 42 light years away, just barely out the door.

Galaxy GN-z11, shown in the inset, is seen as it was 13.4 billion years in the past, just 400 million years after the big bang, when the universe was only three percent of its current age. The galaxy is ablaze with bright, young, blue stars, but looks red in this image because its light has been stretched to longer spectral wavelengths by the expansion of the universe. Credit: NASA, ESA, P. Oesch, G. Brammer, P. van Dokkum, and G. Illingworth

Let’s end our time machine travels with the most distant object we’ve seen in the universe, a galaxy named GN-z11 in Ursa Major. We see it as it was just 400 million years after the Big Bang (13.4 billion years ago) which translates to a proper distance from Earth of 32 billion light years. The light astronomers captured on their digital sensors left the object before there was an Earth, a Solar System or even a Milky Way galaxy!

Thanks to light’s finite speed we can’t help but always see things as they were. You might wonder if there’s any way to see something right now without waiting for the light to get here? There’s just one way, and that’s to be light itself.

From the perspective of a photon or light particle, which travels at the speed of light, distance and time completely fall away. Everything happens instantaneously and travel time to anywhere, everywhere is zero seconds. In essence, the whole universe becomes a point. Crazy and paradoxical as this sounds, the theory of relativity allows it because an object traveling at the speed of light experiences infinite time dilation and infinite space contraction.

Just something to think about the next time you meet another’s eyes in conversation. Or look up at the stars.

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA's Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)
Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the inaugural SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would result in postponing the inaugural liftoff into 2019 – as I reported here.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

In the event that NASA decides to add a two person crew to the EM-1 mission, Bill Hill, NASA’s deputy associate administrator for Exploration Systems Development in Washington, D.C., stated that the agency would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on the EM-2 mission.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

The ICPS sits on top of the SLS core stage.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama

Catch ‘The Great American Occultation’ of Aldebaran Saturday Night

The Moon nearing Aldebaran on February 5th, 2017. Image credit and copyright: Chris Lyons.
The Moon nearing Aldebaran on February 5th, 2017. Image credit and copyright: Chris Lyons.

Ever watch the Moon cover up a star? There’s a great chance to see just such an event this coming weekend, when the waxing gibbous Moon occults (passes in front of)  the bright star Aldebaran for much of North America on Saturday night, March 4th.

Shining at magnitude +0.85, Aldebaran is the brightest star that lies along the Moon’s path in the current epoch, and is one of four +1st magnitude stars that the Moon can occult. The other three are Regulus, Antares and Spica. This is the 29th in a series of 49 occultations of Aldebaran worldwide spanning from January 29th, 2015 to September 3rd, 2018, meaning Aldebaran hides behind the Moon once every lunation as it crosses through the constellation Taurus and the Hyades open star cluster in 2017. Like eclipses belonging to the same saros cycle, successive occultations of bright stars shift westward by about 120 degrees westward longitude and slowly drift to the north. Europe saw last month’s occultation of Aldebaran, and Asia is up next month on April 1st.

The occultation footprint for Saturday night’s event. Credit: Occult 4.2 software.

All of the contiguous ‘lower 48 states’ except northern New England see Saturday night’s occultation, and under dark skies, to boot. It’s a close miss for Canada. Mexico, central America and the Caribbean will also witness the event under dark skies. Hawaii will see the event under daytime skies. We can attest that this is indeed possible using binocs or a telescope, as we caught Aldebaran near the daytime Moon during last month’s event.

Occultations give us a chance to see a split second magic act, in a Universe that often unfolds over eons and epochs. The motion you’re seeing is mostly that of the Moon, and to a lesser extent, that of the Earth as the star abruptly ‘winks out’.

Observers in northern tier states might witness an additional spectacle, as Aldebaran grazes the northern limb of the Moon. This can make for an unforgettable sight, as the star successively winks in at out from behind lunar peaks and valleys. The graze line for Saturday night follows the U.S./Canadian border from Washington state, Idaho and Montana, then transects North Dakota, Minnesota just below Duluth and northern Wisconsin, Michigan and New York and Connecticut. Brad Timerson over at the international Occultation Timing Association has a good page set up for the circumstances for the grazing event, and the IOTA has a page detailing ingress (start) and egress times for the event for specific cities.

The northern limit grazeline for Saturday night’s occultation. Credit: USAF/Wikimedia Commons/Dave Dickinson

You’ll be able to see the occultation of Aldebaran with the unaided eye, no telescope over binocular needed, though it will be fun to follow along with optics as well. The ingress along the leading dark limb of the Moon is always more dramatic, while reemergence on the bright limb is a more subtle affair.

The path of the occultation for select cities. Credit: Stellarium.

A simple video aimed afocally through a telescope eyepiece can easily capture the event. We like to run WWV radio on AM shortwave in the background while video recording so as to get a good time hack of the event on audio. Finally, set up early, watch those battery levels in the frigid March night, and be sure to balance out your exposure times to capture both Aldebaran and the dazzling limb of the Moon.

Can you see it? The Moon paired with Aldebaran on February 5th. Image credit and copyright: Lucca Ruggiero.

Anyone Live-casting the event? It’ll be a tough one low to the horizon here in central Florida, but a livestream would certainly be possible for folks westward with Aldebaran and the Moon high in the sky. Let us know of any planned webcasts, and we’ll promote accordingly.

The Moon also occults several other bright stars this week, leading up to an occultation of Regulus on March 10th favoring the southern Atlantic. Read all about occultations, eclipses, comets and more in our free e-book, 101 Astronomical Events for 2017 from Universe Today.

Don’t miss Saturday night’s stunning occultation, and let us know of your tales of astronomical tribulation and triumph.

-Send those astro-images in to Universe Today’s Flickr forum, and you might just see ’em featured here in a future article.