6th Man on Moon Edgar Mitchell, Dies at 85 on Eve of 45th Lunar Landing Anniversary

Apollo 14 astronaut crew, including Moonwalkers Alan B. Shepard Jr., mission commander (first) and Edgar D. Mitchell, lunar module pilot (last), and Stuart A. Roosa, command module pilot (middle) walk out to the astrovan bringing them to the launch pad at NASA’s Kennedy Space Center. Credit: Julian Leek
Apollo 14 astronaut crew, including Moonwalkers Alan B. Shepard Jr., mission commander (first) and Edgar D. Mitchell, lunar module pilot (last), and Stuart A. Roosa, command module pilot (middle) walk out to the astrovan bringing them to the launch pad at NASA’s Kennedy Space Center.    Credit: Julian Leek
Apollo 14 astronaut crew, including Moonwalkers Alan B. Shepard Jr., mission commander (first) and Edgar D. Mitchell, lunar module pilot (last), and Stuart A. Roosa, command module pilot (middle) walk out to the astrovan bringing them to the launch pad at NASA’s Kennedy Space Center. Credit: Julian Leek

KENNEDY SPACE CENTER, FL – NASA astronaut Edgar Mitchell, the 6th man to walk on the Moon, passed away on Thursday, Feb. 4, on the eve of the 45th anniversary of his Apollo 14 mission lunar landing.

Mitchell passed away in West Palm Beach, Fla., just 1 day prior to the 45th anniversary of the Feb. 5, 1971 landing of Apollo 14’s Lunar Module “Antares.” Continue reading “6th Man on Moon Edgar Mitchell, Dies at 85 on Eve of 45th Lunar Landing Anniversary”

China Shares Stunning New Moon Photos With the World

This image shows the Yutu rover leaving the lander area and making its way on the lunar surface. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
This image shows the Yutu rover leaving the lander area and making its way on the lunar surface. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.

China has released hundreds of images of the Moon, taken by its Chang’e 3 lander and its companion rover, Yutu. It’s been 50 years since the first lunar photos were taken by astronauts on NASA’s Apollo 11 mission. China is the third nation to land on the Moon, with the USA and the USSR preceding them.

Even though the Yutu rover’s engine failed after a short time on the lunar surface, the mission’s camera systems have captured hundreds of images.

Thanks to the hard work of Emily Lakdawalla at The Planetary Society, who wrestled with a somewhat cumbersome Chinese website, and stitched some of these images together, we can get a first-hand look at what Chang’e 3 and Yutu were up to.

Here are some of our favourites.

Pyramid Rock, as named by the Chinese. This rock was ejected when the crater immediately behind it was created. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
Pyramid Rock, as named by the Chinese. This rock was ejected when the crater immediately behind it was created. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.

 

This is a 360 degree panoramic image of the rover and part of the lander. Bright white rocks litter the rim of the crater on the left. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
This is a 360 degree panoramic image of the rover and part of the lander. Bright white rocks litter the rim of the crater on the left. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
The Yutu lander looks at its tracks in the lunar soil. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
The Yutu lander looks at its tracks in the lunar soil. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
This image shows a lot of detail of the Yutu rover. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.
This image shows a lot of detail of the Yutu rover. Image: Chinese Academy of Sciences/China National Space Administration/The Science and Application Centre for Moon and Deep Space Exploration/Emily Lakdawalla.

Emily Lakdawalla talks more about the camera systems here, and talks about what other images might be coming soon.

Universe Today reported on the Chinese Moon mission here.

50 Years Ago We Got Our First Picture from the Moon

The first image from the surface of the Moon via Luna 9, Feb. 3-4, 1966. (Credit: Roscosmos)

On this date half a century ago the Soviet Luna 9 spacecraft made humanity’s first-ever soft landing on the surface of the Moon. Launched from Baikonur on Jan. 31, 1966, Luna 9 lander touched down within Oceanus Procellarum — somewhere in the neighborhood of 7.08°N, 64.37°E* — at 18:44:52 UTC on Feb. 3. The fourth successful mission in the USSR’s long-running Luna series, Luna 9 sent us our first views of the Moon’s surface from the surface and, perhaps even more importantly, confirmed that a landing by spacecraft was indeed possible.

The entire Luna 9 lander was made up of two main parts: a 1,439-kg flight/descent stage which contained retro-rockets and orientation engines, navigation systems, and various fuel tanks, and a 99-kg (218-lb) pressurized “automatic lunar station” that contained all the science and imaging instruments along with batteries, heaters, and a radio transmitter.

When a probe on the descent stage detected contact with the lunar surface, the spherical station — encased in an inflated airbag — was jettisoned to soft-land a safe distance away — after a bit of bouncing, of course; the lander hit the Moon’s surface at about 22 km/hr (13 mph)!

The Luna 9 lunar station lander (NSSDC)
The Luna 9 lunar station lander. (NSSDC)

Once the airbag cushions deflated Luna 9, like a shiny metal flower, opened its four “petals,” extended its radio antennas and began taking panoramic television camera images of its surroundings, at the time lit by a very low Sun on the lunar horizon. Received on Earth early on Feb. 4, 1966, they were the first pictures taken from the surface of the Moon and in fact the first images acquired from the surface of another world.

Read more: What Other Worlds Have We Landed On?

Other missions, both Soviet and American, had captured close-up images of the Moon in previous years but Luna 9 was the first to soft-land (i.e., not crash land) and operate from the surface. The spacecraft continued transmitting image data to Earth until its batteries ran out on the night of Feb. 6, 1966. A total of four panoramas were acquired by Luna 9 over the course of three days, as well as data on radiation levels on the Moon’s surface (not to mention the valuable knowledge that a spacecraft wouldn’t just completely sink into the lunar regolith!)

Four months later, on June 2, 1966, NASA’s Surveyor 1 would become the first U.S. spacecraft to soft-land on the Moon. Surveyor 1 would send back science data and 11,240 photos over the course of a month in operation but, in terms of the space “race,” Luna 9 will always be remembered as first place winner.

Want to see more pictures from Luna 9 and other Soviet Moon missions? Check out Don P. Mitchell’s dedicated page here, and learn more about the Luna program on Robert Christy’s Zarya site.

Sources: NASA/NSSDC, LPI, Robert Christy/Zarya

*Or is it 7.14°N/60.36°W? Even today it’s still not precisely known where Luna 9 landed, but researchers at Arizona State University are actively searching through Lunar Reconnaissance Orbiter Camera pictures in an attempt to spot the “lost” spacecraft and/or evidence of its historic landing. Read more about that here.

 

A Cataclysmic Collision Formed the Moon, but Killed Theia

Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone
Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone

The Moon is the first object in space that fascinates we Earthlings. The Sun might be more prominent, but you can’t stare at the Sun without ocular damage. Anyone can gaze at the Moon, with or without binoculars or a telescope, and wonder where it came from and what it all means.

New evidence from a team at UCLA is clarifying the story of the Moon’s origins. According to this research, the Moon was formed as a result of a massive collision between Earth and a “planet embryo” about the size of Mars called Theia. This collision happened about 100 million years after the Earth was formed. Published on January 29th in the journal Science, this new geological evidence strengthens the case for the collision model.

The researchers compared Earth rocks with rocks retrieved from the Moon over the years. (Over 380kg of rocks have been brought back to Earth.) They found that these samples—collected on Apollo missions 12, 15, and 17—had the same chemical composition as seven rocks collected from Earth’s mantle, in Hawaii and Arizona. The key to the comparison lies in the nature of the oxygen atoms in the rocks.

Oxygen is a highly reactive element. It is easily combined with other elements, and is the most common element in the Earth’s crust. There are several different oxygen isotopes present in the Earth’s crust, and on other bodies in the solar system. The amount of each isotope present on each body is the “fingerprint” that makes the formation of each body different.

But the team at UCLA has shown that Earth and the Moon share the same cocktail of oxygen isotopes. They have the same fingerprint. This means that somehow, someway, their formation is linked. It can’t be pure coincidence. Says Edward Young, lead author of the new study, “We don’t see any difference between the Earth’s and the Moon’s oxygen isotopes; they’re indistinguishable.”

So how did this happen? How do Earth and the Moon share the same oxygen fingerprint? Enter Theia, an embryonic planet that got in the way of Earth’s orbit around the Sun. And as the research shows, this collision had to be more than a glancing blow. The collision had to be direct and cataclysmic.

This video shows how the collision would have played out.

A glancing blow would mean that the Moon would be mostly made of Theia, and would therefore have a different oxygen isotope fingerprint than Earth. But the fact that the Earth and Moon are indistinguishable from each other means that Theia had to have been destroyed, or rather, had to become part of both the Earth and the Moon.

“Theia was thoroughly mixed into the Earth and the Moon, and evenly dispersed between them. This explains why we don’t see a different signature of Theia in the Moon versus Earth,” said Young.

If this collision had not taken place, our Solar System would look very different, with an additional rocky planet in the inner regions. We also would have no Moon, which would have changed the evolution of life on Earth.

This collision theory, called the Theia Impact, or the Big Splash, has been around since 2012. But in 2014, a team of German researchers reported in Science that the Earth and Moon have different oxygen isotope ratios, which threw the collision formation theory into doubt. These new results confirm that it was a cataclysmic collision that gave birth to the Moon, and changed our Solar System forever.

Why Do We Sometimes See a Ring Around the Moon?

Moon halo by Rob Sparks
Moon halo by Rob Sparks. Taken in Tuscon, Arizona with a Canon 6D, Rokinon 14mm f/2.8 lens.

Have you ever looked up on a clear night and noticed there’s a complete ring around the Moon? In fact, if you look closely, the ring can have a rainbow appearance, with bright spots on either side, or above and below. What’s going on with the Moon and the atmosphere to cause this effect?

This ring surrounding the Moon is caused by the refraction of Moonlight (which is really reflected sunlight, of course) through ice crystals suspended in the upper atmosphere between 5-10 km in altitude. It doesn’t have to be winter, since the cold temperatures at high altitudes are below freezing any time of the year. Generally they’re seen with cirrus clouds; the thin, wispy clouds at high altitude.

The ice crystals themselves have a very consistent hexagonal shape, which means that any light passing through them will always refract light – or bend – at the same angle.

640px-Path_of_rays_in_a_hexagonal_prism
Path of rays in a hexagonal prism” by donalbein – Own work. Licensed under CC BY-SA 2.5 via Commons.
Moonlight passes through one facet of the ice crystal, and is then refracted back out at exactly the angle of 22-degrees.

Of course, the atmosphere is filled with an incomprehensible number of crystals, all refracting moonlight off in different directions. But at any moment, a huge number happen to be in just the right position to be refracting light towards your eyes. You just aren’t in a position to see all the other refracted light. In fact, everyone sees their own private halo, because you’re only seeing the crystals that happen to be aligning the light for your specific location. Someone a few meters beside you is seeing their own private version of the halo – just like a rainbow.

A halo rings the bright moon and planet Jupiter (left of moon) Credit: Bob King
A halo rings the bright moon and planet Jupiter (left of moon) Credit: Bob King

The size of the ring is most commonly 22-degrees. This is about the same size as your open hand on your outstretched arm. The Moon itself, for comparison, is the size of your smallest nail when you hold out your hand.

The 22-degree size corresponds to the refraction angle of moonlight.

We see a rainbow because the different colors are refracted at slightly different angles. This is exactly what happens with a rainbow. The moonlight is broken up into its separate colors because they all refract at different angles, and so you see the colors split up like a rainbow.

Lunar halo by Gustav Sanchez
Lunar halo with rainbow. Photo credit: Gustav Sanchez.
Moon dogs (or “mock moons”) are seen as bright spots that can appear on either side of the Moon, when the Moon is closer to the horizon, and at its fullest. These are located on either side of the lunar ring, parallel to the horizon.

In certain conditions, especially in the Arctic, where the ice crystals can be close to the surface, you can get a moon pillar. The light from the Moon reflects off the ice crystals near the surface, creating a glow near the horizon.

Sun pillar by Mary Spicer
This is a Sun pillar (not a moon pillar), but it’s the same general idea. Photo credit: Mary Spicer.

Want to see more? Here’s a great lunar halo photo from NASA’s APOD. And here’s more info from Earth and Sky.

NASA Completes Welding on Lunar Orion EM-1 Pressure Vessel Launching in 2018

Welding together of Orion EM-1 pressure vessel was completed on Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the primary structure of the Orion spacecraft destined for human missions to deep space and Mars. Credits: NASA
Welding together of Orion EM-1 pressure vessel was completed on Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the primary structure of the Orion spacecraft destined for human missions to deep space and Mars.  Credits: NASA
Welding together of Orion EM-1 pressure vessel was completed on Jan. 13, 2016 at NASA’s Michoud Assembly Facility in New Orleans. The pressure vessel is the primary structure of the Orion spacecraft destined for human missions to deep space and Mars. Credits: NASA

In a major step towards flight, engineers at NASA’s Michoud Assembly Facility in New Orleans have finished welding together the pressure vessel for the first Lunar Orion crew module that will blastoff in 2018 atop the agency’s Space Launch System (SLS) rocket.

This Orion is going to the Moon and back.

The 2018 launch of NASA’s Orion on an unpiloted flight dubbed Exploration Mission, or EM-1, counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago. Continue reading “NASA Completes Welding on Lunar Orion EM-1 Pressure Vessel Launching in 2018”

How Long Does It Take To Get To The Moon?

The lunar module above the Moon during the Apollo 11 mission (NASA)

Back in 2008, Richard Branson outlined his vision for Virgin Galactic’s future. Once tourists are taken into Earth orbit, it seems possible that space hotels could be developed for longer stop-overs in space. He then went on to mention that short “sight-seeing” tours to the Moon could be started from these ultimate hotels. If we are to make travel to the Moon routine enough to send tourists there, the trip would need to be as short as possible.

So how long is the commute from the Earth to the Moon anyway? Human beings and machines have made that trip on several occasions. And while some took a very long time, others were astonishingly fast. Let’s review the various missions and methods, and see which offers the most efficient and least time-consuming means of transit.

Continue reading “How Long Does It Take To Get To The Moon?”

Earthrise Like You’ve Never Seen It Before

The Earth straddling the limb of the Moon, as seen from above Compton crater on the lunar farside, taken by the Lunar Reconnaissance Orbiter spacecraft. Credit: NASA/GSFC/Arizona State University.

Nearly 47 years ago, the crew of Apollo 8 took an image of planet Earth from the Moon that has been called “the most influential environmental photograph ever taken.” Called Earthrise, the picture represented the first time human eyes saw their homeworld come into view around another planetary body.

Now, the Lunar Reconnaissance Orbiter (LRO) has captured stunning new high-definition views of Earth and the Moon from the spacecraft’s vantage point in lunar orbit.
Continue reading “Earthrise Like You’ve Never Seen It Before”

Astro-Challenge: Watch the Moon Occult Venus in the Daytime

The Moon meets Venus on February 26th, 2014. Image credit and copyright: Konstantinos Spanos
The Moon meets Venus on February 26th, 2014. Image credit and copyright: Konstantinos Spanos

The year 2015 saved one of the best astronomical events for last, as the waning crescent Moon occults (passes in front of) the planet Venus as seen from North America on Monday, December 7th.

This is the final of seven naked eye occultations of planets by the Moon in 2015, three of which involve Venus. It’s also the best of the year, well positioned for North America. Continue reading “Astro-Challenge: Watch the Moon Occult Venus in the Daytime”

Hayabusa 2 to Flyby the Earth Tomorrow

An artist's image of Hayabusa leaving Earth. Hayabusa was a Japanese sample return mission to the asteroid 25143 Itokawa. The mission was a partial success. A sample mission to Earth's sister planet is the holy-grail for the exploration of Venus. Image credit: JAXA

A space-faring friend pays our fair planet a visit this week on the morning of December 3rd, as the Japanese Space Agency’s Hayabusa 2 spacecraft passes the Earth.

The Flyby

Rick Baldridge on the SeeSat-L message board notes that Hayabusa-2 will pass 9,520 kilometers from the Earth’s center or 3,142 kilometers/1,885 miles from the Earth’s surface at 10:08 UT/5:08 AM EST on Thursday, December 3rd, passing from north-to-south above latitude 18.7 north, longitude 189.8 east just southwest of the Hawaiian Islands.

Unfortunately, the sighting opportunities for Hayabusa-2 aren’t stellar: even at its closest, the 1.5 meter-sized spacecraft is about nine times more distant than the International Space Station and satellites in low Earth orbit. To compound the challenge, Hayabusa-2 passes into the Earth’s shadow from 9:58 UT to 10:19 UT.

Image credit: JAXA
The path of Hayabusa-2 past the Earth. Image credit: JAXA

Still, skilled observers with large telescopes and sophisticated tracking rigs based along the Pacific Rim of North America might just catch sight of Hayabusa-2 as it speeds by. The JPL Horizons ephemeris generator is a great resource to create a customized positional chart in right ascension and declination for spacecraft for your given location, including Hayabusa-2.

Image credit: JAXA
The Earth-Moon pair snapped by Hayabusa-2 on November 26th from about three million kilometers distant. Image credit: JAXA

Hayabusa-2 won’t crack 20 degrees elevation for observers along the U.S. West Coast, putting it down in the atmospheric murk of additional air mass low to the horizon. This also tends to knock the brightness of objects down a magnitude or so… estimates place Hayabusa-2 at around magnitude +13 shortly before entering the Earth’s shadow. That’s pretty faint, but still, there are some dedicated observers with amazing rigs out there, and it’s quite possible someone could nab it. Hawaii-based observers should have the best shot at it, though again, it’ll be in the Earth’s shadow at its very closest…

Amateur radio satellite trackers are also on the hunt for the carrier-wave signal of the inbound Hayabusa-2 mission. You can also virtually fly along with the spacecraft until December 5th: (H/T @ImAstroNix):

A simulation of tomorrow's flyby. Image Credit: JAXA
A simulation of tomorrow’s flyby. Image Credit: JAXA

Probably the best eye-candy images will come from the spacecraft itself: already, Hayabusa-2 has already snapped some great images of the Earth-Moon pair using its ONC-T optical navigation camera during its inbound leg.

Image credit: JAXA
A close-up of Hayabusa-2’s view of the Earth and Moon. Image credit: JAXA

Other notable missions used Earth flybys en route to their final destinations, including Cassini in 1999, and Juno in 2013. Cassini’s return caused a bit of a stir as it has a plutonium-powered RTG aboard, though Earth and its inhabitants were never in danger. A nuclear RTG actually reentered during the return of Apollo 13, with no release of radioactive material. Meant for the ALSEP science package on the surface of the Moon, it was deposited on the reentry of the Lunar Module over the Marinas Trench in the South Pacific. And no, Hayabusa-2 carries no radioactive material, and in any event, it’s missing the Earth by about a quarter of its girth.

The successor to the Hayabusa (‘Peregrine Falcon’ in Japanese) mission which carried out a historic asteroid sample return from 25143 Itokawa in 2010, Hayabusa-2 launched atop an H-IIA rocket from Tanegashima, Japan exactly a year ago tomorrow on a six year mission to asteroid 162173 Ryugu. This week’s Earth flyby will boost the spacecraft an additional 1.6 kilometers per second to an outbound velocity towards its target of 31.9 kilometers per second post-flyby.

Image credit: JAXA
Launch of an H-IIA rocket with Hayabusa-2. Image credit: JAXA

Like its predecessor, Hayabusa-2 is a sample return mission. Unlike the original Hayabusa, however, Hayabusa-2 is more ambitious, also carrying the MASCOT (Mobile Asteroid Surface Scout) lander and an explosive seven kilogram impactor. Hayabusa-2 will deploy a secondary camera in orbit to watch the detonation and will briefly touch down at the impact site to collect material.

If all goes as planned, Hayabusa-2 will return to Earth in late 2020.

NASA has its own future asteroid sample return mission planned, named OSIRIS-REx. This mission will launch in September of next year to rendezvous with asteroid 101955 Bennu in September 2019 and return to Earth in September 2023.

An artist's conception on Hayabusa 2 at asteroid . Image credit: JAXA
An artist’s conception on Hayabusa 2 at asteroid 162173 Ryugu. Image credit: JAXA

We’re entering the golden age of asteroid exploration, for sure. And this all comes about as the U.S. authorized asteroid mining just last week (or at least, as stated, ‘asteroid utilization’) under the controversial U.S. Commercial Space Launch Competitiveness Act. But the original Hayabusa mission brought back mere micro-meter-sized dust grains, highlighting just how difficult asteroid mining is using present technology…

Perhaps, for now, its more cost effective to simply wait for the asteroids to come to us as meteorites and just scoop ’em up. We’ll be keeping an eye out over the next few days for images of Hayabusa-2 as it speeds by, and more postcards of the Earth-Moon system from the spacecraft as it heads towards its 2018 rendezvous with destiny.