NASA’s Space Launch System Passes Critical Design Review, Drops Saturn V Color Motif

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC
Story/imagery updated[/caption]

The SLS, America’s first human-rated heavy lift rocket intended to carry astronauts to deep space destinations since NASA’s Apollo moon landing era Saturn V, has passed a key design milestone known as the critical design review (CDR) thereby clearing the path to full scale fabrication.

NASA also confirmed they have dropped the Saturn V white color motif of the mammoth rocket in favor of burnt orange to reflect the natural color of the SLS boosters first stage cryogenic core. The agency also decided to add stripes to the huge solid rocket boosters.

NASA announced that the Space Launch System (SLS) has “completed all steps needed to clear a critical design review (CDR)” – meaning that the design of all the rockets components are technically acceptable and the agency can continue with full scale production towards achieving a maiden liftoff from the Kennedy Space Center in Florida in 2018.

“We’ve nailed down the design of SLS,” said Bill Hill, deputy associate administrator of NASA’s Exploration Systems Development Division, in a NASA statement.

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC
Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

Blastoff of the NASA’s first SLS heavy lift booster (SLS-1) carrying an unmanned test version of NASA’s Orion crew capsule is targeted for no later than November 2018.

Indeed the SLS will be the most powerful rocket the world has ever seen starting with its first liftoff. It will propel our astronauts on journey’s further into space than ever before.

SLS is “the first vehicle designed to meet the challenges of the journey to Mars and the first exploration class rocket since the Saturn V.”

Crews seated inside NASA’s Orion crew module bolted atop the SLS will rocket to deep space destinations including the Moon, asteroids and eventually the Red Planet.

“There have been challenges, and there will be more ahead, but this review gives us confidence that we are on the right track for the first flight of SLS and using it to extend permanent human presence into deep space,” Hill stated.

The core stage (first stage) of the SLS will be powered by four RS-25 engines and a pair of five-segment solid rocket boosters (SRBs) that will generate a combined 8.4 million pounds of liftoff thrust in its inaugural Block 1 configuration, with a minimum 70-metric-ton (77-ton) lift capability.

Overall the SLS Block 1 configuration will be some 10 percent more powerful than the Saturn V rockets that propelled astronauts to the Moon, including Neil Armstrong, the first human to walk on the Moon during Apollo 11 in July 1969.

Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC

The SLS core stage is derived from the huge External Tank (ET) that fueled NASA Space Shuttle’s for three decades. It is a longer version of the Shuttle ET.

NASA initially planned to paint the SLS core stage white, thereby making it resemble the Saturn V.

But since the natural manufacturing color of its insulation during fabrication is burnt orange, managers decided to keep it so and delete the white paint job.

“As part of the CDR, the program concluded the core stage of the rocket and Launch Vehicle Stage Adapter will remain orange, the natural color of the insulation that will cover those elements, instead of painted white,” said NASA.

There is good reason to scrap the white color motif because roughly 1000 pounds of paint can be saved by leaving the tank with its natural orange pigment.

This translates directly into another 1000 pounds of payload carrying capability to orbit.

“Not applying the paint will reduce the vehicle mass by potentially as much as 1,000 pounds, resulting in an increase in payload capacity, and additionally streamlines production processes,” Shannon Ridinger, NASA Public Affairs spokeswomen told Universe Today.

After the first two shuttle launches back in 1981, the ETs were also not painted white for the same reason – in order to carry more cargo to orbit.

“This is similar to what was done for the external tank for the space shuttle. The space shuttle was originally painted white for the first two flights and later a technical study found painting to be unnecessary,” Ridinger explained.

Artist concept of the Block I configuration of NASA’s Space Launch System (SLS). The SLS Program has completed its critical design review, and the program has concluded that the core stage of the rocket will remain orange along with the Launch Vehicle Stage Adapter, which is the natural color of the insulation that will cover those elements.  Credits: NASA
Artist concept of the Block I configuration of NASA’s Space Launch System (SLS). The SLS Program has completed its critical design review, and the program has concluded that the core stage of the rocket will remain orange along with the Launch Vehicle Stage Adapter, which is the natural color of the insulation that will cover those elements. Credits: NASA

NASA said that the CDR was completed by the SLS team in July and the results were also further reviewed over several more months by a panel of outside experts and additionally by top NASA managers.

“The SLS Program completed the review in July, in conjunction with a separate review by the Standing Review Board, which is composed of seasoned experts from NASA and industry who are independent of the program. Throughout the course of 11 weeks, 13 teams – made up of senior engineers and aerospace experts across the agency and industry – reviewed more than 1,000 SLS documents and more than 150 GB of data as part of the comprehensive assessment process at NASA’s Marshall Space Flight Center in Huntsville, Alabama, where SLS is managed for the agency.”

“The Standing Review Board reviewed and assessed the program’s readiness and confirmed the technical effort is on track to complete system development and meet performance requirements on budget and on schedule.”

The final step of the SLS CDR was completed this month with another extremely thorough assessment by NASA’s Agency Program Management Council, led by NASA Associate Administrator Robert Lightfoot.

“This is a major step in the design and readiness of SLS,” said John Honeycutt, SLS program manager.

The CDR was the last of four reviews that examine SLS concepts and designs.

NASA says the next step “is design certification, which will take place in 2017 after manufacturing, integration and testing is complete. The design certification will compare the actual final product to the rocket’s design. The final review, the flight readiness review, will take place just prior to the 2018 flight readiness date.”

“Our team has worked extremely hard, and we are moving forward with building this rocket. We are qualifying hardware, building structural test articles, and making real progress,” Honeycutt elaborated.

Numerous individual components of the SLS core stage have already been built and their manufacture was part of the CDR assessment.

The SLS core stage is being built at NASA’s Michoud Assembly Facility in New Orleans. It stretches over 200 feet tall and is 27.6 feet in diameter and will carry cryogenic liquid hydrogen and liquid oxygen fuel for the rocket’s four RS-25 engines.

On Sept. 12, 2014, NASA Administrator Charles Bolden officially unveiled the world’s largest welder at Michoud, that will be used to construct the core stage, as I reported earlier during my on-site visit – here.

The first stage RS-25 engines have also completed their first round of hot firing tests. And the five segment solid rocket boosters has also been hot fired.

NASA decided that the SRBs will be painted with something like racing stripes.

“Stripes will be painted on the SRBs and we are still identifying the best process for putting them on the boosters; we have multiple options that have minimal impact to cost and payload capability, ” Ridinger stated.

With the successful completion of the CDR, the components of the first core stage can now proceed to assembly of the finished product and testing of the RS-25 engines and boosters can continue.

“We’ve successfully completed the first round of testing of the rocket’s engines and boosters, and all the major components for the first flight are now in production,” Hill explained.

View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop  Mobile Launcher at the Kennedy Space Center in Florida.  Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com
View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop Mobile Launcher at the Kennedy Space Center in Florida. Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center (KSC).

The SLS/Orion stack will roll out to pad 39B atop the Mobile Launcher now under construction – as detailed in my recent story and during visit around and to the top of the ML at KSC.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014.  Credit: Ken Kremer – kenkremer.com
Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014. Credit: Ken Kremer – kenkremer.com

Can Lunar Earthshine Reveal Ashen Light on Venus?

Image credit

A recent celestial event provided a fascinating look at a long-standing astronomical mystery.

Is the ‘ashen light of Venus’ a real phenomena or an illusion?

On October 8th, the waning crescent Moon occulted (passed in front of) the bright planet Venus for observers in the southern hemisphere. And while such occurrences aren’t at all rare—the Moon occults Venus 3 times in 2015, and 25 times in this decade alone worldwide—the particulars were exceptional for observers in Australia, with a -4.5 magnitude, 40% illuminated Venus 30” in size emerging under dark skies 45 degrees west of the Sun from behind the dark limb of the Moon.

David and Joan Dunham rose to the challenge, and caught an amazing sequence featuring a brilliant Venus reappearing from behind the Moon as seen from the Australian Outback. When I first watched the video posted on You Tube by International Occultation Timing Association (IOTA) North American coordinator Brad Timerson, I was a bit perplexed, until I realized we were actually seeing the dark nighttime side of a waning Moon, with the bright crescent just out of view. Venus fully emerges in just under a minute after first appearing, and its -4th magnitude visage shines like a spotlight when revealed in its full glory.

Image credit:
A simulation of Venus on the limb of the Moon on October 8th. Image credit: Stellarium

“Joan and I observed the reappearance of Venus from behind the dark side of the 15% sunlit waning crescent Moon, from a dark and wide parking area on the east side of the Stuart Highway that afforded a low (1-2 degree) horizon to the east,” Dunham said. “Since the past observations of ashen light were visual, I decided that it would be best to use the 25mm eyepiece with the 8-inch visually rather than just make a redundant video. Neither the real-time visual observation, nor close visual inspection of the video recording, showed any sign of the dark side of Venus.”

Image credit:
Dunham’s ‘box scope’ imaging set up Image credit: David Dunham

We’ve written about the strange puzzle of ashen light on the nighttime side of Venus previously.

Reports by visual observers of ashen light on the dark limb of Venus over the centuries remain a mystery. On the crescent Moon, it’s easy to explain, as the Earth illuminates the nighttime side of our natural satellite; no such nearby illumination source exists in the case of Venus. Ashen light on Venus is either an illusion—a trick of the dazzling brilliance of a crescent Venus fooling the eye of the observer—or a real, and not as yet fully described phenomenon. Over the years, suggestions have included: lightning, airglow, volcanism, and aurora. A good prime candidate in the form of an ‘auroral nightglow” was proposed by New Mexico State University researchers in 2014. 19th century astronomers even proposed we might be seeing the lights of Venusian cities, or perhaps forest fires!

Could we ever separate the bright crescent of Venus from its nighttime side? A lunar occultation, such as the October 8th event provides just such a fleeting opportunity.  Though it’s hard to discern in the video, Dunham also watched the event visually through the telescope, and noted that, in his words, “the dark side of Venus remains dark,” with no brief appearance prior to sighting the crescent shining through the lunar valleys.

A tentative light curve made by Mr. Timerson seems to support this assertion, as the appearance of Venus quickly over-saturates the view:

Image credit
A rough light curve of the event. Photon counts are along the vertical axis, each tick mark along the horizontal equals one second. Image credit: Brad Timerson

Of course, this is far from conclusive, but seems to support the idea that the ashen light of Venus noted by ground observers is largely an optical illusion. Not all occultations of Venus by the Moon are created equal, and the best ones to test this method occur when Venus is less than half illuminated and greater than 40 degrees from the Sun against a relatively dark sky. Compounding problems, the ‘dark’ limb of the Moon has a brightness of its own, thanks to Earthshine. Dunham notes that observers in southern Alaska may have another shot at seeing this same phenomenon on December 7th, when the 13% illuminated crescent Moon occults a -4.2 magnitude 69% illuminated Venus, 42 degrees west of the Sun… the rest of North and South America will see this occultation in the daytime, still an interesting catch.

Image credit
The occultation footprint for the Dec 7 event. The dashed lines indicate where the event happens during daylight. Image credit: Occult 4.1

Looking at future occultations, there’s an intriguing possibility to hunt for the ashen light on the evening of October 10th, 2029, when then Moon occults a 57% illuminated Venus against dark skies for observers along the U.S. West Coast. Incidentally, a dawn occultation provides a better circumstance than a dusk one, as Venus always reemerges from the Moon’s dark limb when it’s waning. It enters the same when waxing, perhaps allowing for observer bias.

Image credit:
A simulation of the 2029 event. Image credit: Stellarium

Can’t wait for December? The Moon also occults the bright star Aldebaran on October 29th for Europe and North America on November 26th near Full phase… the good folks at the Virtual Telescope will carry the October event live.

Image credit:
The occultation footprint for the 2029 event. Image credit: Occult 4.1

For now, the ashen light of Venus remains an intriguing mystery. Perhaps, an airborne observation could extend the appearance of Venus during an occultation, or maybe the recently announced Discovery-class mission to Venus could observe the night side of the planet for an Earthly glow… if nothing else, it’s simply amazing to watch the two brightest objects in the nighttime sky come together.

Is This Month’s Jupiter-Venus Pair Really a Star of Bethlehem Stand In?

Image credit and copyright: Clapiotte Astro

Eclipse tetrads of doom. Mars, now bigger than the Full Moon each August. The killer asteroid of the month that isn’t. Amazing Moons of all stripes, Super, Blood, Black and Blue…

Image credit and copyright: @TaviGrainer(ck)
Venus, Mars, Jupiter and the Moon from October 9th. Image credit and copyright: @TaviGreiner

The internet never lets reality get in the way of a good meme, that’s for sure. Here’s another one we’ve caught in the wild this past summer, one that now appears to be looking for a tenuous referent to grab onto again next week.

You can’t miss Jupiter homing in on Venus this month, for a close 61.5’ pass on the morning on Oct 25th. -1.4 magnitude Jupiter shows a 33” disk on Sunday’s pass, versus -4 magnitude Venus’ 24” disk.

Oct 26 Stellarium
Looking east on the morning of October 26th. Credit: Stellarium

We also had a close pass on July 1st, which prompted calls of ‘the closest passage of Venus and Jupiter for the century/millennia/ever!’ (spoiler alert: it wasn’t) Many also extended this to ‘A Star of Bethlehem convergence’ which, again, set the web a-twittering.

Will the two brightest planets in the sky soon converge every October, in the minds of Internet hopefuls?

This idea seems to come around every close pass of Jupiter and Venus as of late, and may culminate next year, when an extra close 4’ pass occurs on August 27th, 2016. But the truth is, close passes of Venus and Jupiter are fairly common, occurring 1-2 times a year. Venus never strays more than 47 degrees from the Sun, and Jupiter moves roughly one astronomical constellation eastward every Earth year.

Much of the discussion in astrological circles stems from the grouping of Jupiter, Venus and the bright star Regulus this month. Yes, this bears a resemblance to a grouping of the same seen in dawn skies on August 12th, 2 BCE. This was part of a series of Jupiter-Venus conjunctions that also occurred on May 24th, 3 BCE and June 17th, 1 BCE. The 2 BCE event was located in the constellation Leo the Lion, and Regulus rules the sign of kings in the minds of many…

Stall
Looking eastward on the morning of August 12th, 2 BCE. Credit: Stellarium

But even triple groupings are far from uncommon over long time scales. Pairings of Jupiter, Venus in any given zodiac constellation come back around every 11-12 years. Many great astronomical minds over the centuries have gone broke trying to link ‘The Star’ seen by the Magi to the latest astronomical object in vogue, from conjunctions, to comets, to supernovae and more. If there’s any astronomical basis to the allegorical tale, we’ll probably never truly know.

Starry Night
The October 25th pass of Venus vs Jupiter. Created using Starry Night Education software.
Aaron Adair, the author of The Star of Bethlehem: A Skeptical View has this to say to Universe Today:
“The 3/2 BCE conjunctions don’t fit the time of Jesus’ birth. There is also no evidence that these sorts of conjunctions were considered all that good; I even found evidence that they were bad news for a king, especially if Jupiter was circling around Regulus. And of course, none of this even comes close to doing the things the Star of Bethlehem was claimed to have done. 
So, we have a not terribly rare situation in the sky that conforms to something that doesn’t really fit the Gospel story in a time frame that doesn’t fit the Jesus chronology which doesn’t really have anything all that auspicious about that to ancient observers.” 

The dance of the planets also gives us a brief opening teaser on Saturday morning, as Mars  passes just 0.38 degrees NNE of Jupiter on Oct 17th looking like a fifth pseudo-moon.

Finally, the crescent Moon joins the scene once again on November 7th, passing 1.9 degrees SSW of Jupiter and 1.2 SSW of Venus, a great time to attempt to spy both in the daytime using the crescent Moon as a guide. And keep an eye on Venus, as the next passage of the crescent Moon on December 7th features a close grouping with binocular Comet C/2013 US10 Catalina as well.

How close can the two planets get?

Stick around ‘til November 22nd 2065, and you can watch Venus actually transit the face of Jupiter:

Though rare, such an occlusion involving the two brightest planets happens every other century or so… we ran a brief simulation, and uncovered 11 such events over the next three millennia:

Credit: Dave Dickinson
Credit: Dave Dickinson

Bruce McCurdy of the Royal Canadian Astronomical Society posed a further challenge: how often does Venus fully occult Jupiter? We ran a simulation covering 9000 BC to 9000 AD, and found no such occurrence, though the July 14th, 4517 AD meeting of Jupiter and Venus is close.

Let’s see, I’ll be on my 3rd cyborg body, in the post- Robot Apocalypse by then…

This sort of total occlusion of Jupiter by Venus turns out to be rarer than any biblical conjunction. Why?

Well, for one thing, Venus is generally smaller in apparent size than Jupiter. When Jupiter is near Venus, it’s also near the Sun and in the 30-35” size range. Venus only breaks 30” in size for about 20% of its 584 synodic period. But we suspect a larger cycle may be in play, keeping the occurrence of a large Venus meeting and covering a shrunken Jove in our current epoch.

A Moon, a star, three planets and... a space station? A close pass of Tiangong-1 (arrowed) near this month's grouping. Image credit: Dave Dickinson
A Moon, a star, three planets and… a space station? A close pass of Tiangong-1 (arrowed) near this month’s grouping. Image credit: Dave Dickinson

Astronomy makes us ponder the weirdness of our skies gracing our backyard over stupendously long time scales. Whatever your take on the tale and the modern hype, be sure to get out and enjoy the real show on Sunday morning October 25th, as the brightest of planets make for a brilliant pairing.

Watch Lenticular Clouds Form in the Moonlight

Moonlit lenticular clouds formed over Mount Shasta in northern California in October 2015. Credit and copyright: Brad Goldpaint/Goldpaint Photography.

Clouds and moonlight are usually the bane of astronomers and astrophotographers. But on a recent evening at Mount Shasta in northern California, the two combined for a stunning look at usual cloud formations called lenticular clouds.

Fortunately for us, photographer Brad Goldpaint from Goldpaint Photography was on hand to capture the event. His beautiful sunset and moonlit images show these strange UFO-reminscent clouds, and the timelapse video he created provides a great demonstration of just how they form.

See the video and more images below:

A few ingredients are needed for lenticular clouds to form: mountains, stable but moist air, and just the right temperature and dew point.

According to WeatherUnderground, these smoooth, lens-shaped clouds normally develop on the downwind side of a mountain or mountain range when the stable, moist air flows over the obstruction and a series of large oscillating waves waves may form. If the temperature at the crest of the wave drops to the dew point, moisture in the air may condense to form lens-like or lenticular clouds. Since the air is stable, the oval clouds can grow quite large appear to be hovering in one place. Hence, the UFO appearance.

In the video, even though the clouds appear to be moving fast, it is a timelapse, so it shows the cloud movement over the entire night, condensed down to 30 seconds. But the video does allow us to see the fluid dynamics or laminar flows in parallel layers that creates the lenticular clouds. Plus, the stars and moonlight add to the beauty of the scene.

Lenticular clouds form at sunset over Mount Shasta in northern California, October r2015. Credit and copyright: Brad Goldpaint/Goldpaint Photography.
Lenticular clouds form at sunset over Mount Shasta in northern California, October r2015. Credit and copyright: Brad Goldpaint/Goldpaint Photography.
Lenticular clouds form over Mount Shasta in northern  California, October, 2015. Credit and copyright: Brad Goldpaint/Goldpaint Photography.
Lenticular clouds form over Mount Shasta in northern California, October, 2015. Credit and copyright: Brad Goldpaint/Goldpaint Photography.

Thanks to Brad for sharing his great work! See more at his website including his series of astrophotography workshops.

Comet US10 Catalina: Our Guide to Act II

Image credit and copyright:

Itching for some cometary action? After a fine winter’s performance from Comet C/2014 Q2 Lovejoy, 2015 has seen a dearth of good northern hemisphere comets. That’s about to change, however, as Comet C/2013 US10 Catalina joins the planetary lineup currently gracing the dawn sky in early November. Currently located in the constellation Centaurus and shining at magnitude +6, Comet US10 Catalina has already put on a fine show for southern hemisphere observers over the last few months during Act I

Currently buried in the dusk sky, Comet US10 Catalina is bashful right now, as it shares nearly the same right ascension with the Sun over the next few weeks, passing just eight degrees from our nearest star as seen from our Earthly vantage point on November 7th — and perhaps passing juuusst inside of the field of view for SOHO’s LASCO C3 camera — and into the dawn sky.

Image credit:
The altitude of Comet US10 Catalina in November and December at dawn as seen from latitude 30 degrees north. Image credit: Starry Night Education software.

The hunt is on come early November, as Comet US 10 Catalina vaults into the dawn sky. From 30 degrees north latitude here in Central Florida, the comet breaks 10 degrees elevation an hour prior to local sunrise right around November 20th. This should see the comet peaking in brightness right around magnitude +5 near perihelion the same week on November 16th.

Image credit:
The projected light curve of Comet US10 Catalina, with observations thus far (black dots) Image credit: Adapted from Seiichi Yoshida’s Weekly Information About Bright Comets

The angle of the comet’s orbit is favorable for northern hemisphere viewers in mid-November, as viewers start getting good looks in the early morning from latitude 30 degrees northward and the comet gains about a degree of elevation per day. This will bring it up out of the murk of twilight and into binocular view.

Mark your calendar for the morning of December 7th, as the crescent Moon, Venus and a (hopefully!) +5 magnitude comet US10 Catalina will all fit within a five degree circle.

Image credit:
The view on the morning of December 7th. Image credit: Starry Night Education software

Here are some key dates with celestial destiny for Comet US10 Catalina for the remainder of 2015:

October

20-Crosses into the constellation Hydra.

November

2-Crosses into the constellation Libra.

16-Crosses into the constellation Virgo.

16-Reaches perihelion at 0.823 AU (127.6 million kilometers) from Sun.

26-Crosses the ecliptic plane northward.

27-Passes less than one degree from the +4.5 magnitude star Lambda Virginis.

Image Credit:
The celestial path of Comet US 10 Catalina through the end of 2015. Image Credit: Starry Night Education software

December

7-Fits inside a five degree circle with Venus and the waning crescent Moon.

8-Passes less than one degree from the +4 magnitude star Syrma (Iota Virginis).

17-Crosses the celestial equator northward.

24-Crosses into the constellation Boötes.

In January, Comet US10 Catalina starts the New Year passing less than a degree from the -0.05 magnitude star Arcturus. From there, the comet may drop below +6 magnitude and naked eye visibility by mid-month, just prior to its closest approach to the Earth at 0.725 AU (112.3 million kilometers) on January 17th. By February 1st, the comet may drop below +10th magnitude and binocular visibility, into the sole visual domain of large light bucket telescopes under dark skies.

Image credit:
Comet US10 Catalina imaged from Australia on July 21st, 2015. Image credit: Alan Tough

Or not. Comets and predictions of comet brightness are always notoriously fickle, and rely mainly on just how the comet performs near perihelion. Then there’s twilight extinction to contend with, and the fact that the precious magnitude of the comet is diffused over its extended surface area, often causing the comet to appear fainter visually than the quoted magnitude.

But do not despair. Comets frequently under-perform pre-perihelion passage, only to put on brilliant shows after. Astronomers discovered Comet US10 Catalina on Halloween 2013 from the Catalina Sky Survey based just outside of Tucson, Arizona. On a several million year orbit, all indications are that Comet US10 Catalina is a dynamically new Oort Cloud visitor and will probably get ejected from the solar system after this all-too brief fling with the Sun. Its max velocity at perihelion will be 46.4 kilometers per second, three times faster than the New Horizons spacecraft currently on an escape trajectory out of the solar system.

The odd ‘US10’ designation comes from the comet’s initial identification as an asteroidal object, later upgraded to cometary status.  The comet’s high orbital inclination of 149 degrees assured two separate showings, as the comet approached the Sun as seen from the Earth’s southern hemisphere, only to then vault up over the northern hemisphere post-perihelion. As is often the case, the comet was closest to the Sun at exactly the wrong time: had perihelion occurred around May, the comet would’ve passed the Earth just 0.17 AU (15.8 million miles or 26.3 million kilometers) distant! That might’ve placed the comet in the negative magnitudes and perhaps earned it the title of ‘the Great Comet of 2015…’

Image credit:
The orbit of Comet US10 Catalina and the view during closest Earth approach. Image credit: NASA/JPL

But such was not to be.

Ah, but the next ‘big one’ could come at any time. In 2016, we’re tracking comet C/2013 X1 PanSTARRS, which will ‘perhaps’ become a fine binocular comet next summer…

More to come. Perhaps we’ll draft up an Act III for US10 Catalina in early January if it’s a top performer.

Why Was September’s Lunar Eclipse So Dark?

The September 17, 2015 total lunar eclipse - the last of the recent tetrad of lunar eclipses over the past 17 months - was darker than expected. Several factors described below were in play. This photo was taken in Washington's Olympic National Park. Credit: Rick Klawitter

First off, a huge thank you to everyone who made and sent their Danjon scale estimate of the totally-eclipsed Moon’s brightness to Dr. Richard Keen, University of Colorado atmospheric scientist. Your data were crucial to his study of how aerosols in Earth’s atmosphere and other factors influence the Moon’s appearance.

Grateful for your help, Keen received a total of 28 observations from 7 different countries.

Graphs created by Dr. Richard Keen plotting Danjon L values submitted by Universe Today readers and others that compare expected values (top curve) with observed values. The Moon was about half as bright during totality as expected with L=1.9. Credit: Dr. Richard A. Keen
Graph created by Dr. Richard Keen plotting Danjon L values submitted by Universe Today readers and others that compare predicted values (top curve) with observed values. The Moon was about half as bright during totality as expected with L=1.9. Credit: Dr. Richard A. Keen

Using the Danjon information and estimates of the Moon’s brightness using the reverse binocular method, Keen crunched the data and concluded that the Moon was about 0.6 L (Danjon) units darker than expected and 0.4 magnitude dimmer, a brightness reduction of 33%. This agrees well with my own observation and possibly yours, too. No wonder so many stars sparkled near the Moon that night.

Depending on how clear the atmosphere is, the Moon's color can vary dramatically from one eclipse to another. The numbers, called the Danjon Scale, will help you estimate the color of Sunday night's eclipse. Credit: Bob King
Lunar eclipse brightness is rated on the Danjon scale where “0” equals a dark gray totality and “4” a bright, coppery yellow. Credit: Bob King

I think it’s safe to say, most of us expected a normal or even bright totality. So why was it dark? Several factors were at play — one to do with the Moon’s location in Earth’s shadow, the other with a volcanic eruption and a third with long-term, manmade pollution.

During a perigee eclipse, the moon passes more deeply into Earth’s shadow compared to one that happens near apogee, when the moon is most distant from Earth. Moon distances not to scale and for illustration only. Credit: Bob King
During a perigean eclipse, the Moon passes more deeply into Earth’s shadow compared to one that happens near apogee, when the moon is most distant from Earth. Moon distances not to scale and for illustration only. Credit: Bob King

You’ll recall that the eclipse occurred during lunar perigee, when the Moon swings closest to Earth in its 27-day orbit. Being closer, it also tracked deeper into Earth’s umbra or inner shadow which narrows the farther back of the planet it goes. An apogean Moon (farthest from Earth) passes through a more tapered cone of darkness closer to the penumbra, where sunlight mixes with shadow. A Moon nearer Earth would find the umbral shadow roomier with the light-leaking penumbra further off in the distance.

Around midday on April 24, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of the ash and gas plume from Calbuco volcano in southern Chile. Credit: NASA
On April 24, 2015, NASA’s Terra satellite acquired this photo of the ash and gas plume from Calbuco volcano in southern Chile. Credit: NASA

But there’s more. Working independently, Steve Albers of NOAA and Brazilian astronomer Helio Vital suggested another reason: aerosols in the atmosphere. “Earth’s stratosphere is no longer completely clean of volcanic ashes,” said Vital in an e-mail communication. “In fact, lingering aerosols (ash, dust, sulfuric acid droplets) from the explosion of Calbuco five months ago may be to blame for that excessive darkening.”

With the lunar horizon in the foreground, the Earth passes in front of the Sun on September 27, 2015 in this simulation, revealing the red ring of sunrises and sunsets along the limb of the planet responsible for illuminating the Moon during the eclipse. The clarity of the stratosphere at eclipse time can greatly affect lunar brightness during totality. The Earth and Sun are in Virgo for observers on the Moon with the bright star Beta Virginis at top. Click to see the video. Credit: NASA's Scientific Visualization Studio
With the lunar horizon in the foreground, the Earth passes in front of the Sun on September 27, 2015 in this simulation, revealing the red ring of sunrises and sunsets along the limb of the planet responsible for illuminating the Moon during the eclipse. The clarity of the stratosphere at eclipse time can greatly affect lunar brightness during totality. The Earth and Sun are in Virgo for observers on the Moon with the bright star Beta Virginis at top. Click to see the video. Credit: NASA’s Scientific Visualization Studio

While much of the debris blasted into the stratosphere made for colorful sunsets in the southern hemisphere, some of that material has likely made its way to the northern hemisphere. Albers has noticed an increase in yellow and purple sunsets in his home town of Boulder in recent months, telltale signs of volcanic spew at play.

Forest fires that raged across the western states and Canadian provinces all spring and summer may also have contributed. Most of that smoke usually stays in the lower part of the atmosphere, but some may have found its way to the stratosphere, the very layer responsible for transmitting most of the sunlight that falls into Earth’s shadow and colors the moon.

Graph showing magnitude estimates of the Moon's brightness during totality using the reverse binocular method. The predicted magnitude was -1.7 (a little brighter than Sirius) vs. the observed -1.3. Credit: Dr. Richard A. Keen
Graph showing magnitude estimates of the Moon’s brightness during totality using the reverse binocular method. The predicted magnitude was -1.7 (a little brighter than Sirius) vs. the observed -1.3. Credit: Dr. Richard A. Keen

Sunlight has to pass through these light-absorbing minerals and chemicals on its way through the atmosphere and into Earth’s shadow. Less light means a darker moon during total eclipse. Coincidentally, much of the totally eclipsed Moon passed through the southern half of the umbra which “increased the effectiveness of the Calbuco aerosols (which are still more concentrated in the southern hemisphere than the northern) at dimming the light within the umbra,” writes Keen.

Oceanus Procellarum and Mare Imbrium are large, dark volcanic plains that contributed to the Moon's faintness and dark-hued totality. Credit: Bob King
Oceanus Procellarum and Mare Imbrium are large, dark volcanic plains that contributed to the Moon’s faintness and dark-hued totality. Credit: Bob King

It also so happened that the darkest part of the moon coincided with two vast, dark volcanic plains called Oceanus Procellarum (Ocean of Storms) and Mare Imbrium, artificially enhancing the overall gloom over the northern half of the Moon.

U.S. satellite-derived map of PM2.5 averaged over 2001-2006. Credit: Dalhousie University, Aaron van Donkelaar
U.S. satellite-derived map of PM2.5 (fine particulate matter which includes sulfates and soot) averaged over 2001-2006. Credit: Dalhousie University, Aaron van Donkelaar

Finally, the human hand may also have played a role in lunar color and brightness. The burning of coal and oil has caused a gradual increase in the amount of human-made sulfate aerosols in the atmosphere since the start of the industrial revolution. According to NASA, at current production levels, human-made sulfate aerosols are believed to outweigh the naturally produced sulfate aerosols. No surprise that the concentration of aerosols is highest in the northern hemisphere where most industrial activity is found.

Isn’t it fascinating that one blood-red Moon can tell us so much about the air we breathe? Thank you again for your participation!

Mobile Launcher Upgraded to Launch NASA’s Mammoth ‘Journey to Mars’ Rocket

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Story/photos updated[/caption]

KENNEDY SPACE CENTER, FL – NASA’s Mobile Launcher (ML) is undergoing major upgrades and modifications at the Kennedy Space Center in Florida enabling the massive structure to launch the agency’s mammoth Space Launch System (SLS) rocket and Orion crew capsule on a grand ‘Journey to Mars.’

“We just finished up major structural steel modifications to the ML, including work to increase the size of the rocket exhaust hole,” Eric Ernst, NASA Mobile Launch project manager, told Universe Today during an exclusive interview and inspection tour up and down the Mobile Launcher.

Indeed the Mobile Launcher is the astronauts gateway to deep space expeditions and missions to Mars.

Construction workers are hard at work upgrading and transforming the 380-foot-tall, 10.5-million-pound steel structure into the launcher for SLS and Orion – currently slated for a maiden blastoff no later than November 2018 on Exploration Mission-1 (EM-1).

“And now we have just started the next big effort to get ready for SLS.”

SLS and Orion are NASA’s next generation human spaceflight vehicles currently under development and aimed at propelling astronauts to deep space destinations, including the Moon and an asteroid in the 2020s and eventually a ‘Journey to Mars’ in the 2030s.

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft  for launches from Space Launch Complex 39B the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The mobile launcher was originally built several years ago to accommodate NASA’s less powerful, lighter and now cancelled Ares-1 rocket. It therefore requires extensive alterations to accommodate the vastly more powerful and heavier SLS rocket.

“The ML was initially developed for Ares 1, a much smaller rocket,” Ernst explained to Universe Today.

“So the exhaust hole was much smaller.”

Whereas the Ares-1 first stage booster was based on using a single, more powerful version of the Space Shuttle Solid Rocket Boosters, the SLS first stage is gargantuan and will be the most powerful rocket the world has ever seen.

The SLS first stage comprises two shuttle derived solid rocket boosters and four RS-25 power plants recycled from their earlier life as space shuttle main engines (SSMEs). They generate a combined 8.4 million pounds of thrust – exceeding that of NASA’s Apollo Saturn V moon landing rocket.

Therefore the original ML exhaust hole had to be gutted and nearly tripled in width.

“The exhaust hole used to be about 22 x 22 feet,” Ernst stated.

“Since the exhaust hole was much smaller, we had to deconstruct part of the tower at the base, in place. The exhaust hole had to be made much bigger to accommodate the SLS.”

Construction crews extensively reworked the exhaust hole and made it far wider to accommodate SLS compared to the smaller one engineered and already built for the much narrower Ares-1, which was planned to generate some 3.6 million pounds of thrust.

“So we had to rip out a lot of steel,” Mike Canicatti, ML Construction Manager told Universe Today.

“For the exhaust hole [at the base of the tower], lots of pieces of [existing] steel were taken out and other new pieces were added, using entirely new steel.”

“The compartment for the exhaust hole used to be about 22 x 22 feet, now it’s about 34 x 64 feet.”

Looking down to the enlarged 64 foot wide exhaust hole from the top of NASA’s 380 foot-tall Mobile Launch tower.  Astronauts will board the Orion capsule atop the Space Launch System (SLS) rocket for launches from Space Launch Complex 39B the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking down to the enlarged 64 foot wide exhaust hole from the top of NASA’s 380 foot-tall Mobile Launch tower. Astronauts will board the Orion capsule atop the Space Launch System (SLS) rocket for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

In fact this involved the demolition of over 750 tons of old steel following by fabrication and installation of more than 1,000 tons of new steel. It was also reinforced due to the much heavier weight of SLS.

“It was a huge effort and structural engineers did their job. The base was disassembled and reassembled in place” – to enlarge the exhaust hole.

“So basically we gutted major portions of the base out, put in new walls and big structural girders,” Ernst elaborated.

“And we just finished up that major structural steel modification on the exhaust hole.”

Top view across the massive 34 foot-wide, 64 foot-long exhaust hole excavated out of NASA’s Mobile Launcher that will support launches of the Space Launch System (SLS) rocket from Space Launch Complex 39B at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Top view across the massive 34 foot-wide, 64 foot-long exhaust hole excavated out of NASA’s Mobile Launcher that will support launches of the Space Launch System (SLS) rocket from Space Launch Complex 39B at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Meanwhile the 380 foot-tall tower that future Orion astronauts will ascend was left in place.

“The tower portion itself did not need to be disassembled.”

IMG_8393_1a_KSC ML_Ken Kremer

The Ares rockets originally belonged to NASA’s Constellation program, whose intended goal was returning American astronauts to the surface of the Moon by 2020.

Ares-1 was slated as the booster for the Orion crew capsule. However, President Obama cancelled Constellation and NASA’s Return to the Moon soon after entering office.

Since then the Obama Administration and Congress worked together in a bipartisan manner together to fashion a new space hardware architecture and granted approval for development of the SLS heavy lift rocket to replace the Ares-1 and heavy lift Ares-5.

Sending astronauts on a ‘Journey to Mars’ is now NASA’s agency wide and overarching goal for the next few decades of human spaceflight.

But before SLS can be transported to its launch pad at Kennedy’s Space Launch Complex 39-B for the EM-1 test flight the next big construction step has to begin.

“So now we have just started the next big effort to get ready for SLS.”

This involves installation of Ground Support Equipment (GSE) and a wide range of launch support services and systems to the ML.

“The next big effort is the GSE installation contract,” Ernst told me.

“We have about 40+ ground support and facility systems to be installed on the ML. There are about 800 items to be installed, including about 300,000-plus feet of cable and several miles of piping and tubing.”

“So that’s the next big effort to get ready for SLS. It’s about a 1.5 year contract and it was just awarded to J.P. Donovan Construction Inc. of Rockledge, Florida.”

“The work just started at the end of August.”

NASA currently plans to roll the ML into the Vehicle Assembly Building in early 2017 for stacking of SLS and Orion for the EM-1 test flight.

View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop  Mobile Launcher at the Kennedy Space Center in Florida.  Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com
View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop Mobile Launcher at the Kennedy Space Center in Florida. Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com

The SLS/Orion mounted stack atop the ML will then roll out to Space Launch Complex 39B for the 2018 launch from the Kennedy Space Center.

Pad 39B is also undergoing radical renovations and upgrades, transforming it from its use for NASA’s now retired Space Shuttle program into a modernized 21st century launch pad. Watch for my upcoming story.

Artist concept of the SLS Block 1 configuration.  Credit: NASA
Artist concept of the SLS Block 1 configuration mounted on the Mobile Launcher. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance Atlas V rocket with MUOS-4 US Navy communications satellite poised at pad 41 at Cape Canaveral Air Force Station, FL, set for launch on Sept. 2, 2015. EDT. View from atop NASA’s SLS mobile launcher at the Kenned Space Center. Credit: Ken Kremer/kenkremer.com
View from atop NASA’s SLS mobile launcher at the Kennedy Space Center, looking out to United Launch Alliance Atlas V rocket with MUOS-4 US Navy communications satellite poised at pad 41 at Cape Canaveral Air Force Station, FL, ‘prior to launch on Sept. 2, 2015. EDT. Credit: Ken Kremer/kenkremer.com

Challenge-Watch the Daytime Moon Occult Aldebaran for North America This Friday

Image credit:

How about that total lunar eclipse this past Sunday? Keep an eye of the waning gibbous Moon this week, as it begins a dramatic dive across the ecliptic towards a series of photogenic conjunctions throughout October.

The Main Event: This week’s highlight is an occultation of the bright +0.9 magnitude star Aldebaran (Alpha Tauri) by the waning gibbous Moon on Friday morning October 2nd.

Image credit: Occult 4.0 software
The occultation footprint for Friday’s occultation of Aldebaran by the Moon, with pre-dawn, dawn and post-dawn zones annotated. Image credit: Occult 4.0 software

This occurs in the pre-dawn hours for Alaskan residents, and under favorable dawn twilight skies along the U.S. and Canadian Pacific west coast; the remainder of the contiguous United States and Canada will see the occultation transpire after sunrise.   This is the 10th of 49 occultations of Aldebaran by the Moon worldwide running from January 29th, 2015 through September 3rd, 2018. The Moon will be at 74% waning gibbous phase, and Aldebaran will disappear behind its illuminated limb to reappear from behind its trailing dark limb.

Check out this amazing Vine of the last occultation of Aldebaran by the Moon courtesy of Andrew Symes @FailedProtostar:

It’s interesting to note that the southern graze-line for the occultation roughly follows the U.S./Mexican border. Seeing a bright star wink in and out from behind the lunar valleys can be an unforgettable sight, adding an eerie 3D perspective to the view. A detailed analysis of the event can even help model the rugged limb of the Moon.

Hunting stars and planets in the daytime can be an interesting feat of visual athletics. We’ve managed to spy Aldebaran near the lunar limb with binoculars during an occultation witnessed from Alaska on September 4th, 1996, and can attest that it’s quite possible to see a +1st magnitude star near the Moon with optical aid. A clear blue sky is key.  The Greek philosopher Thales noted that stars could be seen from the bottom of a well (though perhaps he’d fallen down a well or two too many in his time)… Friday’s event should push your local seeing to its limits. Start tracking Aldebaran before local sunrise, and you should be able to follow it all the way to the lunar limb, clear skies willing.

Image credit: Dave Dickinson/Stellarium
The occultation path for various locales across the United States Friday morning. Image credit: Dave Dickinson/Stellarium

Here’s a listing of times for key events for Friday from around the U.S. Check out The International Occultation Timing Association’s page for the event for an extensive listing:

Image credit: Dave Dickinson
Key times for the occultation for the same locales depicted in the graphic above, along with the lunar elevation (altitude) above the local horizon at the time noted. Image credit: Dave Dickinson

And whenever the Moon meets Aldebaran, it has to cross the open star cluster of the Hyades to get there, meaning there’ll be many other worthy occultations of moderately bright stars around October 2nd as well.  Gamma Tauri, 75 Tauri, Theta^1 Tauri, and SAO93975 are all occulted by the Moon on the morning of October 2nd leading up to the Aldebaran occultation; particularly intriguing is the grazing occultation of +5 magnitude 75 Tauri across the Florida peninsula.

The path of the moon through the Hyades this weekend. Image credit: Starry Night Education software
The path of the Moon through the Hyades this weekend. Image credit: Starry Night Education software

Fun fact: the Moon can, on occasion, occult members of the M45 Pleiades star cluster as well, as last occurred in 2010, and will next occur on 2023.

Chasing the Moon through October

Follow that Moon for the following dates with astronomical destiny worldwide:

  • The Moon reaches Last Quarter phase on Sunday, October 4th at 21:06 UT/5:06 PM EDT.
  • A close pass with Venus on October 8th, with a brilliant occultation visible in the pre-dawn hours from Australia.
  • A tight photogenic grouping of the Moon, Mars and Jupiter in a four degree circle on the morning on October 9th;
  • A close pass of the Moon just 36 hours from New near Mercury on the morning of Sunday, October 11th, with another occultation of the planet visible from Chile at dawn;
  • And finally, New Moon (sans eclipse, this time) occurring at 00:06 UT on October 13th, marking the start of lunation 1148.

Why occultations? Consider the wow factor; light from Aldebaran left about 65 years ago, before the start of the Space Age, only to get ‘photobombed’ by the occulting Moon at the last moment. Four bright stars (Regulus, Spica, Antares and Aldebaran) lie along the Moon’s path in our current epoch. Dial the celestial scene back about two millennia ago, and the Moon was also capable of occulting the bright star Pollux in the astronomical constellation of Gemini as well.

We’ll be running video for the event clear skies willing Friday morning here from Hudson, Florida in the Tampa Bay area. And as always, let us know of your tales of astronomical tribulation and triumph!

First Lunar Eclipse Ever Photographed with a Transit of the ISS

A montage of images taken during the lunar eclipse on September 28, 2015, as see from Rambouillet, France. ISS transit duration (total): 1.7 seconds. This is the first time an ISS transit has been photographed during an eclipse. Credit and copyright: Thierry Legault.

To our knowledge, this is the first time anyone has ever photographed a transit of the International Space Station of the Moon DURING a lunar eclipse. And guess who did it?

Not surprisingly, it was the legendary astrophotographer Thierry Legault.
Usually, Thierry will travel up to thousands of miles to capture unique events like this, but this time, he only had to go 10 miles!

“Even if I caught a cold, I could not miss it,” Thierry told Universe Today in an email. “The Moon was very low on the horizon, only 16 degrees, so the seeing was not very good, but at least the sky was clear.”

Still, a stunning — and singularly unique — view of the “Super Blood Moon” eclipse!

See the video below:

It was a quick pass, with the ISS transit duration lasting a total of 1.7 seconds. Thierry uses CalSky to calculate where he needs to be to best capture an event like this, then studies maps, and has a radio synchronized watch to know very accurately when the transit event will happen.

In a previous article on Universe Today, Legault shared how he figures out the best places to travel to from his home near Paris to get the absolute best shots:

“For transits I have to calculate the place, and considering the width of the visibility path is usually between 5-10 kilometers, but I have to be close to the center of this path,” Legault explained, “because if I am at the edge, it is just like an eclipse where the transit is shorter and shorter. And the edge of visibility line of the transit lasts very short. So the precision of where I have to be is within one kilometer.”

Here’s the specs: ISS Speed: 25000 km/h (15500 mph). ISS Distance: 1100 km; Moon distance: 357,000 km (320x).

You can see other imagery from around the world of the lunar eclipse here, with images taken by Universe Today readers and staff.

Earlier this year, Thierry captured an ISS transit during the March 20, 2015 SOLAR eclipse, which you can see here.

Universe Today’s David Dickinson said he’s been trying to steer people towards trying to capture an ISS transit during a lunar eclipse for quite some time, and concurred that Thierry’s feat is a first. Dave made a video earlier this year to explain how people might photograph it during the April 2015 lunar eclipse, but unfortunately, no astrophotographers had any luck.

Thanks again to Thierry Legault for sharing his incredible work with Universe Today. Check out his website for additional imagery and information.

You can also see some of Legault’s beautiful and sometimes ground-breaking astrophotography here on Universe Today, such as images of the space shuttle or International Space Station crossing the Sun or Moon, or views of spy satellites in orbit.

If you want to try and master the art of astrophotography, you can learn from Legault by reading his book, “Astrophotography,” which is available on Amazon in a large format book or as a Kindle edition for those who might like to have a lit version while out in the field. It is also available at book retailers like Barnes and Noble and Shop Indie bookstores, or from the publisher, Rocky Nook, here.

A Bloody Beautiful Supermoon Eclipse!

"The red Moon did not disappoint tonight," writes Arnar Kristjansson. Credit: Arnar Kristjansson

Like some of you, I outran the clouds just in time to catch last night’s total lunar eclipse. What a beautiful event! Here are some gorgeous pictures from our readers and Universe Today staff — souvenirs if you will — of the last total lunar eclipse anywhere until January 31, 2018. The sky got so dark, and the Moon hung like a plum in Earth’s shadow for what seemed a very long time. Did you estimate the Moon’s brightness on the Danjon Scale? My brother and I both came up with L=2 from two widely-separated locations; William Wiethoff in Hayward, Wisconsin rated it L=1. All three estimates would indicate a relatively dark eclipse.

Nicely-done sequence of eclipse phases taken early September 28, 2015. Credit: Own Llewellyn
Nicely-done sequence of eclipse phases taken early September 28, 2015. Click to enlarge. Credit: Own Llewellyn

The darkness of the umbra was particularly noticeable in the west quarter of the Moon in the giant volcanic plain known as Oceanus Procellarum. This makes sense as that portion of the Moon was located closest to the center of the Earth’s dark, inner umbra. The plain is also dark compared to the brighter lunar highlights, which being more reflective, formed a sort of pale ring around the northern rim of the lunar disk.

Salute to the eclipse! Credit: Jason Major
Salute to the final eclipse of the current tetrad that began 17 months ago.  Credit: Jason Major

The bottom or southern rim of the Moon, located farthest from the center of the umbra, appeared a lighter yellow-orange throughout totality.

Wide angle view of the Moon during totality in star-rich sky with the Aquila Milky visible at right. Credit: Bob King
Wide angle view of the Moon (lower left) during totality in a star-rich sky with the Aquila Milky Way visible at right. Credit: Bob King

This is just a small sampling of the excellent images arriving from our readers. More are flowing in on Universe Today’s Flickr site.  Thank you everyone for your submissions!

A crowd gather to watch the Moon during partial eclipse prior to totality. Credit: Robert Sparks
A crowd gather to watch the Moon during partial eclipse prior to totality. Credit: Robert Sparks
A hint of the penumbra shows in this photo. Hint: look near left top. Credit: Roger Hutchinson
A hint of the penumbra shows in this photo. Hint: look near left top. Credit: Roger Hutchinson
A bloody Moon iindeed! Credit: Chris Lyons
A bloody Moon iindeed! Notice how dark Oceanus Procellarum (top) appears. Credit: Chris Lyons
"Super Blood Moon". Credit: Alok SInghal
“Super Blood Moon”. Credit: Alok Singhal
Nice montage of images from eclipse start to finish. Credit: Mike Greenham
Nice montage of images from eclipse start to finish. Credit: Mike Greenham
One of the most awesome aspects of the eclipse was how many stars could be seen near the Moon. This picture was taken with a 100mm telesphoto lens. Credit: Bob King
One of the most awesome aspects of the eclipse was how many stars could be seen near the Moon. This picture was taken with a 100mm telesphoto lens. Credit: Bob King
Rare shot of the totally eclipsed Moon and bright meteor. Credit: VegaStar Carpentier Photography
Rare shot of the totally eclipsed Moon and bright meteor. Credit: VegaStar Carpentier Photography
A lucky break in the clouds made this photographer happy. Credit: Moe Ali
A lucky break in the clouds made this photographer happy. Credit: Moe Ali
Mary Spicer made exposures every 5 minutes. During totality the Moon dropped behind a tree so I had to relocate the camera, hence the small gap in the sequence. 35 shots in total, stacked using StarStax. Credit: Mary Spicer
Mary Spicer made exposures of the eclipsed Moon every 5 minutes. During totality, the Moon dropped behind a tree so she had to relocate the camera, hence the small gap in the sequence. 35 shots in total and stacked into one frame using StarStax. Credit: Mary Spicer
The Moon caught after totality between clouds through a small refracting telescope. Credit: Bob King
The Moon caught after totality between clouds through a small refracting telescope. Credit: Bob King
Another nice montage displaying all the partial phases, early, mid and late totality. Credit: Andre van der Hoeven
Another fine montage displaying all the partial phase plus early, mid and late totality. Credit: Andre van der Hoeven