Late Summer Tales of Tanabata

The August Milky Way graced with the occasional Perseid. Image credit: Andre van der Hoeven

One of the surest signs that late summer is here in the northern hemisphere is the arrival of the Milky Way in the early evening sky. As darkness falls ever earlier each night, the star-dappled plane of our home galaxy sits almost due south and stretches far to the north. This is also why we refer to the triangular shaped asterism formed by the bright stars of Altair, Deneb and Vega as the Summer Triangle. Two of these stars are the focus of a fascinating mythos from the Far East, and a poetic celestial configuration that commemorates star-crossed lovers lost.

We first heard of tales of Tanabata while stationed in Japan in the U.S. Air Force. Meaning ‘the seventh evening of the seventh month’ — sometimes simply abbreviated to ‘the seventh-seventh,’ — Tanabata is the summer Star Festival of Japan and dates back to about the 7th century AD. Korean and Chinese cultures also have a version of the tale, and the festival that was once considered a rite for the elite gained popularity during the Edo period in the 17th century to become a nationwide celebration.

Tanabata 2010. Wikimedia Commons/Hanasakijijii/3.0 license
Tanabata 2010. Wikimedia Commons/Hanasakijijii/3.0 license

The origin story of Tanabata involves the romance between the weaver’s daughter Orihime and the cow-herder’s son Kengyuu. As lovers will do, both began to neglect family duties — namely, weaving and cow-herding — until the two were separated by Orihime’s father, Tentei, represented by the Pole Star Polaris. The vast river of heaven, represented by the Milky Way, now separates the two. Orihime (Vega) sits on one side, while Kengyuu (Altair) is alone and unreachable on the other. The Emperor relented to Orihime’s pleading, however, and allows the two to meet once a year, on the seven day of the seventh month. And thus, Tanabata was born.

In late August, Vega and Altair are easily visible high to the east at dusk. You’re looking out along the Orion Spur — of which our solar system is a member — which traverses the Perseus and Cygnus arms of the galaxy beyond. We’re headed roughly in the same direction, towards a point known as the solar apex which is located near the bright star Vega, 25 light years distant. Remember the movie Contact? Vega was the fictional source of an extraterrestrial signal detected by Jodi Foster in the film.

our location in the Orion Spur of the Milky Way galaxy. image credit: Roberto Mura/Public Domain
You are here: our location in the Orion Spur of the Milky Way galaxy. Image credit: Roberto Mura/Public Domain

The modern Japanese calendar actually marks Tanabata on several different dates. The timing of the festival can vary from village to village, depending on which local convention is observed.

The original Japanese calendar was lunisolar, and very similar in convention to the modern Chinese festival calendar. A lunisolar calendar attempts to keep the cycles of the synodic period (29.5 days) of the Moon in sync with the solar calendar year, and must add an extra lunar month every 2-3 years to keep up. The modern Jewish calendar is another example of a lunisolar calendar, whereas the Islamic calendar follows the cycles of the Moon only.

The Summer Triangle. Image credit: Stellarium
The Summer Triangle. Image credit: Stellarium

Modern Japan has adapted the western Gregorian calendar, which is exclusively solar and reconciles the tropical and sidereal periods of the Sun. Though Tanabata was traditionally held in August, many Japanese communities simply transcribe the ‘seventh day of the seventh month’ onto the modern Gregorian calendar to mean July 7th. Still other villages use the ‘one-month delay’ rule, to center Tanabata on August 7th.

Some rural villages, however, still use the older lunisolar custom. By this reckoning, Tanabata always falls seven days after the New Moon at the end of seven full lunar cycles, when the Moon is a fat crescent not quite at first Quarter phase.

A table for future dates of Tanabata using the traditional lunisolar calendar for the next decade. Image credit: Dave Dickinson
A table for future dates of Tanabata using the traditional lunisolar calendar for the next decade. Image credit: Dave Dickinson

In 2015, this happens this Thursday on August 20th. Like Easter, Tanabata can fall early or late by about one lunar cycle, the earliest being August 1st, which happens on 2014 and 2033, and the latest being August 30th, which happens on 2006 and 2044.

Think of the crescent Moon as the boat, which once a year, brings the two lovers together across the celestial river of the Milky Way.

Late to the party? the waxing crescent Moon versus the plane of the galaxy on the evening of August 20th, 2015. Image credit: Starry Night Education Software
Late to the party? the waxing crescent Moon versus the plane of the galaxy on the evening of August 20th, 2015. Image credit: Starry Night Education Software (Click image to enlarge)

You may notice on the evening of the 20th that the boat no longer makes its portage to the river, completing the scene. In fact, the cosmic lineup of the Milky Way and the fat waxing crescent Moon is now more of a September/October affair. What gives?   Well, they once did align, way back when Tanabata first became a tradition over a millennia ago.

Blame our friend, the Precession of the Equinoxes for conspiring to keep our happy couple apart. The 26,000-odd year wobble is enough to move the equinoctial points about one degree along the ecliptic during a normal 70 year human life span. That all adds up, making the ferryman about one synodic period late to the party in modern times.

Enjoy the show, and happy Tanabata, whenever you may celebrate it in space and time.

Milestone Test Firing of NASA’s SLS Monster Rocket Engine Advances Human Path to Deep Space

During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA

During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA
Story/imagery updated
See video below of full duration hot-fire test
[/caption]

With today’s (Aug. 13) successful test firing of an RS-25 main stage engine for NASA’s Space Launch System (SLS) monster rocket currently under development, the program passed a key milestone advancing the agency on the path to propel astronauts back to deep space at the turn of the decade.

The 535 second long test firing of the RS-25 development engine was conducted on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – and ran for the planned full duration of nearly 9 minutes, matching the time they will fire during an actual SLS launch.

All indications are that the hot fire test apparently went off without a hitch, on first look.

“We ran the full duration and met all test objectives,” said Steve Wofford, SLS engine manager, on NASA TV following today’s’ test firing.

“There were no anomalies.” – based on the initial look.

The RS-25 is actually an upgraded version of former space shuttle main engines that were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit. Those same engines are now being modified for use by the SLS.

Spectators enjoy the view during the Aug. 13, 2015 test firing of the RS-25 engine for NASA’s Space Launch System (SLS) on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi.  Credit: NASA
Spectators enjoy the view during the Aug. 13, 2015 test firing of the RS-25 engine for NASA’s Space Launch System (SLS) on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA

“Data collected on performance of the engine at the various power levels will aid in adapting the former space shuttle engines to the new SLS vehicle mission requirements, including development of an all-new engine controller and software,” according to NASA officials .

The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.

The core stage (first stage) of the SLS will be powered by four RS-25 engines and a pair of the five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the most powerful rocket the world has ever seen.

Since shuttle orbiters were equipped with three space shuttle main engines, the use of four RS-25s on the SLS represents another significant change that also required many modifications being thoroughly evaluated as well.

RS-25 test firing in progress on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi, on Aug. 13, 2015.  Credit: NASA
RS-25 test firing in progress on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, on Aug. 13, 2015. Credit: NASA

The SLS will be some 10 percent more powerful than the Saturn V rockets that propelled astronauts to the Moon, including Neil Armstrong, the human to walk on the Moon during Apollo 11 in July 1969.

SLS will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal.

Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.

They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.

This video shows the full duration hot-fire test:

NASA has 16 of the RS-25s leftover from the shuttle era and they are all being modified and upgraded for use by the SLS rocket.

Today’s test was the sixth in a series of seven to qualify the modified engines to flight status. The engine ignited at 5:01 p.m. EDT and reached the full thrust level of 512,000 pounds within about 5 seconds.

The hot gas was exhausted out of the nozzle at 13 times the speed of sound.

Since the shuttle engines were designed and built over three decades ago, they are being modified where possible with state of the art components to enhance performance, functionality and ease of operation, by prime contractor Aerojet-Rocketdyne of Sacramento, California.

One of the key objectives of today’s engine firing and the entire hot fire series was to test the performance of a brand new engine controller assembled with modern manufacturing techniques.

“Operators on the A-1 Test Stand at Stennis are conducting the test series to qualify an all-new engine controller and put the upgraded former space shuttle main engines through the rigorous temperature and pressure conditions they will experience during a SLS mission,” says NASA.

“The new controller, or “brain,” for the engine, which monitors engine status and communicates between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine’s health and status.’

Video caption: RS-25 – The Ferrari of Rocket Engines explained. Credit: NASA

“The RS-25 is the most complicated rocket engine out there on the market, but that’s because it’s the Ferrari of rocket engines,” says Kathryn Crowe, RS-25 propulsion engineer.

“When you’re looking at designing a rocket engine, there are several different ways you can optimize it. You can optimize it through increasing its thrust, increasing the weight to thrust ratio, or increasing its overall efficiency and how it consumes your propellant. With this engine, they maximized all three.”

Engineers will now pour over the data collected from hundreds of data channels in great detail to thoroughly analyze the test results. They will incorporate any findings into future test firings of the RS-25s.

NASA says that testing of RS-25 flight engines is set to start later this fall.

“The RS-25 engine gives SLS a proven, high performance, affordable main propulsion system for deep space exploration. It is one of the most experienced large rocket engines in the world, with more than a million seconds of ground test and flight operations time.”

NASA plans to buy completely new sets of RS-25 engines from Aerojet-Rocketdyne taking full advantage of technological advances and modern manufacturing techniques as well as lessons learned from this hot fire series of engine tests.

The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.

Artist concept of the SLS Block 1 configuration.  Credit: NASA
Artist concept of the SLS Block 1 configuration. Credit: NASA

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com
STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Revealed: Mars to Appear Larger Than a Full Moon!

A recipe for a three ring circus? Image credit:

We can finally reveal the truth.

A massive conspiracy, spanning over a decade, has been revealed at last by basement bloggers, YouTubers and Facebook users everywhere, implicating ‘big-NASA’ and the powers that be in a massive cover-up.

Yes, it’s the month of August once again, and the Red Planet Mars is set to appear ‘larger than a Full Moon’ over the skies of Earth, as it apparently does now… every year.

Um, no. Stop. Just… stop.

Sure, by now, you’ve had the hoax forwarded to you by that certain well-meaning, but astronomically uninformed family member/co-worker/anonymous person on Facebook.

What’s new under the Sun concerning the August Mars Hoax? To see where the hoax was born, we have to journey all the way back to the close opposition of Mars on August 27th, 2003. Hey, we actually took two weeks leave in the Fall of 2003 just to sketch and image Mars each night from our backyard lair in the Sonoran desert south of Tucson, Arizona from the then known Very Small Optical Observatory. Those were the days. We measured dial-up internet speeds in kbit/s, ‘burned CDs,’ and Facebook and Twitter were still some years away. Even spam e-mail was still sorta hip.

Two years later in 2005, we were all amused, as the ‘August Mars Hoax’ chain email made its first post-2003 appearance in our collective inboxes. Heck, we were even eager in those halcyon days to take to the nascent web, and do that new hipster thing known as ‘blogging’ to explain just exactly why this couldn’t be so to the masses.

Later in 2006, 2007, and 2008, it wasn’t so funny.

The Mars Hoax just wouldn’t die. “One more unto the breach,” the collective astro-blogging community sighed, as we all dusted off last year’s post explaining how the Red Planet could never approach our own fair world so closely.

It. Just. Couldn’t. Because orbital mechanics. Because physics.

Even the advent of social media couldn’t kill in annual onslaught of the Mars Hoax, and over a Spiderman movie reboot later, we’re now seeing it shared across Facebook, Twitter and more.

Sure, the Mars Hoax is as fake as Donald Trump’s hair. If there’s any true science lesson to learn here, it’s perhaps the mildly interesting social science study of just how the Mars hoax weathers the lean months of winter, to reemerge every August.

Here’s the skinny (again!) on just why Mars can’t appear as large as the Full Moon:

-The Moon is 3,474 kilometers in diameter, and orbits the Earth at an average distance of just under 400,000 kilometers.

-At this distance, the Moon can only appear about 30’ (half a degree) across.

-Think that’s a lot? Well, you could ring the 360 degree circle of the local horizon with 720 Full Moons.

-Mars, like the Earth, orbits the Sun. Even with Earth at aphelion (its most distant point) and Mars at perihelion, we’re still 206.7 – 151.9 = 54.8 million km apart. Sure, aphelion and perihelion of our respective worlds don’t quite line up in our current epochs, but we’ll indulge imagination and fudge things a bit.

-Though Mars is just over 2x times larger in diameter than the Moon, it’s also more than 143 times farther away, even at its said hypothetical closest.

Credit Dave Dickinson
Mars vs Earth; oppositions from 2003 to 2018, including perihelion and aphelion positions. Image credit: Dave Dickinson

-Still want to see Mars as big as a Full Moon? Perhaps one day, astronauts will, though they’ll have to be orbiting just over a 800,000 km from the Red Planet to do it.

If we sound a little pessimistic in our characterizing the Mars Hoax as a recurring non-story, it’s because we see many truly fantastic things in space news that get far from their far shake. Real stories, of collapsing stars, rogue exoplanets, and intrepid rovers exploring distant worlds. Tales of humanoids, exploring space and doing the very best and noble things humanoids as a species can do.

Want to trace the history the Mars Hoax?

Here’s the saga of Universe Today’s coverage of all things ‘Mars Hoax’ since those olden days of the early web:

2005- No, Mars Won’t Look as Big as the Moon

2006- No, Mars Won’t Look as Big as the Moon in August

2007- Will Mars Look as Big as the Moon on August 27? Nope

2008- Please (Again) – Mars Will NOT Look as Big as the Full Moon

2009- Mars Will NOT Look as Big as the Full Moon… But You Can Watch it Get Closer

2010- Tonight’s the Night Mars Will NOT Look as Big as the Full Moon

2011- Is the Moon Mars Myth Over?

2013- The Cyber Myth that Just Won’t Die

2016- ????

Hey, it looks like the hoax did take a break in 2012 and 2014, so that’s encouraging at least…

The great Mars opposition of 2003. image credit: Dave Dickinson
The great Mars opposition of 2003. Image credit: Dave Dickinson

Now, I’m going to do my best to truly terrify all of science blogger-dom, and leave you with one final thought to consider. Mars reaches opposition (otherwise known in astronomical circles as ‘when it’s really nearest to the Earth’) once roughly every 26 months. All oppositions of Mars are not created equal, owing mostly to the eccentric orbit of the Red Planet. We have another fine opposition of Mars coming right up next year on May 22nd, 2016, followed by one that’s very nearly as favorable as the historic 2003 opposition in 2018, falling juuuuust shy of August on July 28th of that year…

Will the Mars Hoax meme find a new unwitting audience, and with it, new life?

Sleep tight…. we’ll be covering real science stories in the meantime, ’til we’re called to do battle with the Mars Hoax once again.

A Thrift Store Find Yields an Astronomical Mystery

Image Courtesy of Meagan Abell

A good mystery is often where you find it. Photographer Meagan Abell recently made a discovery during a thrift store expedition that not only set the internet abuzz, but also contains an interesting astronomical dimension as well. This is an instance where observational astronomy may play a key role in pinning down a date, and we’d like to put this story before the Universe Today community for further insight and consideration.

Meagan first discovered the set of four medium format negatives at a thrift store on Hull Street in Richmond, Virginia.  Beyond that, they have no provenance. Meagan was amazed at what see saw when she scanned in the negatives: the images of a woman walking into the surf have an ethereal beauty all their own. Obviously the work of a skilled photographer, the photos appear to date from the late 1940s or 1950s.

Meagan turned to social media for help, and cyber-sleuths responded in a big way.  #FindTheGirlsOnTheNegatives became a viral hit, but thus far, who the women in the images are and the story behind them remains a mystery.

We do know one tantalizing bit of information: several Facebook users have pinned down the location as Dockweiler Beach, California near Los Angeles International Airport. Keen-eyed observers noted the similarity of the outline of the distant hills seen to the north in one of the images.

Image courtesy of Meagan Abell
The silhouette of the distant hills above helped readers cinch the location as Dockweiler Beach. Image courtesy of Meagan Abell

A few things caught our eye upon reading the mystery of the girls in the negatives this past weekend. One shot clearly shows the notch of the Sun just below the twilight horizon. A second, even more intriguing image shows a tiny sliver of Moon just to the subject’s upper left.

Image courtesy of Meagan Abell
Note the orientation and phase of the waxing crescent Moon… Image courtesy of Meagan Abell

Could a date, or set of dates, be estimated based on these factors alone?

Let’s slip into astro-detective mode now. A few things are obvious right off the bat. First, the Moon is a waxing crescent, meaning the shots would have to be set in the evening. This also lends credence to the ocean being the Pacific, because the sunset is occurring over water. The similarity in cloud formations across all of the images seen also strongly suggests the photographer took all of the pictures on the same evening, during one session.

Can that crescent Moon tell us anything? It’s tiny and indistinct, but we have a few things to go on. The Moon looks to be a 5-6 day old waxing crescent about 30-40% illuminated. Not all waxing crescent Moons are created equal, as the ‘horns of the Moon’ can point in various directions based on the angle of the ecliptic to the local horizon at different times of the year.

Image credit: Dave Dickinson
A typical sampling of the orientation of the horns of the waxing crescent Moon throughout the year as seen from latitude 34 degrees north. Image credit: Dave Dickinson

The horns of the Moon appear to be oriented about 35 degrees from horizontal. Assuming the subject in the red dress is elevated slightly and about 20 feet from the observer, the Moon would be about 25-30 degrees above the horizon in the shot.

Now, Dockweiler Beach is located at latitude 33 degrees 55’ 20” north, longitude 118 degrees 26’ 3” west. The beach itself faces a perpendicular azimuth of 240 degrees out to sea, or roughly WSW.

Already, we can rule out winter and spring, because of the unfavorable angle of the dusk ecliptic. We want a time of year with A) a shallow southward ecliptic and B) a sunset roughly due west.

Image credit: Dave Dickinson
The disk of the Moon is deceptively tiny in an average 35mm frame. Image credit: Dave Dickinson

Turns out, late July through early October fit these ideal conditions for the location.

Can we narrow this even further? Well, here’s one possibility. Remember, this next step is what gumshoe PIs call a ‘hunch’…

The motion of the Moon is a wonderfully complicated affair. The path of the Moon is inclined about five degrees relative to the ecliptic, meaning that the Moon can ride anywhere from declination 28 degrees south, to 28 degrees north. From latitude 34 degrees north, this puts the mid-July ecliptic at about 33 degrees elevation across the meridian at sunset.

The nodal points where the path of the Moon crosses the ecliptic also precess slowly around the celestial sphere. This motion completes one revolution every 18.6 years, meaning that the Moon reaches those maximum declination values (sometimes referred to as a ‘long nights’ or the Major Lunar Standstill of the Moon) just under once every 19 years.

This occurred last in 2006, and will occur next in 2025. Incidentally, we’re at a shallow mid-point (known as a Minor Lunar Standstill) between the two dates this coming Fall.

Image credit: Dave  Dickinson/Meagan Abell
A good fit? A comparison of the Moon in the image (left) with a simulated view in Stellarium from August 19th, 1950 (click to enlarge). Image credit: Dave Dickinson/Meagan Abell

This also puts the late summer 1st quarter Moon as far south ‘in the weeds’ as possible. Extrapolating back in time, this sort of wide-ranging Moon occurred around 1949. Looking at the celestial scene in Stellarium, three dates nail the horn angle and elevation of the Moon seen in the photograph pretty closely around this time:

-August 11th, 1948

-August 29th, 1949

-August 19th, 1950

Of course, this is just a hunch. Perhaps the subject was standing on a westward facing spit of rocks. Or maybe the photographer was closer or farther away than estimated. Or maybe the negative was inverted left to right along the way… that’s why I’d like to invite, you, the astute sky watcher, to weigh in.

And even if we pinned down the date, the mystery remains. Who are the girls in the negatives? What became of the photo shoot? And how did the negatives end up in a thrift store in Virginia?

Read another astronomical mystery sleuthed out by Dave Dickinson, with The Downing of Spirit ‘03: Did the Moon Play a Role?

Update: an sharp-eyed reader noticed that if you boost the contrast, you can see an additional ‘speck’ in the Moon image (see comment discussion below):

Girl w-Moon (High Contrast)

Update: Meagan responds: “The object along the horizon in the crescent Moon image is actually just a transparency defect.” A second image from the same strip does not show the white speck (arrowed above) near the horizon.

 

Moon Transits Earth in Eye-poppingly EPIC View from 1 Million Miles Away

This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credit: NASA/NOAA

This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA
See YouTube version and EPIC camera below[/caption]

An eye-poppingly ‘EPIC’ view of the sunlit far side of the Moon transiting the sunlit side of Earth was recently captured by NASA’s Earth Polychromatic Imaging Camera (EPIC) camera from one million miles away. “Wow!” – is an understatement!

The stunning animation of the Moon crossing in front of the Earth, shown above, and seemingly unlike anything else, was created from a series of images taken in July by NASA’s EPIC camera flying aboard the orbiting Deep Space Climate Observatory (DSCOVR), a space weather monitoring satellite, according to a NASA statement.

Have just witnessed NASA’s New Horizons flyby of the Pluto-Charon double planet system, the similarity to what some call the Earth-Moon double planet system is eerie. You could imagine ones heart going out to Earth’s Australian continent as an upside down version of Pluto’s bright heart shaped ‘Tombaugh Regio’ region in the southern hemisphere.

EPIC is a four megapixel CCD camera and telescope mounted on DSCOVR and orbiting at the L1 Lagrange Point – a neutral gravity point that lies on the direct line between Earth and the sun.

The goal of the $340 million DSCOVR is to monitor the solar wind and aid very important forecasts of space weather at Earth from L1.

EPIC will capture “a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere.”

L1 is located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the DSCOVR satellite orbits about that spot just like a planet.

The EPIC images “were taken between 3:50 p.m. and 8:45 p.m. EDT on July 16, showing the moon moving over the Pacific Ocean near North America,” NASA said.

This image shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away.  Credits: NASA/NOAA
This image shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credits: NASA/NOAA

You can see Earth’s North Pole at the upper left side of the images which results from the orbital tilt of Earth from the vantage point of the spacecraft at the L1 Lagrange Point.

EPIC will take full disk color images of the sunlit side of Earth at least six times per day.

They will be made publically available by NASA at a dedicated website, when the camera starts its regular daily science observation campaign of the home planet in about a month during September.

NASA says the images will show varying views of the rotating Earth and they will be posted online some 12 to 36 hours after they are acquired.

Each image is actually a composite of three images taken in the red, green and blue channels of the EPIC camera to provide the final “natural color” image of Earth. Since the images are taken about 30 seconds apart as the moon is moving there is a slight but noticeable artifact on the right side of the moon, NASA explained.

Altogether, “ EPIC takes a series of 10 images using different narrowband spectral filters — from ultraviolet to near infrared — to produce a variety of science products. The red, green and blue channel images are used in these color images.”

EPIC should capture these Earth-Moon transits about twice per year as the orbit of DSCOVR crosses the orbital plane of the moon.

The closest analog according to NASA came in May 2008 when NASA’s Deep Impact spacecraft “captured a similar view of Earth and the moon from a distance of 31 million miles away. The series of images showed the moon passing in front of our home planet when it was only partially illuminated by the sun.”

We never see the far side of the moon from Earth since the bodies are tidally locked. And its quite apparent from the images, that the moon’s far side looks completely different from the side facing Earth. The far side lacks the large, dark, basaltic plains, or maria, that are so prominent on the Earth-facing side.

“It is surprising how much brighter Earth is than the moon,” said Adam Szabo, DSCOVR project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“Our planet is a truly brilliant object in dark space compared to the lunar surface.”

DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that is managed by NOAA. The satellite and science instruments were provided by NASA and NOAA.

Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014.  Credit: Ken Kremer/kenkremer.com/AmericaSpace
Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014. Credit: Ken Kremer/kenkremer.com

The couch sized probe was launched atop a SpaceX Falcon 9 on Feb. 11, 2015 from Cape Canaveral, Florida, to start a million mile journey to its deep space observation post. The rocket was funded by the USAF.

DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science. It was eventually built as a much more capable Earth science satellite that would also conduct the space weather observations.

But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard and the science was lost until now.

It was also dubbed “Goresat.’

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA

NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER will launch in February 2015 atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer/kenkremer.com/AmericaSpace
NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER launched in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather.   Credit:  Julian Leek
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather. Credit: Julian Leek

Blues for the Second Full Moon of July

An artificially created 'Blue Moon,' using the white balance settings on the camera. Image credit and copyright: John Chumack

Brace yourselves for Blue Moon madness. The month of July 2015 hosts two Full Moons: One on July 2nd and another coming right up this week on Friday, July 31st at 10:43 Universal Time (UT)/6:43 AM EDT.

In modern day vernacular, the occurrence of two Full Moons in one calendar month has become known as a ‘Blue Moon.’ This is a result of the synodic period (the amount of time it takes for the Moon to return to a like phase, in this case Full back to Full) of 29.5 Earth days being less than every calendar month except February.

In the ‘two Full Moons in one month’ sense, the last time a Blue Moon occurred was on August 31st, 2012, and the next is January 31st, 2018. The next time a Blue Moon occurs in the month of July is 2034, and the last July Blue Moon was 2004.

We say “once in a blue Moon,” as if it’s a rarity, but as you can see, they’re fairly frequent, occurring nearly once every 2-3 years or so.

Now, we’ll let you in on a secret. Like its modern internet meme cousin the ‘Super-Moon,’ astronomers don’t sit in mountain top observatories discussing the vagaries of the Blue Moon. In fact, astronomers rarely like to observe during the weeks surrounding the light-polluting Full Moon, and often compile data from the comfort of their university offices rather than visit mountaintop observatories these days…

The modern Blue Moon is now more of a cultural phenomenon. We’ve written previously about how an error brought us to the current ‘two Full Moons in one month definition.’ A more convoluted old timey definition was introduced in ye ole Maine Farmer’s Almanac circa 1930s as “the third Full Moon in an astronomical season with four.”

Legend has it that the Maine Farmer’s Almanac denoted this pesky extra seasonal Full Moon with ‘blue’ instead of black ink… to our knowledge, no examples exist to support this intriguing tale. Anyone have any old almanacs in the attic holding such a revelation out there?

The ghostly glow of the gibbous moon in Jean-Francois Millet's The Sheepfold. Image Credit: Public Domain
The ghostly glow of the gibbous moon in Jean-Francois Millet’s The Sheepfold. Image Credit: Public Domain

We’ve also laid out the occurrences for both types of Blue Moons for the remainder of the decade, as well as its New Moon cousin and internet meme to be, the Black Moon.

Untitled
The rising waxing gibbous Moon on the night of September 23rd, 1950. Image credit: Stellarium

Of course, the Moon most likely won’t appear to be physically blue, no matter what friends/family/co-workers/anonymous persons on Twitter say. The Moon can actually appear blue, as it did on September 23rd, 1950 for much of the eastern United States and Canada through the haze of several forest fires in western Canada. The Moon was actually at waxing gibbous phase on the evening of this phenomenon, and as far as we can tell, no photographic documentation of this event exists. Spaceweather, has, however gathered a gallery of blue moon eyewitness reports over the years, including a few images. This occurs when moonlight is filtered through suspended oil drops about a micrometer in diameter which scattered yellow and red light, leaving a Moon with a ghostly indigo glow.

Image credit
The 2012 Blue Moon as seen rising from Hudson, Florida. Image credit: Dave Dickinson

So there’s definitely another challenge to catch and photograph a truly ‘Blue Moon’ under such rare atmospheric circumstances… and remember, the Moon doesn’t have to be near Full to do it!

Watch that Moon, as we’ve got a few red letter dates coming up through the remainder of 2015.  First up: the Supermoon season cometh in August, as we have a series of three Full Moons falling less than 24 hours from perigee on August 29th, September 28th, and October 27th. Our money is on that middle one as having the potential to generate the most online lunacy, as it’s also the last  total lunar eclipse of the current tetrad of four total lunar eclipses for 2014 and 2015, a ‘super-blood moon eclipse’ anyone? Though the dead won’t rise from the grave to mark such an occasion, you can be sure that many a sky aficionado will stumble zombie-like into the office the next day after pulling an all-nighter for the last good North American total lunar eclipse until 2018.

And it’s worth noting the path of the Moon, as it reaches its shallow mid-point in the last half of 2015. The Moon’s orbit is tilted about five degrees relative to the ecliptic, meaning that it can ride anywhere from 18 degrees—as it does this year—to 28 degrees from the celestial equator. This cycle takes about 19 years to complete, and a wide-ranging ‘long nights Moon’ last occurred in 2006, and will next occur in 2025.

A 'mock Blue Moon...'
A ‘mock Blue Moon…’ induced by use of a military flashlight filter. Image credit: Dave Dickinson

So don’t fear the Blue Moon, but be sure to take a stroll under its light this coming Friday… and perhaps enjoy a frosty Blue Moon beer on the eve of the sultry month of August.

Catch a Fine Lunar Planetary Grouping This Weekend

Image Credit: Andrew Symes (@FailedProtostar).

Phew! Our eyes and thoughts have been cast so far out into the outer reaches of the solar system following New Horizons and Pluto this week, that we’re just now getting to the astronomical action going on in our own backyard.

You’ll recall that Venus and Jupiter have made a fine pairing in the evening sky since their close approach on July 1st. Despite some of the incredulous ‘Star of Bethlehem’ claims that this was a conjunction that happens ‘once every two thousand years,’ this sort of pairing is actually quite common. In fact, Venus and Jupiter are set to meet up again in the dawn sky later this year on October 25th. Continue reading “Catch a Fine Lunar Planetary Grouping This Weekend”

River of Fire Smoke Darkens Sun and Moon

The waning gibbous moon was still the color of fire even at midnight last night due to heavy smoke from Canadian forest fires. Credit: Bob King

My eyes are burning. The morning Sun, already 40° high, glares a lemony-orange. It’s meteorologically clear, but the sky looks like paste. What’s going on here?

Forest fires! Many in the Midwest, northern mountain states and Canadian provinces have been living under a dome of high altitude smoke the past few days reflected in the ruddy midday Sun and bloody midnight Moon.

On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC
On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC

Fires raging in the forests of northern Alberta and Saskatchewan have poured tremendous amounts of smoke into the atmosphere. Favorable winds have channeled the fumes into a brownish river of haze flowing south and east across Canada and into the northern third of the U.S. If an orange Sun glares overheard at midday, you’ve got smoke. Sometimes you can smell it, but often you can’t because it’s at an altitude of 1.2 – 3 miles (2-5 km).

The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King
The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King

But the visual effects are dramatic. Last night, the nearly full Moon looked so red and subdued, it could easily have been mistaken for a total lunar eclipse. I’ve never seen a darker, more remote-looking Moon. Yes, remote. Without its customary glare, our satellite looked shrunken as if untethered from Earth and drifting away into the deep.

And nevermind about the stars. Try as I might, I could only make out zero magnitude Vega last night. The camera and a time exposure did a little better but not much.

This image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra satellite on June 30, 2015.  Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air.  The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner
This image was taken by the Terra satellite on June 30, 2015. Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air. The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner

These days of deep red suns in the middle of the day fiery moons at night are an occasional occurrence across Canada and the northern half of the U.S. during the summer. Our previous bout with fire haze happened in early June as a result of massive wildfires in the Northwest Territories and northern Alberta. A change in wind direction and thorough atmospheric-cleaning by thunderstorms returned our blue skies days later.

Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA
Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA

While the downsides of fire haze range from poor air quality to starless nights, the upside is a more colorful Sun and Moon.

Back in grade school we all learned that white light is made up of every color of the rainbow. On a sunny day, air molecules, which are exceedingly tiny, scatter away the blue light coming from the Sun and color the sky blue. Around sunset and sunrise, when the Sun’s light passes through the lowest, thickest, haziest part of the atmosphere, greens and yellows are also scattered away, leaving an orange or red Sun.

Fire smoke adds billions of smoke particles to the atmosphere which scatter away purples, blues, greens and yellows to turn an otherwise white Sun into a blood red version smack in the middle of the day.

A ring-billed gull is silhouetted against a yellow sky and orange sun early Monday afternoon. Smoke from forest fires across Canada’s Northwest Territories and northern Alberta drifted over the region and colored the the sun orange long before sunset. Credit: Bob King
A ring-billed gull is silhouetted against a yellow sky and orange Sun  in Duluth, Minn. a few weeks back during the previous series of smoky days.This photo was taken around 3 p.m. local time. Credit: Bob King

Keep an eye on the color of the blue sky and watch for red suns at midday. Forest fires are becoming more common and widespread due to climate change. If you’ve never seen this eerie phenomenon, you may soon. For more satellite images of forest fires, check out NASA’s Fires and Smoke site.

I’ve often wondered what it would look like if Earth orbited a red dwarf star instead of the Sun. These smoky days give us a taste.

Neil Armstrong: The First Man to Walk on the Moon

armstrong on the Moon
Neil Armstrong on the Moon in 1969. Credit: NASA

Neil Armstrong is considered one of the greatest heroes of the space age, earning renown within the United States and the world over for being the first person to land a spacecraft on the Moon and the first person to set foot on the Lunar surface. But what is the story behind the man? As with all heroes and inspiration figures, the road that led to his famous declaration “One small step for [a] man,” began early on in his life.

Early Life:
Neil was born on August 5, 1930, in Auglaize County near Wapakoneta, Ohio to Stephen Koenig Armstrong and Viola Louise Engel. His father worked as an auditor for the Ohio government, which meant that the family moved around quite a lot during Neil’s formative years. In fact, the Armstrong’s lived in a total of 20 towns for the first few years of Neil’s life.

From an early age, Neil demonstrated a deep passion for flying. When he was just two-years-old, his father took him to the Cleveland Air Races. On July 20, 1936, when he was five, he experienced his first airplane flight in Warren, Ohio, where he and his father took a ride in a Ford Trimotor airplane (also known as the “Tin Goose”).

The Experimental Aircraft Association is bringing a 1929 Ford Tri-Motor to the Purdue Airport on Wednesday (Sept 5). Purdue students, faculty and staff will be able to ride in the plane, which served as one of the worldÕs first airliners. (Photo provided by the Experimental Aircraft Association)
The 1929 Ford Tri-Motor, which Armstrong flew in with his father on July 20th, 1936, on display at Purdue Airport. Credit: Experimental Aircraft Association

As a child, Armstrong was also active in the Boy Scouts and obtained the rank of Eagle Scout. As a teenager, he began taking flying lessons and worked at the local airport and at other odd jobs in order to pay for it. At the age of 16, before he even had his driver’s license, Neil earned his pilot’s license and began down the path that would eventually take him into space.

At the age of 17, Armstrong went off to study aeronautical engineering. Although he had been accepted to the Massachusetts Institute of Technology, he decided instead to go to Purdue University in West Lafayette, Indiana, in order to be closer to home. His college tuition was paid for under the Holloway Plan, where applicants committed to two years of study, followed by three years of service in the U.S. Navy, before completed the final two years of their degree program.

Military Pilot:
In January of 1949, at the age of 18, Armstrong was called-up for military service and went off to the Naval Air Station in Pensacola, Florida, to begin his flight training. This lasted almost 18 months, during which time he qualified for carrier landing aboard the USS Cabot and USS Wright. On August 16th, 1950, two weeks after his 20th birthday, Armstrong was informed by letter that he was a fully qualified Naval Aviator.

Two F9F-2 Panthers over Korea, with Armstrong piloting S-116 (left). Credit: U.S. Navy National Museum of Naval Aviation
Two F9F-2 Panthers over Korea, with Armstrong piloting S-116 (left). Credit: U.S. Navy National Museum of Naval Aviation

In June 1951, the carrier he had been assigned to – the USS Essex – set sail for Korea, where his unit (VF-51, an all-jet squadron) would act as a ground-attack squadron. In the course of the war, he flew 78 missions and accumulated approximately 121 hours of combat experience. His plane was shot down once, but Armstrong managed to eject and was rescued without incident or serious injury.

For his service to his country, he received several commendations, including the Air Medal for his first 20 combat missions, a Gold Star for the next 20, and the Korean Service Medal and Engagement Star. Armstrong left the Navy at age 22 on August 23rd, 1952, and became a Lieutenant, Junior Grade, in the U.S. Naval Reserve. He remained in the reserve for eight years, then resigned his commission on October 21st, 1960.

After his service in Korea, Armstrong returned to his studies at Purdue. In 1955, he was awarded a Bachelor of Science degree in Aeronautical Engineering, and a Master of Science degree in Aerospace Engineering from the University of Southern California in 1970. Armstrong would also be awarded honorary doctorates by several universities later on in life.

Armstrong, 30, and X-15 1 after a research flight in 1960. Credit: NASA
Armstrong, at the age of 30, pictured in front of X-15 #1 after a research flight in 1960. Credit: NASA

It was also during his time at Purdue that Armstrong met Janet Elizabeth Shearon, the woman he would go on to marry. After graduating, the two moved to Cleveland, Ohio, where Armstrong was working at the National Advisory Committee for Aeronautics’ (NACA) Lewis Flight Propulsion Laboratory as a research test pilot. The two married on January 28th, 1956, at the Congregational Church in Wilmette, Illinois.

After 18-months, the Armstrongs moved to Edwards Air Force Base in California where he began working for the NACA’s High-Speed Flight Station. While there, he flew multiple experimental aircraft, including the Bell X-1B, the T-33 Shooting Star, the Lockheed F-104, and the North American X-15. He also met legendary test pilot Chuck Yeager, and was involved in several incidents that went down in Andrew’s AFB folklore.

Gemini Program:
In September of 1962, Armstrong joined the NASA Astronaut Corps as part of what the press dubbed “the New Nine” – a group of nine astronauts that were selected for the Gemini and Apollo programs. These programs, which were the successor to the Mercury Program – which sought to place an astronaut in orbit (popularized by the movie The Right Stuff) – were designed with the intent of conducting long-term space flights and a manned mission to the Moon.

The Agena Target Vehicle as seen from Gemini 8 during rendezvous. Credit: NASA
The Agena Target Vehicle as seen from Gemini 8 during rendezvous. Credit: NASA

Neil’s first mission to space would take place four years later, on March 16th, 1966, aboard a Titan II spacecraft, with Neil acting as Command Pilot and fellow astronaut David Scott as Pilot. Known as Gemini 8, this mission was the most complex mission to date, involving a rendezvous and docking with an unmanned Agena target vehicle, and some extra-vehicular activity (EVA) being performed.

The docking procedure was a success, but due to mechanical failure, the mission had to be cut short. On September 12th, 1966, Armstrong served as the Capsule Communicator (CAPCOM) for the Gemini 11 mission, remaining in communication with astronauts Pete Conrad and Dick Gordon as they conducted spacecraft rendezvous and EVA operations.

On April 5th, 1967, just three and half months after the Apollo 1 fire took place, Deke Slayton – one of the Mercury Seven astronauts and NASA’s first Chief of the Astronaut Office – brought Armstrong and many other veterans of project Gemini together and told that they would be flying the first Lunar missions.

Apollo 11 Crew Photo. Credit: NASA
Apollo 11 Crew Photo, showing Neil Armstrong (left), Buzz Aldrin (right), and Michael Collins (middle). Credit: NASA

Over the next six months, Armstrong and the other astronauts began training for a possible trip to the Moon, and Neil was named backup commander for the Apollo 8 mission. On December 23rd, 1968, as Apollo 8 orbited the Moon, Slayton informed Armstrong that he would be commander for the Apollo 11 mission, joined by Buzz Aldrin as lunar module pilot and Michael Collins as command module pilot.

Apollo 11:
On July 16th, 1969, the historic mission blasted off from the Kennedy Space Center in Florida at 13:32:00 UTC (9:32:00 a.m. EDT local time). Thousands of people crowded the highways and beaches near the launch site to watch the Saturn V rocket ascend into the sky. Millions more watched from home, and President Richard M. Nixon viewed the proceedings from the Oval Office at the White House.

The rocket entered the Earth’s orbit some twelve minutes later. After one and a half orbits, the S-IVB third-stage engine pushed the spacecraft onto its trajectory toward the Moon. After 30 minutes, the command/service module pair separated from this last remaining Saturn V stage, docked with the Lunar Module, and the combined spacecraft headed for the Moon.

The Apollo 11 Command and Service Modules (CSM) are photographed from the Lunar Module (LM) in lunar orbit during the Apollo 11 lunar landing mission. Credit: NASA
The Apollo 11 Command and Service Modules (CSM) are photographed from the Lunar Module (LM) in lunar orbit during the Apollo 11 lunar landing mission. Credit: NASA

On July 19th at 17:21:50 UTC, Apollo 11 passed behind the Moon and fired its service propulsion engine to enter lunar orbit. On July 20th, the Lunar Module Eagle separated from the Command Module Columbia, and the crew commenced their Lunar descent. When Armstrong looked outside, he saw that the computer’s landing target was in a boulder-strewn area which he judged to be unsafe. As such, he took over manual control of the LM, and the craft landed at 20:17:40 UTC with only 25 seconds of fuel left.

Armstrong then radioed to Mission Control and announced their arrival by saying: “Houston, Tranquility Base here. The Eagle has landed.” Once the crew had gone through their checklist and depressurized the cabin, the Eagles’ hatch was opened and Armstrong began walking down the ladder to the Lunar surface first.

When he reached the bottom of the ladder, Armstrong said: “I’m going to step off the LEM now” (referring to the Lunar Excursion Module). He then turned and set his left boot on the surface of the Moon at 2:56 UTC July 21st, 1969, and spoke the famous words “That’s one small step for [a] man, one giant leap for mankind.”

About 20 minutes after the first step, Aldrin joined Armstrong on the surface and became the second human to set foot on the Moon. The duo then began their tasks of unveiling a plaque commemorating their flight, setting up the Early Apollo Scientific Experiment Package, and planting the flag of the United States. The crew then returned to the LM and blasted off, commencing their return trip to Earth.

A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA
Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA

Upon returning to Earth, the Apollo 11 crew went on a 45-day tour around the world called the “Giant Leap” tour. Armstrong also traveled to the Soviet Union to talk at the 13th annual conference of the International Committee on Space Research. While there, he met Valentina Tereshkova (the first female astronaut to go into space), Premier Alexei Kosygin, and was given a tour of the Yuri Gagarin Cosmonaut Training Center.

Shortly after the Apollo 11 mission, Armstrong announced that he did not intend to fly in space again; and in 1971, resigned from NASA. He then settled into a life of teaching, accepting a position in the Department of Aerospace Engineering at the University of Cincinnati. After eight years, he resigned. He also spent much of this time acting as a corporate spokesperson and serving on the board of directors of several companies.

Retirement and Death:
During his post-Apollo years, Armstrong also served on two spaceflight accident investigations. The first took place in 1970, where he served as part of the panel that investigated the Apollo 13 mission, presented a detailed chronology of the mission and made recommendations. In 1986, President Reagan appointed him as vice-chairman of the Rogers Commission to investigate the Space-shuttle Challenger disaster of that year.

Members of the U.S. Navy ceremonial guard hold an American flag over the ashes of Apollo 11 astronaut Neil Armstrong during a burial at sea service on board the USS Philippine Sea (CG-58), on Friday, September 14, 2012, in the Atlantic Ocean. Credit: NASA
Neil Armstrong was buried at sea on Sept. 14th, 2012. The ceremony took place on board the USS Philippine Sea (CG-58) in the Atlantic Ocean. Credit: NASA

In 2012, Armstrong underwent vascular bypass surgery to relieve blocked coronary arteries. Although he was reportedly recovering well, he died on August 25th, in Cincinnati, Ohio. In a ceremony that was held aboard the USS Philippine Sea (an American missile cruiser) Armstrong was buried with honors in a ceremony where a U.S. Navy ceremonial guard draped an American flag over his ashes before commended them to the sea.

For his years of service, Armstrong has received numerous medals including the Presidential Medal of Freedom, the Congressional Space Medal of Honor, the Congressional Gold Medal, the Robert J. Collier Trophy, and the Sylvanus Thayer Award.

Neil Armstrong has had over a dozen elementary, middle and high schools named in his honor, and many streets, buildings, schools, and other places around the world have been named in honor of Armstrong and/or the Apollo 11 mission. The lunar crater Armstrong, which sits approx. 50 km (31 miles) from the Apollo 11 landing site, and asteroid 6469 Armstrong are named in his honor.

Armstrong was also inducted into the Aerospace Walk of Honor, the National Aviation Hall of Fame, and the United States Astronaut Hall of Fame. Armstrong and his Apollo 11 crewmates were the 1999 recipients of the Langley Gold Medal from the Smithsonian Institution. His alma mater, Purdue University, also named a new engineering hall after him, which was completed in 2007.

Universe Today has articles on Neil Armstrong and first man on the Moon.

For more information, check out Neil Armstrong and NASA’s Human Spaceflight.

Astronomy Cast has an episode on the Moon.

Sources:
NASA: Who is Neil Armstrong
NASA: Biography of Neil Armstrong

Returning the “Silent Sentinel” to Active Duty

Situated on the south shore of New Jersey’s Shark River lies 37 acres of land known as Camp Evans. On April 1, 2015, I was privileged to attend the dedication ceremony celebrating Camp Evans’ becoming one of only 2532 locations in the United States designated as a National Historic Landmark.

Plaque Commemorating the Designation of Camp Evans as a National Historic Landmark. April 2, 2015. [photo: Robert Raia Photography]
Plaque Commemorating the Designation of Camp Evans as a National Historic Landmark. April 1, 2015. [photo: Robert Raia Photography]
Camp Evans, originally known as the Belmar Receiving Station, is rich in history:

  • In 1912, Gugliemlo Marconi and his company, the American Marconi Company, constructed the Belmar Receiving Station which became part of the wireless girdle of the earth.
  • In 1917, the site was acquired as part of the Navy’s World War I “Trans-Atlantic Communication System.”
  • In 1941, the Army Signal Corps purchased the property to construct a top-secret research facility, and it was renamed Evans Signal Laboratory which later became Camp Evans Signal Laboratory.
  • Following a visit in late October, 1953, Senator Joseph McCarthy described Camp Evans as a “house of spies.” Following an investigation that spanned 1953-1954, not one single employee was prosecuted.

But perhaps Camp Evans’ most interesting – and surprising – place in history begins with a small, informal research project taking place on a parcel of land in the Camp’s northeast corner. The ramifications of this project would ultimately give birth the to Space Age, lead to the development of the US Space Program, and start the Cold War.

Following the end of WWII, American scientists at Camp Evans continued their investigation into whether the earth’s ionosphere could be penetrated using radio waves – a feat that had been studied prior to the end of the War but had long been believed impossible. Project Diana, led by Lt. Col. John H. DeWitt, Jr., aimed to prove that it could indeed be penetrated. A group of radar scientists awaiting their discharge from the Army modified a radar antenna – including significantly boosting its output power – and placed it in the northeast corner of Camp Evans.

RADAR Dish at Camp Evans Circa 1946
Location of the Radar Antenna on the Northeast Corner of Camp Evans Circa 1946. [photo: InfoAge website]

On the morning of January 10, 1946, with the dish pointed at the rising moon, a series of radar signals was broadcast. Exactly 2.5 seconds after each signal’s broadcast, its corresponding echo was detected. This was significant because 2.5 seconds is precisely the time required for light to travel the round trip distance between the earth and the moon. Project Diana – and her scientists – had successfully demonstrated that the ionosphere was, in fact, penetrable, and communication beyond our planet was possible. And thus was born the Space Age – as well as the field of Radar Astronomy.

SCR-271 Bedspring RADAR Antenna Pointing at the Moon [photo: David Mofenson; InfoAge website]
SCR-271 Bedspring RADAR Antenna Pointing at the Moon [photo: David Mofenson; InfoAge website]
By mid-1958 the United States had launched the Television InfraRed Observation Satellite (TIROS) program designed to study the viability of using satellite imagery and observations as a means of studying the Earth and improving weather forecasting. As part of this effort, the original “Moonbounce” antenna was replaced with a 60-foot parabolic radio antenna dish which would serve as the project’s downlink Ground Communication Station.

60-Meter Parabolic Dish Being Constructed on Project Diana Site [photo: Frank Vosk; InfoAge website]
60-Meter Parabolic Dish Being Constructed on Project Diana Site [photo: Frank Vosk; InfoAge website]
On April 1, 1960, NASA successfully launched its TIROS I satellite and the “Silent Sentinel Radio Dish” at Camp Evans began receiving its data being sent down to earth.

TIROS I Satellite
TIROS I Satellite [photo: NASA; National Space Science Data Center]
The resulting images were so astonishing and groundbreaking that the first photos received from TIROS I were immediately printed and flown to Washington where they were presented to President Eisenhower by NASA Administrator T. Keith Glennan.

President Eisenhower and NASA Administrator Glennan Viewing the First Satellite Images from TIROS I. [photo: wikimedia commons]
President Eisenhower and NASA Administrator Glennan Viewing the First Satellite Images from TIROS I. [photo: wikimedia commons]
The TIROS program would go on to be instrumental in meteorological applications not only because it provided the first accurate weather forecasts and hurricane tracking based on satellite information, but also because it began providing continuous coverage of the earth’s weather in 1962, and ultimately lead to the development of more sophisticated observational satellites. [1]

In addition to serving as the downlink Ground Communications Center for the TIROS I and TIROS II satellites, this same dish has also tracked:

Sadly, by the mid-1970s, the technology within the TIROS dish (officially named the TLM-18 Space Telemetry Antenna) had become obsolete, and it was retired. Camp Evans was decommissioned and closed in 1993 and its land was transferred to the National Park Service. But in 2012, Camp Evans was designated a National Historic Landmark, and thus began a new, revitalized era for this immensely significant site. In addition to the TIROS Dish and the InfoAge Science History Learning Center and Museum, Camp Evans is also home to:

  • The Military History Museum;
  • The Radio Technology Museum;
  • The National Broadcasters’ Hall of Fame.
Apollo Guidance Computer
The Apollo Guidance Computer, Just One of the Many Historical Exhibits on Display at the InfoAge Science History Learning Center and Museum at Historic Camp Evans [photo: Robert Raia Photography]

DISH RESTORATION

In 2001, InfoAge stepped in and began preserving and restoring the mechanical systems of the TIROS dish. In 2006, a donation from Harris Corporation allowed the dish to be completely repainted and preserved.

Norman Jarosik, Senior Research Physicist at Princeton University and Daniel Marlow, PhD. and Evans Crawford 1911 Professor of Physics at Princeton, as well as countless volunteers from the University, InfoAge, Wall Township (NJ), and the Ocean-Monmouth Amateur Radio Club, Inc. (OMARC) have provided the engineering/scientific knowledge and sweat-equity required to refurbish and update the inoperative radio dish. The original vacuum-tube technology has been replaced with smaller electronic counterparts. Rusty equipment has been replaced. Seized/inoperative motors have been reconditioned and rebuilt. And system-level software controls have been added. The TIROS dish has been transformed into a truly modern, state-of-the-art Radio Astronomy Satellite Dish and Control Center.

The TIROS Dish as it Appears Today [photo: Nancy J. Graziano]
The TIROS Dish as it Appears Today [photo: Nancy J. Graziano]
On January 19, 2015, scientists from Princeton University pointed the dish skyward toward the center of our galaxy and detected a clear peak at 1420.4 MHz, the well-known 21 cm emission line originating from the deepest recesses of the Milky Way – the dish was working!

The Control Console Today. [photo: Nancy J. Graziano]
The Control Console Today. [photo: Nancy J. Graziano]

FUTURE PLANS

After almost 15 years of restoration and nearly 40 years since it last listened to the sky, the TIROS dish is once again operational, is detecting radio signals from the universe, and is well on its way to be used for science education.

Work continues on renovating Building 9162, the original TIROS Control Building, to convert it into the InfoAge Visitor Center. Plans include a NASA-style control room with theater seating for 20-30 students, a full-scale model of the original TIROS I satellite, and other exhibits dedicated to the history of Project Diana, the TIROS program, and the scientific impact these projects have had on our daily lives.

Visitor Center Floorplan [credit: InfoAge]
Artist’s Conception: Visitor Center Floorplan [credit: InfoAge]
Future activities being planned using the dish include a Moonbounce experiment, communicating with NOAA weather satellites, performing real-time satellite imaging, viewing the Milky Way in the radio spectrum, and tracking deep space pulsars.

If you are interested in visiting the InfoAge Science History Learning Center and Museum at Historic Camp Evans, they are open to the public on Wednesdays, Saturdays, and Sundays, from 1-5pm.

To learn more about Camp Evans, Project Diana, the TIROS Satellite project, and InfoAge, tune into this week’s Weekly Space Hangout. This week’s special guest is Stephen Fowler, the Creative Director at InfoAge. He will be chatting with Fraser about the history and plans for Camp Evans and the TIROS dish.

Still want to learn more? Click on any of the links provided in this article, or visit the following sites: