When Apollo 17 lifted off from the moon, a camera captured the movements of the spacecraft — even though nobody was left behind to, say, establish a lunar base. How was that possible? With a camera on the lunar rover that could be controlled — or even programmed — from Earth.
Pretty impressive technology for the takeoff 42 years ago yesterday (Dec. 14) in 1972, although it took three tries to get the technique right.
As the Smithsonian National Air and Space Museum explains in a 2011 blog post, the camera was available on Apollos 15, 16 and 17. The television camera communicated from Earth using a high-gain antenna on the rover, but there was a slight time delay for the radio waves to travel (a couple of seconds) between the Earth and the Moon.
So the engineers suggested moving the rover a certain distance from the lunar module and setting the camera to automatically tilt to show the lunar liftoff when commanded from Earth.
That was the plan, at least. On Apollo 15, the tilt mechanism malfunctioned and the camera never moved upwards, allowing the lunar module to slip out of sight. And while the attempt on Apollo 16 gave a longer view of the lunar module rising up, the astronauts actually parked the rover too close to it, which threw off the calculations and timing of the tilt upwards so it left view just a few moments into the flight.
Now, the way that worked was this. Harley Weyer, who worked for me, sat down and figured what the trajectory would be and where the lunar rover would be each second as it moved out, and what your settings would go to. That picture you see was taken without looking at it [the liftoff] at all. There was no watching it and doing anything with that picture. As the crew counted down, that’s a [Apollo] 17 picture you see, as [Eugene] Cernan counted down and he knew he had to park in the right place because I was going to kill him, he didn’t — and Gene and I are good friends, he’ll tell you that — I actually sent the first command at liftoff minus three seconds. And each command was scripted, and all I was doing was looking at a clock, sending commands. I was not looking at the television. I really didn’t see it until it was over with and played back. Those were just pre-set commands that were just punched out via time. That’s the way it was followed.
Video Caption: Last moments of Orion descent as viewed from the recovery ship USS Anchorage. Credit: NASA/US Navy
Relive the final moments of the first test flight of NASA’s Orion spacecraft on Dec. 5, 2014, through this amazing series of up close videos showing the spacecraft plummeting back to Earth through the rollicking ocean recovery by dive teams from the US Navy and the USS Anchorage amphibious ship.
The two orbit, 4.5 hour flight maiden test flight of Orion on the Exploration Flight Test-1 (EFT-1) mission was a complete success.
It was brought back to land to the US Naval Base San Diego, California.
Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.
Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.
Video Caption: NASA TV covers the final moments of Orion spacecraft descent and splashdown in the Pacific Ocean approximately 600 miles southwest of San Diego on Dec. 5, 2014, as viewed live from the Ikhana airborne drone. Credit: NASA TV
The spacecraft was loaded with over 1200 sensors to collect critical performance data from numerous systems throughout the mission for evaluation by engineers.
EFT-1 tested the rocket, second stage, and jettison mechanisms as well as avionics, attitude control, computers, environmental controls, and electronic systems inside the Orion spacecraft and ocean recovery operations.
It also tested the effects of intense radiation by traveling twice through the Van Allen radiation belt.
After successfully accomplishing all its orbital flight test objectives, the capsule fired its thrusters and began the rapid fire 10 minute plummet back to Earth.
During the high speed atmospheric reentry, it approached speeds of 20,000 mph (32,000 kph), approximating 85% of the reentry velocity for astronauts returning from voyages to the Red Planet.
The capsule endured scorching temperatures near 4,000 degrees Fahrenheit in a critical and successful test of the 16.5-foot-wide heat shield and thermal protection tiles.
The entire system of reentry hardware, commands, and 11 drogue and main parachutes performed flawlessly.
Finally, Orion descended on a trio of massive red and white main parachutes to achieve a statistical bulls-eye splashdown in the Pacific Ocean, 600 miles southwest of San Diego, at 11:29 a.m. EST.
It splashed down within one mile of the touchdown spot predicted by mission controllers after returning from an altitude of over 3600 miles above Earth.
The three main parachutes slowed Orion to about 17 mph (27 kph).
Here’s a magnificent up close and personal view direct from the US Navy teams that recovered Orion on Dec. 5, 2014.
Video Caption: Just released footage of the Orion Spacecraft landing and recovery! See all the sights and sounds, gurgling, and more from onboard the Zodiac boats with the dive teams on Dec. 5, 2014. See the initial recovery operations, including safing the crew module and towing it into the well deck of the USS Anchorage, a landing platform-dock ship. Credit: US Navy
Navy teams in Zodiac boats had attached a collar and winch line to Orion at sea and then safely towed it into the flooded well deck of the USS Anchorage and positioned it over rubber “speed bumps.”
Next they secured Orion inside its recovery cradle and transported it back to US Naval Base San Diego where it was off-loaded from the USS Anchorage.
The Orion EFT-1 spacecraft was recovered by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin.
Orion has been offloaded from the USS Anchorage and moved about a mile to the “Mole Pier” where Lockheed Martin technicians have conducted the first test inspection of the crew module and collected test data.
It will soon be hauled on a flatbed truck across the US for a nearly two week trip back to Kennedy where it will arrive just in time for the Christmas holidays.
Technicians at KSC will examine every nook and cranny of Orion and will dissemble it for up close inspection and lessons learned.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
For a brief period in the 1960s and 1970s, 12 people ventured all the way to the surface of the Moon. The accomplishment at the time was hailed as a political victory over the Soviet Union, but as decades have passed the landings have taken on more symbolic meaning with NASA — a time of optimism, of science and of the American spirit.
The last lunar landing was Apollo 17, which took place on Dec. 11, 1972. Commander Eugene Cernan and lunar module pilot Harrison Schmitt did three moonwalks in the Taurus-Littrow valley, scoping out the highlands to try to get a geologic sense of the area. Among their more memorable findings are orange soil. You can see some pictures from their sojourn below.
If you think the upside-down Christmas tree above is bizarre — that’s one of the latest activities of Expedition 42 astronauts in space right now — think back to the history of other holidays in orbit.
We’ve seen a vital telescope undergo repairs, an emergency replacement of part of a space station’s cooling system, and even a tree made of food cans. Learn more about these fun holiday times below.
Reading from above the moon (Apollo 8, 1969)
In this famous reading from the Bible, astronauts Frank Borman, Jim Lovell and Bill Anders shared their experience looking at the Moon on Dec. 24, 1968. The Apollo 8 crew was the first to venture to lunar orbit, just seven months before the Apollo 11 crew made it all the way to the surface.
Food can “Christmas tree” (Skylab 4, 1973)
Living on the Skylab station taught astronauts the value of improvisation, such as when the first crew (under NASA’s instructions) repaired a sunshield to stop electronics and people from roasting inside. Skylab 4 took the creativity to Christmas when they created a tree out of food cans.
Hubble Space Telescope repair (STS-103, 1999)
When the Hubble Space Telescope was in hibernation due to a failed gyroscope, the STS-103 crew made repairs in December 1999 that culminated with the final spacewalk on Christmas Day. The telescope remains in great shape to this day, following another repair mission in 2009.
First Christmas on the International Space Station (Expedition 1, 2000)
The Expedition 1 crew was the first on the International Space Station to spend Christmas in orbit. “On this night, we would like to share with all-our good fortune on this space adventure; our wonder and excitement as we gaze on the Earth’s splendor; and our strong sense — that the human spirit to do, to explore, to discover — has no limit,” the crew said in a statement on Christmas Eve, in part.
Ammonia tank replacement (Expedition 38, 2013)
Just last year, an ammonia tank failure crippled a bunch of systems on the International Space Station and forced spacewalkers outside to fix the problem, in the middle of a leaky suit investigation. The astronauts made the final repairs ahead of schedule, on Christmas Eve.
While space explorers often set their sights far out in the Solar System — or even beyond — we can’t forget the majesty of our next-door neighbor. The Moon, a mere three days’ flight away from Earth during the Apollo years, is an easy beacon in the darkness for anybody to observe. Even without a telescope.
Lately, several Universe Today readers have contributed awesome shots to our Flickr pool showing some close-ups of this barren world. Take the panorama above by Roger Hutchinson, for example, showing the view along the terminator (darkness-light line). And we’ve collected some more stunners below.
Video Caption: Animation details NASA’s Orion Exploration Flight Test-1 (EFT-1) mission launching on Dec. 4. 2014. Credit: NASA
It’s not Science Fiction! It’s Not Star Trek!
No. It’s a really, really big NASA Mission! It’s Orion!
In fact, it’s the biggest and most important development in US Human Spaceflight since the end of the Space Shuttle Program in 2011.
Orion is launching soon on its first flight, the pathfinding Exploration Flight Test-1 (EFT-1) mission and sets NASA on the path to send humans to Mars in the 2030s.
Watch this cool NASA animation beautifully detailing every key step of Orion’s First Launch!
Orion is designed to take humans farther than they’ve ever gone before. Even farther into deep space than NASA’s Apollo moon landing which ended more than four decades ago!
We are T-MINUS 4 Days and Counting to the inaugural blastoff of Orion as of today, Sunday, November 30, 2014.
To learn even more about the 8 major events and goals happening during Orion’s EFT-1 mission be sure to check out my recent story with NASA’s fabulous new set of infographics – here.
Every aspect of the final processing steps now in progress by engineers and technicians from NASA, rocket provider United Launch Alliance, and Orion prime contractor Lockheed Martin is proceeding smoothly and marching towards launch.
Orion will lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
EFT-1 will test the rocket, second stage, jettison mechanisms as well as avionics, attitude control, computers and electronic systems inside the Orion spacecraft.
Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
NASA TV will provide several hours of live coverage
Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
Africa is home to 7 out of 10 of the world’s fastest-growing economies. It’s population is also the “youngest” in the world, with 50% of the population being 19 years old or younger. And amongst these young people are scores of innovators and entrepreneurs who are looking to bring homegrown innovation to their continent and share it with the outside world.
Nowhere is this more apparent than with the #Africa2Moon Mission, a crowdfunded campaign that aims to send a lander or orbiter to the Moon in the coming years.
Spearheaded by the Foundation for Space Development – a non-profit organization headquartered in Capetown, South Africa – the goal of this project is to fund the development of a robotic craft that will either land on or establish orbit around the Moon. Once there, it will transmit video images back to Earth, and then distribute them via the internet into classrooms all across Africa.
In so doing, the project’s founders and participants hope to help the current generation of Africans realize their own potential. Or, as it says on their website: “The #Africa2Moon Mission will inspire the youth of Africa to believe that ‘We Can Reach for the Moon’by really reaching for the moon!”
Through their crowdfunding and a social media campaign (Twitter hashtag #Africa2Moon) they hope to raise a minimum of $150,000 for Phase I, which will consist of developing the mission concept and associated feasibility study. This mission concept will be developed collaboratively by experts assembled from African universities and industries, as well as international space experts, all under the leadership of the Mission Administrator – Professor Martinez.
Martinez is a veteran when it comes to space affairs. In addition to being the convener for the space studies program at the University of Cape Town, he is also the Chairman of the South African Council for Space Affairs (the national regulatory body for space activities in South Africa). He is joined by Jonathan Weltman, the Project Administrator, who is both an aeronautical engineer and the current CEO of the Foundation for Space Development.
Phase I is planned to run from Jan to Nov 2015 and will be the starting point for Phase II of #Africa2Moon, which will be a detailed mission design. At this point, the #Africa2Moon mission planners and engineering team will determine precisely what will be needed to see it through to completion and to reach the Moon.
Beyond inspiring young minds, the program also aims to promote education in the four major fields of Science, Technology, Engineering, and Mathematics (aka STEM). Towards this end, they have pledged to commit 25% of all the funds they raise towards STEM education through a series of #Africa2Moon workshops for educators and students. In addition, numerous public engagement activities will be mounted in partnership with other groups committed to STEM education, science awareness, and outreach.
Africa is so often thought of as a land in turmoil – a place that is perennially plagued by ethnic violence, dictators, disease, drought, and famine. This popular misconception belies very positive facts about the growing economy of world’s second-largest and second-most populous continent.
That being said, all those working on the #Africa2Moon project hope it will enable future generations of Africans to bridge the humanitarian and economic divide and end Africa’s financial dependence on the rest of the world. It is also hoped that the mission will provide a platform for one or more scientific experiments, contribute to humankind’s knowledge of the moon, and form part of Africa’s contribution to global space exploration activities.
The project’s current list of supporters include the SpaceLab at the University of Cape Town, The South African Space Association, Women in Aerospace Africa, The Cape Town Science Centre, Space Commercial Services Group, Space Advisory Company, and the Space Engineering Academy. They have also launched a seed-funding campaign drive through its partnership with the UN Foundation’s #GivingTuesday initiative.
For more information, go to the Foundation’s website, or check out the mission’s Indiegogo or CauseVox page.
Iconic Kennedy Space Center Countdown Clock seen here retires
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
Story updated and more photos[/caption]
In another sign of dramatically changing times since the end of NASA’s Space Shuttle program, the world famous Countdown Clock that ticked down to numerous blastoffs at the Kennedy Space Center Press Site and was ever present to billions of television viewers worldwide, has been retired.
Years of poor weather and decades of unforgiving time have visibly taken their toll on the iconic Countdown Clock beloved by space enthusiasts across the globe – as I have personally witnessed over years of reporting on launches from the KSC Press Site.
It was designed in the 1960s and has been counting down launches both manned and unmanned since the Apollo 12 moon landing mission in November 1969. And it continued through the final shuttle mission liftoff in July 2011 and a variety of unmanned NASA launches since then.
The countdown clock’s last use came just two months ago in September 2014 during the SpaceX CRS-4 launch to the ISS, which I attended along with the STS-135 launch.
The clock is located just a short walk away from another iconic NASA symbol – the Vehicle Assembly Building (VAB) – which assembled the Apollo/Saturn and Space Shuttle stacks for which it ticked down to blastoff. See photo below.
A new clock should be in place for NASA’s momentous upcoming launch of the Orion crew capsule on its inaugural unmanned test flight on Dec. 4, 2014.
Because of its age, it has become harder to replace broken pieces.
“Maintaining the clock was becoming problematic,” NASA Press spokesman Allard Beutel told Universe Today.
It displays only time in big bold digits. But of course in this new modern digital era it will be replaced by one with a modern multimedia display, similar to the screens seen at sporting venues.
“The new clock will not only be a timepiece, but be more versatile with what we can show on the digital display,” Beutel told me.
The countdown clock is a must see for journalists, dignitaries and assorted visitors alike. Absolutely everyone, and I mean everyone !! – wants a selfie or group shot with it in some amusing or charming way to remember good times throughout the ages.
And of course, nothing beats including the countdown clock and the adjacent US flag in launch pictures in some dramatic way.
Indeed the clock and flag are officially called “The Press Site: Clock and Flag Pole” and are were listed in the National Register of Historic Places on Jan. 21, 2000.
The clock was officially powered down for the last time at 3:45 p.m. EDT on Nov. 19, 2014.
“The countdown clock at Kennedy’s Press Site is considered one of the most-watched timepieces in the world and may only be second in popularity to Big Ben’s Great Clock in London, England. It also has been the backdrop for a few Hollywood movies,” noted a NASA press release announcing the impending shutdown of the iconic clock.
“It is so absolutely unique — the one and only — built for the world to watch the countdown and launch,” said Timothy M. Wright, IMCS Timing, Countdown and Photo Services. “From a historical aspect, it has been very faithful to serve its mission requirements.”
The famous landmark stands nearly 6 feet (70 inches) high, 26 feet (315 inches) wide is 3 feet deep and sits on a triangular concrete and aluminum base.
Each numerical digit (six in all) is about 4 feet high and 2 feet wide. Each digit uses 56 40-watt light bulbs, the same ones found at the local hardware store. There are 349 total light bulbs in the clock, including the +/- sign (nine) and pair of colons (four), according to a NASA statement.
The new clock will be about the same size.
Fortunately for space fans, there is some good news!
The Countdown Clock will be moved to the nearby Kennedy Space Center Visitor Complex (KSCVC) and placed on permanent display for public viewing.
Details soon!
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Astronomy is all about humility and thinking big in terms of space and time. It’s routine for astronomers to talk of comets on thousand year orbits, or stars with life spans measured in billions of years…
Yup, the lifespan of your average humanoid is indeed fleeting, and pales in comparison to the universe, that’s for sure. But one astronomical series that you can hope to live through is the cycle of eclipses.
I remember reading about the total solar eclipse of February 26th, 1979 as a kid. Carter was in the White House, KISS was mounting yet another comeback, and Voyager 1 was wowing us with images of Jupiter. That was also the last total solar eclipse to grace mainland United States in the 20th century.
But the ongoing “eclipse-drought” is about to be broken.
One thousand days from this coming Monday, November 24th on August 21st 2017, the shadow of the Moon will touch down off of the Oregon coast and sweep eastward across the U.S. heartland before heading out to the Atlantic off of the coast of South Carolina. Millions live within a days’ drive of the 115 kilometre wide path, and the eclipse has the added plus of occurring at the tail end of summer vacation season. This also means that lots of folks will be camping and otherwise mobile with their RVs and able to journey to the event.
This is also the last total solar eclipse to pass over any of the 50 United States since July 11th, 1991, and the first eclipse to cross the contiguous United States from “sea to shining sea” since way back on June 8th, 1918.
Think it’s too early to prepare? Towns across the path, including Hopkinsville, Kentucky and towns in Kansas and Nebraska are already laying plans for eclipse day. Other major U.S. cities, such as Nashville, Idaho Falls, and Columbia, South Carolina also lie along the path of totality, and the spectacle promises to spawn a whole new generation of “umbraphiles” or eclipse chasers.
A total solar eclipse is an unforgettable sight. But unlike a total lunar eclipse, which can be viewed from the moonward-facing hemisphere of the Earth, one generally has to journey to the narrow path of totality to see a total solar eclipse. Totality rarely comes to you.
And don’t settle for a 99% partial eclipse just outside the path. “There’s no comparison between partial and total solar eclipses when it comes to sheer grandeur and beauty,” Michael Zeiler, longtime eclipse chaser and creator of the Great American Eclipse website told Universe Today. We witnessed the 1994 annular solar eclipse of the Sun from the shores of Lake Erie, and can attest that a 99% partial eclipse is still pretty darned bright!
There are two total solar eclipses remaining worldwide up until 2017: One on March 20th, 2015 crossing the high Arctic, and another on March 9th 2016 over Southeast Asia. The 2017 eclipse offers a maximum of 2 minutes and 41 seconds of totality, and weather prospects for the eclipse in late August favors viewers along the northwestern portion of the track.
And though an armada of cameras will be prepared to capture the eclipse along its trek across the U.S., many veteran eclipse chasers suggest that first time viewers merely sit back and take in the moment. The onset of totality sees a bizarre sort of twilight fall across the landscape, as shadow bands skip across the countryside, temperatures drop, and wildlife is fooled into thinking that nightfall has come early.
And then, all too soon, the second set of blinding diamond rings burst through the lunar valleys, the eclipse glasses go back on, and totality is over. Which always raises the question heard throughout the crowd post-eclipse:
When’s the next one?
Well, the good news is, the United States will host a second total solar eclipse on April 8th, 2024, just seven years later! This path will run from the U.S. Southwest to New England, and crisscross the 2017 path right around Carbondale, Illinois.
Will the woo that surfaced around the approach of Comet ISON and the lunar tetrad of “blood Moon eclipses” rear its head in 2017? Ah, eclipses and comets seem to bring ‘em out of the woodwork, and 2017 will likely see a spike in the talking-head gloom and doom videos ala YouTube. Some will no doubt cite the “perfection” seen during total solar eclipses as proof of divine inspiration, though this is actually just a product of our vantage point in time and space. In fact, annular eclipses are slightly more common than total solars in our current epoch, and will become more so as the Moon slowly recedes from the Earth. And we recently noted in our post on the mutual phenomena of Jupiter’s moons that solar eclipses very similar to those seen from the Earth can also be spied from Callisto.
Heads up to any future interplanetary eclipse resort developer: Callisto is prime real estate.
Just hours after announcing that it plans to put a robotic lander on the moon in the next decade, the British-led group Lunar Mission One is already a sixth of a way to its £600,000 (US$940,000) initial crowdfunding goal.
The money is intended to jumpstart the project and move it into more concrete stages after seven years of quiet, weekend work, the group said on its Kickstarter page.
“We’ve reached the limit of what we can do part-time. The next three years are going to be hard, full-time work to set the project up. We need to confirm and agree the lunar science and develop the instrument package,” the page read.
“We need to plan and research the online public archive. We need to get commercial partners on board to design and develop the lunar landing module and the drilling mechanism. We need to pilot the education programme. We need to prepare the sales and marketing campaign for our memory boxes. And we need to do all of this globally.”
Among the rewards is something called a “digital memory box”, where you can upload your favorite sounds to be placed on the spacecraft. The group also plans to offer a little bit of physical space to put a strand of your hair along with the small digital archive.
And what does the group want to do there? Drill. It would place the lander at the Moon’s south pole and push down at least 20 meters (65 feet), potentially as far as 100 meters (328 feet), to learn more about the Moon’s history.
“By doing this, we will access lunar rock dating back up to 4.5 billion years to discover the geological composition of the Moon, the ancient relationship it shares with our planet and the effects of asteroid bombardment,” the group wrote. “Ultimately, the project will improve scientific understanding of the early Solar System, the formation of our planet and the Moon, and the conditions that initiated life on Earth.”
Private ideas for bold missions is something we’ve heard about repeatedly in the last few years, with initiatives ranging from the Mars One mission to send people on a one-way mission to the Red Planet, to the potential asteroid-mining ventures Planetary Resources and Deep Space Initiatives. As with these other ventures, the nitty gritty in terms of costs, systems and mission plans is still being worked out. This coupled with the long timelines to get these ventures off the ground means that success is not necessarily a guarantee.
Lunar Mission One, however, does have an experienced space hand helping it out: RAL Space, who the Kickstarter campaign page says has helped out with 200 missions. That’s including the high-profile Philae lander that just landed on Comet 67P/Churyumov–Gerasimenko last week and did a brief surge of science before going into hibernation.