Cool NASA Animation Beautifully Details Every Step of Orion’s First Launch!

Orion atop Delta 4 Heavy Booster. Credit: NASA/Kim Shiflett

Video Caption: Animation details NASA’s Orion Exploration Flight Test-1 (EFT-1) mission launching on Dec. 4. 2014. Credit: NASA

It’s not Science Fiction! It’s Not Star Trek!

No. It’s a really, really big NASA Mission! It’s Orion!

In fact, it’s the biggest and most important development in US Human Spaceflight since the end of the Space Shuttle Program in 2011.

Orion is launching soon on its first flight, the pathfinding Exploration Flight Test-1 (EFT-1) mission and sets NASA on the path to send humans to Mars in the 2030s.

Watch this cool NASA animation beautifully detailing every key step of Orion’s First Launch!

Orion is designed to take humans farther than they’ve ever gone before. Even farther into deep space than NASA’s Apollo moon landing which ended more than four decades ago!

We are T-MINUS 4 Days and Counting to the inaugural blastoff of Orion as of today, Sunday, November 30, 2014.

To learn even more about the 8 major events and goals happening during Orion’s EFT-1 mission be sure to check out my recent story with NASA’s fabulous new set of infographics – here.

Every aspect of the final processing steps now in progress by engineers and technicians from NASA, rocket provider United Launch Alliance, and Orion prime contractor Lockheed Martin is proceeding smoothly and marching towards launch.

Orion’s move to Launch Complex-37. Credit: Mike Killian
Orion’s move to Launch Complex-37. Credit: Mike Killian

Orion will lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

EFT-1 will test the rocket, second stage, jettison mechanisms as well as avionics, attitude control, computers and electronic systems inside the Orion spacecraft.

Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

Orion is NASA’s next generation human rated vehicle that will carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

NASA TV will provide several hours of live coverage

Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com
Here’s how Orion EFT-1 Launch will look!
Delta 4 Heavy rocket and super secret US spy satellite roars off Pad 37 on June 29, 2012, from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com

Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

Launch - It’s going to be loud. It’s going to be bright. It’s going to be smoky. Engines are fired, the countdown ends and Orion lifts off into space atop the United Launch Alliance Delta IV Heavy rocket from the launch pad at Cape Canaveral in Florida.  Credit: NASA
Launch – It’s going to be loud. It’s going to be bright. It’s going to be smoky. Engines are fired, the countdown ends and Orion lifts off into space atop the United Launch Alliance Delta IV Heavy rocket from the launch pad at Cape Canaveral in Florida. Credit: NASA

………….

Learn more about Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 1-5: “Orion EFT-1, SpaceX CRS-5, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

IMG_7780a_Delta 4 Heavy_Ken Kremer

Dive teams attach tow lines to Orion test capsule during Aug. 15 recovery test at Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
Dive teams attach tow lines to Orion test capsule during Aug. 15, 2013 recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

Africa’s First Mission to the Moon Announced

Africa2Moon will be Africa's foist venture into space. Credit: developspacesa.org

Africa is home to 7 out of 10 of the world’s fastest-growing economies. It’s population is also the “youngest” in the world, with 50% of the population being 19 years old or younger. And amongst these young people are scores of innovators and entrepreneurs who are looking to bring homegrown innovation to their continent and share it with the outside world.

Nowhere is this more apparent than with the #Africa2Moon Mission, a crowdfunded campaign that aims to send a lander or orbiter to the Moon in the coming years.

Spearheaded by the Foundation for Space Development – a non-profit organization headquartered in Capetown, South Africa – the goal of this project is to fund the development of a robotic craft that will either land on or establish orbit around the Moon. Once there, it will transmit video images back to Earth, and then distribute them via the internet into classrooms all across Africa.

In so doing, the project’s founders and participants hope to help the current generation of Africans realize their own potential. Or, as it says on their website: “The #Africa2Moon Mission will inspire the youth of Africa to believe that ‘We Can Reach for the Moon’ by really reaching for the moon!”

Through their crowdfunding and a social media campaign (Twitter hashtag #Africa2Moon) they hope to raise a minimum of $150,000 for Phase I, which will consist of developing the mission concept and associated feasibility study. This mission concept will be developed collaboratively by experts assembled from African universities and industries, as well as international space experts, all under the leadership of the Mission Administrator – Professor Martinez.

The ZACube was one of several cubesats launched with the help of the South African Space Council. Credit: SA Space Council
The ZACube-1 was one of several cubesats launched under the direction of the South African Space Council. Here, an artist’s rendering of the cubesat pays homage to Nelson Mandela. Credit: SA Space Council

Martinez is a veteran when it comes to space affairs. In addition to being the convener for the space studies program at the University of Cape Town, he is also the Chairman of the South African Council for Space Affairs (the national regulatory body for space activities in South Africa). He is joined by Jonathan Weltman, the Project Administrator, who is both an aeronautical engineer and the current CEO of the Foundation for Space Development.

Phase I is planned to run from Jan to Nov 2015 and will be the starting point for Phase II of #Africa2Moon, which will be a detailed mission design. At this point, the #Africa2Moon mission planners and engineering team will determine precisely what will be needed to see it through to completion and to reach the Moon.

Beyond inspiring young minds, the program also aims to promote education in the four major fields of Science, Technology, Engineering, and Mathematics (aka STEM). Towards this end, they have pledged to commit 25% of all the funds they raise towards STEM education through a series of #Africa2Moon workshops for educators and students. In addition, numerous public engagement activities will be mounted in partnership with other groups committed to STEM education, science awareness, and outreach.

Africa is so often thought of as a land in turmoil – a place that is perennially plagued by ethnic violence, dictators, disease, drought, and famine. This popular misconception belies very positive facts about the growing economy of world’s second-largest and second-most populous continent.

That being said, all those working on the #Africa2Moon project hope it will enable future generations of Africans to bridge the humanitarian and economic divide and end Africa’s financial dependence on the rest of the world. It is also hoped that the mission will provide a platform for one or more scientific experiments, contribute to humankind’s knowledge of the moon, and form part of Africa’s contribution to global space exploration activities.

The project’s current list of supporters include the SpaceLab at the University of Cape Town, The South African Space Association, Women in Aerospace Africa, The Cape Town Science Centre, Space Commercial Services Group, Space Advisory Company, and the Space Engineering Academy. They have also launched a seed-funding campaign drive through its partnership with the UN Foundation’s #GivingTuesday initiative.

For more information, go to the Foundation’s website, or check out the mission’s Indiegogo or CauseVox page.

Further Reading: Foundation for Space Development

Iconic Kennedy Space Center Countdown Clock Retires

STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Iconic Kennedy Space Center Countdown Clock seen here retires
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
Story updated and more photos[/caption]

In another sign of dramatically changing times since the end of NASA’s Space Shuttle program, the world famous Countdown Clock that ticked down to numerous blastoffs at the Kennedy Space Center Press Site and was ever present to billions of television viewers worldwide, has been retired.

Years of poor weather and decades of unforgiving time have visibly taken their toll on the iconic Countdown Clock beloved by space enthusiasts across the globe – as I have personally witnessed over years of reporting on launches from the KSC Press Site.

It was designed in the 1960s and has been counting down launches both manned and unmanned since the Apollo 12 moon landing mission in November 1969. And it continued through the final shuttle mission liftoff in July 2011 and a variety of unmanned NASA launches since then.

The countdown clock’s last use came just two months ago in September 2014 during the SpaceX CRS-4 launch to the ISS, which I attended along with the STS-135 launch.

The clock is located just a short walk away from another iconic NASA symbol – the Vehicle Assembly Building (VAB) – which assembled the Apollo/Saturn and Space Shuttle stacks for which it ticked down to blastoff. See photo below.

A new clock should be in place for NASA’s momentous upcoming launch of the Orion crew capsule on its inaugural unmanned test flight on Dec. 4, 2014.

Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com
Space Shuttle Endeavour blasts off on her 25th and final mission from Pad 39 A on May 16, 2011 at 8:56 a.m. View from the world famous countdown clock at T Plus 5 Seconds. Credit: Ken Kremer – kenkremer.com

Because of its age, it has become harder to replace broken pieces.

“Maintaining the clock was becoming problematic,” NASA Press spokesman Allard Beutel told Universe Today.

It displays only time in big bold digits. But of course in this new modern digital era it will be replaced by one with a modern multimedia display, similar to the screens seen at sporting venues.

“The new clock will not only be a timepiece, but be more versatile with what we can show on the digital display,” Beutel told me.

The countdown clock is a must see for journalists, dignitaries and assorted visitors alike. Absolutely everyone, and I mean everyone !! – wants a selfie or group shot with it in some amusing or charming way to remember good times throughout the ages.

And of course, nothing beats including the countdown clock and the adjacent US flag in launch pictures in some dramatic way.

Indeed the clock and flag are officially called “The Press Site: Clock and Flag Pole” and are were listed in the National Register of Historic Places on Jan. 21, 2000.

The clock was officially powered down for the last time at 3:45 p.m. EDT on Nov. 19, 2014.

Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-5 launch in September 2014. Credit: Ken Kremer – kenkremer.com
Famous KSC Press Site Countdown Clock and US Flag with VAB during SpaceX CRS-4 launch in September 2014. Credit: Ken Kremer – kenkremer.com

“The countdown clock at Kennedy’s Press Site is considered one of the most-watched timepieces in the world and may only be second in popularity to Big Ben’s Great Clock in London, England. It also has been the backdrop for a few Hollywood movies,” noted a NASA press release announcing the impending shutdown of the iconic clock.

“It is so absolutely unique — the one and only — built for the world to watch the countdown and launch,” said Timothy M. Wright, IMCS Timing, Countdown and Photo Services. “From a historical aspect, it has been very faithful to serve its mission requirements.”

The famous landmark stands nearly 6 feet (70 inches) high, 26 feet (315 inches) wide is 3 feet deep and sits on a triangular concrete and aluminum base.

Each numerical digit (six in all) is about 4 feet high and 2 feet wide. Each digit uses 56 40-watt light bulbs, the same ones found at the local hardware store. There are 349 total light bulbs in the clock, including the +/- sign (nine) and pair of colons (four), according to a NASA statement.

The new clock will be about the same size.

Fortunately for space fans, there is some good news!

The Countdown Clock will be moved to the nearby Kennedy Space Center Visitor Complex (KSCVC) and placed on permanent display for public viewing.

Details soon!

Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011.  Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com
Space Shuttle Discovery awaits blast off on her final mission from Pad 39 A on the STS-133 mission, its 39th and final flight to space on February 24, 2011. Prelaunch twilight view from the countdown clock at the KSC Press Site. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A Thousand Days ‘Til Totality: Anticipating the 2017 Solar Eclipse

The total solar eclipse of November 2012 as seen from

Where will YOU be on August 21st, 2017?

Astronomy is all about humility and thinking big in terms of space and time. It’s routine for astronomers to talk of comets on thousand year orbits, or stars with life spans measured in billions of years…

Yup, the lifespan of your average humanoid is indeed fleeting, and pales in comparison to the universe, that’s for sure. But one astronomical series that you can hope to live through is the cycle of eclipses.

I remember reading about the total solar eclipse of February 26th, 1979 as a kid. Carter was in the White House, KISS was mounting yet another comeback, and Voyager 1 was wowing us with images of Jupiter. That was also the last total solar eclipse to grace mainland United States in the 20th century.

But the ongoing “eclipse-drought” is about to be broken.

The path
The path of totality across the United States on August 21st, 2017. Credit: Great American Eclipse.com.

One thousand days from this coming Monday, November 24th on August 21st 2017, the shadow of the Moon will touch down off of the Oregon coast and sweep eastward across the U.S. heartland before heading out to the Atlantic off of the coast of South Carolina. Millions live within a days’ drive of the 115 kilometre wide path, and the eclipse has the added plus of occurring at the tail end of summer vacation season. This also means that lots of folks will be camping and otherwise mobile with their RVs and able to journey to the event.

The Great American Eclipse of 2017 from Michael Zeiler on Vimeo.

This is also the last total solar eclipse to pass over any of the 50 United States since July 11th, 1991, and the first eclipse to cross the  contiguous United States from “sea to shining sea” since way back on June 8th, 1918.

Think it’s too early to prepare?  Towns across the path, including Hopkinsville, Kentucky and towns in Kansas and Nebraska are already laying plans for eclipse day. Other major U.S. cities, such as Nashville, Idaho Falls, and Columbia, South Carolina also lie along the path of totality, and the spectacle promises to spawn a whole new generation of “umbraphiles” or eclipse chasers.

A total solar eclipse is an unforgettable sight. But unlike a total lunar eclipse, which can be viewed from the moonward-facing hemisphere of the Earth, one generally has to journey to the narrow path of totality to see a total solar eclipse. Totality rarely comes to you.

Viewing
The Zeilers view the November 2013 eclipse from Africa. Credit: Michael Zeiler.

And don’t settle for a 99% partial eclipse just outside the path. “There’s no comparison between partial and total solar eclipses when it comes to sheer grandeur and beauty,” Michael Zeiler, longtime eclipse chaser and creator of the Great American Eclipse website told Universe Today. We witnessed the 1994 annular solar eclipse of the Sun from the shores of Lake Erie, and can attest that a 99% partial eclipse is still pretty darned bright!

There are two total solar eclipses remaining worldwide up until 2017: One on March 20th, 2015 crossing the high Arctic, and another on March 9th 2016 over Southeast Asia. The 2017 eclipse offers a maximum of 2 minutes and 41 seconds of totality, and weather prospects for the eclipse in late August favors viewers along the northwestern portion of the track.

And though an armada of cameras will be prepared to capture the eclipse along its trek across the U.S., many veteran eclipse chasers suggest that first time viewers merely sit back and take in the moment. The onset of totality sees a bizarre sort of twilight fall across the landscape, as shadow bands skip across the countryside, temperatures drop, and wildlife is fooled into thinking that nightfall has come early.

And then, all too soon, the second set of blinding diamond rings burst through the lunar valleys, the eclipse glasses go back on, and totality is over. Which always raises the question heard throughout the crowd post-eclipse:

When’s the next one?

Well, the good news is, the United States will host a second total solar eclipse on April 8th, 2024, just seven years later! This path will run from the U.S. Southwest to New England, and crisscross the 2017 path right around Carbondale, Illinois.

Will the woo that surfaced around the approach of Comet ISON and the lunar tetrad of “blood Moon eclipses” rear its head in 2017? Ah, eclipses and comets seem to bring ‘em out of the woodwork, and 2017 will likely see a spike in the talking-head gloom and doom videos ala YouTube. Some will no doubt cite the “perfection” seen during total solar eclipses as proof of divine inspiration, though this is actually just a product of our vantage point in time and space. In fact, annular eclipses are slightly more common than total solars in our current epoch, and will become more so as the Moon slowly recedes from the Earth. And we recently noted in our post on the mutual phenomena of Jupiter’s moons that solar eclipses very similar to those seen from the Earth can also be spied from Callisto.

Heads up to any future interplanetary eclipse resort developer: Callisto is prime real estate.

Forget Mars... "Get your ass to totality!"
Forget Mars… “Get your ass to totality!” Credit: Great American Eclipse.

The 2017 total solar eclipse across America will be one for the history books, that’s for sure.

So get those eclipse safety glasses now, and be sure to keep ‘em handy through 2017 and onward to 2024!

-Read Dave Dickinson’s eclipse-fueled science fiction tales Shadowfall and Exeligmos.

Lunar Mission One Wants To Crowdfund A Robotic Moon Lander

Artist's conception of Lunar Mission One's robotic lander touching down on the surface. Credit: Lunar Missions Ltd.

Just hours after announcing that it plans to put a robotic lander on the moon in the next decade, the British-led group Lunar Mission One is already a sixth of a way to its £600,000 (US$940,000) initial crowdfunding goal.

The money is intended to jumpstart the project and move it into more concrete stages after seven years of quiet, weekend work, the group said on its Kickstarter page.

“We’ve reached the limit of what we can do part-time. The next three years are going to be hard, full-time work to set the project up. We need to confirm and agree the lunar science and develop the instrument package,” the page read.

“We need to plan and research the online public archive. We need to get commercial partners on board to design and develop the lunar landing module and the drilling mechanism. We need to pilot the education programme. We need to prepare the sales and marketing campaign for our memory boxes. And we need to do all of this globally.”

Among the rewards is something called a “digital memory box”, where you can upload your favorite sounds to be placed on the spacecraft. The group also plans to offer a little bit of physical space to put a strand of your hair along with the small digital archive.

And what does the group want to do there? Drill. It would place the lander at the Moon’s south pole and push down at least 20 meters (65 feet), potentially as far as 100 meters (328 feet), to learn more about the Moon’s history.

Artist's conception of a moon drill that could potentially be used by Lunar Mission One's lunar lander. Credit: Lunar Missions Ltd.
Artist’s conception of a moon drill that could potentially be used by Lunar Mission One’s lunar lander. Credit: Lunar Missions Ltd.

“By doing this, we will access lunar rock dating back up to 4.5 billion years to discover the geological composition of the Moon, the ancient relationship it shares with our planet and the effects of asteroid bombardment,” the group wrote. “Ultimately, the project will improve scientific understanding of the early Solar System, the formation of our planet and the Moon, and the conditions that initiated life on Earth.”

Private ideas for bold missions is something we’ve heard about repeatedly in the last few years, with initiatives ranging from the Mars One mission to send people on a one-way mission to the Red Planet, to the potential asteroid-mining ventures Planetary Resources and Deep Space Initiatives. As with these other ventures, the nitty gritty in terms of costs, systems and mission plans is still being worked out. This coupled with the long timelines to get these ventures off the ground means that success is not necessarily a guarantee.

Lunar Mission One, however, does have an experienced space hand helping it out: RAL Space, who the Kickstarter campaign page says has helped out with 200 missions. That’s including the high-profile Philae lander that just landed on Comet 67P/Churyumov–Gerasimenko last week and did a brief surge of science before going into hibernation.

For more information on the mission, check out their leading team here and the official website here.

Smart Robots Could Build ‘Snow Forts’ On The Moon One Day

Artist's conception of a future lunar rover gathering regolith to construct a moon base using 3-D printing. Credit: Foster+Partners/European Space Agency/YouTube (screenshot)

The Moon is so close to us, and yet so far. Just last year the Chang’e-3 spacecraft and Yutu rover made the first soft landing on the surface in more than a generation. Humans haven’t walked in the regolith since 1972. But that hasn’t decreased the desire of some to bring people back there — with an armful of new technologies to make life easier.

Take the European Space Agency’s desire to do 3-D printing on the lunar surface. Rovers with big scoopers would pick up the moon dust and use that as raw materials to make a habitat that humans would then enjoy. Far out? Perhaps, but it is something the agency is seriously examining in consultation with Foster+Partners. See the video above.

Universe Today recently explored the value of being on the Moon or a nearby asteroid. In a nutshell, the lower gravity would make it easier to loft things from the base, making it potentially cheaper to explore the Solar System. That said, there are considerable startup costs. One thing that could be considered is the value of investing in smart robots that could build simple structures on the moon or even (gasp) build other prototypes to replace or supplement them.

As ESA explained in a 2013 blog post, the agency envisions using robots to use more “local” resources on the moon and to reduce the need to ship stuff in from planet Earth. “As a practice, we are used to designing for extreme climates on Earth and exploiting the environmental benefits of using local, sustainable materials,” stated Xavier De Kestelier of Foster + Partners specialist modelling group. “Our lunar habitation follows a similar logic.”

The new video takes that concept a bit further and specifies a location: Shackleton Crater, which receives near-constant sunlight in certain areas, next to spots that are in permanent shadow. As ESA explains, being in this crater allows the best of two scenarios: constant energy available for solar panels, but areas to build structures that would be more sensitive to extreme heat.

ESA plans to push forward its research from 2013 to look at “harnessing concentrated sunlight to melt regolith rather than using a binding liquid,” as the agency explains on its YouTube page. Moon dust structures glued together with more moon dust? Sounds like the ultimate snow fort.

Comet Landing: Side-By-Side Pics Of Alien Surfaces Humanity Explored

As of November 2014, these are all of the planetary, lunar and small body surfaces where humanity has either lived, visited, or sent probes to. Composition by Mike Malaska, updated by Michiel Straathof. Image credits: Comet 67P/C-G [Rosetta/Philae]: ESA / Rosetta / Philae / CIVA / Michiel Straathof. Asteroid Itokawa [Hayabusa]: ISAS / JAXA / Gordan Ugarkovic. Moon [Apollo 17]: NASA. Venus [Venera 14]: IKI / Don Mitchell / Ted Stryk / Mike Malaska. Mars [Mars Exploration Rover Spirit]: NASA / JPL / Cornell / Mike Malaska. Titan [Cassini-Huygens]: ESA / NASA / JPL / University of Arizona. Earth: Mike Malaska

Correction, 11:33 a.m. EST: The University of Central Florida’s Phil Metzger points out that the image composition leaves out Eros, which NEAR Shoemaker landed on in 2001. This article has been corrected to reflect that and to clarify that the surfaces pictured were from “soft” landings.

And now there are eight. With Philae’s incredible landing on a comet earlier this week, humans have now done soft landings on eight solar system bodies. And that’s just in the first 57 years of space exploration. How far do you think we’ll reach in the next six decades? Let us know in the comments … if you dare.

More seriously, this amazing composition comes courtesy of two people who generously compiled images from the following missions: Rosetta/Philae (European Space Agency), Hayabusa (Japan Aerospace Exploration Agency), Apollo 17 (NASA), Venera 14 (Soviet Union), the Spirit rover (NASA) and Cassini-Huygens (NASA/ESA). Omitted is NEAR Shoemaker, which landed on Eros in 2001.

Before Philae touched down on Comet 67P/Churyumov–Gerasimenko Wednesday, the NASA Jet Propulsion Laboratory’s Mike Malaska created a cool infographic of nearly every place we’ve lived or visited before then. This week, Michiel Straathof updated the infographic to include 67P (and generously gave us permission to use it.)

And remember that these are just the SURFACES of solar system bodies that we have visited. If you include all of the places that we have flown by or taken pictures from of a distance in space, the count numbers in the dozens — especially when considering prolific imagers such as Voyager 1 and Voyager 2, which flew by multiple planets and moons.

To check out a small sampling of pictures, visit this NASA website that shows some of the best shots we’ve taken in space.

Orion’s Rocket Ready to Rock n’ Roll for Critical December Test Flight

Launch teams practice countdown and fueling tests on the United Launch Alliance Delta IV Heavy rocket that will lift NASA’s Orion spacecraft on its unmanned flight test in December 2014. Credit: NASA

The huge rocket that will blast NASA’s first Orion spacecraft into orbit is ready to Rock ‘n’ Roll on a critical two orbit test flight scheduled for December.

And Orion is so big and heavy that she’s not launching on just any old standard rocket.

To blast the uncrewed Orion to orbit on its maiden mission requires the most powerful booster on Planet Earth – namely the United Launch Alliance Delta IV Heavy rocket.

Liftoff of the state-of-the-art Orion spacecraft on the unmanned Exploration Flight Test-1 (EFT-1) mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Just days ago, the launch team successfully completed a countdown and wet dress rehearsal fueling test on the rocket itself – minus Orion – at launch complex 37.

The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer,  liquid oxygen and liquid hydrogen
The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer, liquid oxygen, and liquid hydrogen

The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer, liquid oxygen, and liquid hydrogen.

ULA technicians and engineers practiced the countdown on Nov. 5 which included fueling the core stages of the Delta IV Heavy rocket.

“Working in control rooms at Cape Canaveral Air Force Station in Florida, countdown operators followed the same steps they will take on launch day. The simulation also allowed controllers to evaluate the fuel loading and draining systems on the complex rocket before the Orion spacecraft is placed atop the launcher,” said NASA.

The next key mission milestone is attachment of the completed Orion vehicle stack on top of the rocket. Read more about the fully assembled Orion – here.

Today’s scheduled rollout of Orion to the launch pad for hoisting atop the rocket was scrubbed due to poor weather.

The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system.  Credit: NASA/Jim Grossman
The Orion spacecraft sits inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. Credit: NASA/Jim Grossman

The triple barreled Delta IV Heavy booster became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program in 2011 and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.

The first stage of the mammoth Delta IV Heavy generates some 2 million pounds of liftoff thrust.

“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success,” according to Tony Taliancich, ULA’s director of East Coast Launch Operations.

“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program.”

From now until launch technicians will continue to conduct the final processing, testing, and checkout of the Delta IV Heavy booster.

These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014.   Credit: Ken Kremer/kenkremer.com
These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014. Credit: Ken Kremer/kenkremer.com

The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).

Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.

The first CBC booster was attached to the center booster in June. The second one was attached in early August.

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

This fall I visited the ULA’s Horizontal Integration Facility (HIF) during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.

 Orion in orbit in this artists concept.  Credit: NASA

Orion in orbit in this artist’s concept. Credit: NASA

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot.

The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace

.

“The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”

“We will test the heat shield, the separation of the fairing, and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

Building A Space Base, Part 3: Making Remote Robots Smart

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

We’re still a few years away from the cute robots in Moon or Interstellar that help their human explorers. But if we want to build a base off of Earth, robotic intelligence will be essential to lower the cost and pave the way for astronauts, argues Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center.

In the last of a three-part series on getting a base ready on the moon or an asteroid, Metzger talks about the steps to get robots ready for the work and what barriers are standing in the way of accomplishing this.

UT: A table in your 2012 paper talks about the steps of lunar industry, starting with tele-operation and an “insect-like” robotic intelligence and then progressing through a few steps to “closely supervised autonomy” (mouse-like) and eventually “nearly full autonomy” (monkey-like) and “autonomous robotics” (human-like). What sorts of developments and how much time/resources would it take to progress through these steps?

Most of the advances in robotic artificial intelligence are being made in software, but they also require advances in computing power. We mentioned in the paper that really only “mouse-like” robotics is needed for it to become successful in a near-Earth environment. We will need robots that can pick up a nut and screw it on a bolt without every motion being commanded from Earth. I believe we are on a trajectory to achieve these levels of autonomy already for robotics here on Earth.  I am more concerned about developing robots that can be made easily in space without an extensive supply chain. For example, we need to invent a simple way to manufacture functional motors for the robots, minimizing the assembly tasks for robots making the same motors that are in themselves.

It is very difficult to estimate how long this will take. Here are some guiding ideas. First, robotics and manufacturing technologies are already on an explosive growth curve for terrestrial application, so we can ride on the coattails of that growth as we re-purpose the technologies for space.  Second, we are not talking about inventing new capabilities. Everything we are talking about doing in space is already being done on Earth. All we need to do is discover what sets of equipment will function together as partial supply chains using space resources. We need to develop a sequence of partial supply chains, each more sophisticated than the last, each one capable of making a significant portion of the mass of the next. It will require innovation, but it is lower-risk innovation because we already have Earth’s more sophisticated industry to copy.

R2 and D2? NASA and General Motors have come together to develop the next generation dexterous humanoid robot. The robots – called Robonaut2 – were designed to use the same tools as humans, which allows them to work safely side-by-side humans on Earth and in space. Credit: NASA
R2 and D2? NASA and General Motors have come together to develop the next generation dexterous humanoid robot. The robots – called Robonaut2 – were designed to use the same tools as humans, which allows them to work safely side-by-side humans on Earth and in space. Credit: NASA

Third, we tend to estimate things will happen faster than they do in the near term, but slower than they do in the long term. Consider how much technology has changed in the past 200 years, and you will agree that it won’t take another 200 years to get this done. I think it will be much less than 100 years. I am betting it will be done within 50 years, and if we try hard we could do it in 20. In fact, if we really wanted to, and if we put up the money, I think we could do it in 10. But I’m telling people 20 to 50 years.  Don’t worry if you think that’s too slow, because the fun of doing it can start immediately, and we will be doing really cool things in space long before the supply chain is complete.

UT: Is it really cheaper and scientifically viable to have a robotic fleet of spacecraft than humans, given development costs and the difficulties of making the robots as efficient to do work as humans?

Biological life needs a place like planet Earth.  Humans need more than that; we also need a food chain, and in the final analysis we need an entire ecology of networked organisms interdependent on each other. And if we want to be more than hunters and gatherers, then civilization requires even more than that. We require the industrial supply chain: all the tools and machines and energy sources that we have developed over the past 10,000 years.

When we leave Earth, we need to take not just a canister of air to breath to replicate the physical conditions of our planet. We need the benefit of the entire ecosystem and the entire industrial base to support us. So far we have stayed close to Earth so we have never really “cut the surly bonds of Earth.” We take a consumable supply of food and spare parts from Earth with us, and we send up rockets to the space station when we need more. Even schemes to colonize Mars are depending on regular shipments of things from Earth. These are the things that make it expensive to put humans in space.

Robots, on the other hand, can be adapted to living in the space environment with nothing more from Earth. They can become the ecosphere and the supply chain in space that we humans require. Under our guidance, they can transform any environment analogously to how life has transformed the Earth. They can make air, purify water, and build the habitats and landing pads. Then, when we arrive, it will be vastly less expensive, and it will be safer, too.  And this will free us up to spend our time in space doing the things that make us uniquely human. In the long term, robots will make space vastly cheaper for humans.

Canada’s Dextre robot (highlight) and NASA’s Robotic Refueling Experiment jointly performed groundbreaking robotics research aboard the ISS in March 2012.  Dextre used its hands to grasp specialized work tools on the RRM for experiments to repair and refuel orbiting satellites. Credit: NASA
Canada’s Dextre robot (highlight) and NASA’s Robotic Refueling Experiment jointly performed groundbreaking robotics research aboard the ISS in March 2012. Dextre used its hands to grasp specialized work tools on the RRM for experiments to repair and refuel orbiting satellites. Credit: NASA

But yes, in the near-term there are things we can do more affordably in space by skipping development of robotic industry. We can shoot off sortie missions to various places, and when we are done we can zip back home before everyone dies. But that doesn’t fulfill our great potential as a species. It doesn’t take civilization to the next level. It doesn’t enable scientific research with a billion times the budget we have today. It doesn’t save our planet from overuse and industrial pollution. It doesn’t bring all humanity up to the standard of living many of us are enjoying in the west. It doesn’t make our existence safe in the galaxy.  It doesn’t terraform new worlds.  It doesn’t take us to other stars.  All these things will be possible for almost no additional investment once we pay the tiny cost of bootstrapping industry in our solar system.  It’s worth the cost.

UT: We’re seeing a 3-D printer going on the International Space Station, and the European Space Agency has seriously talked about using this technology on the Moon. How close are we to actually doing this?

I know of several other groups also developing 3D printers that could work on the Moon or Mars to print things directly out of regolith. The KSC Swamp Works is pursuing one technological approach and has built a prototype, and Professor Behrokh Khoshnevis at the University of Southern California is pursing another approach and has printed many things already. My friend Jason Dunn who founded Made In Space, which put the 3D printer into the ISS, has another concept they are pursuing. My friends at NASA have told me that this is healthy, having a portfolio of technologies to pursue rather than just one.

To be ready for missions in space you have to do more than test things in a lab. You need to do testing in reduced gravity aircraft to see if the materials like regolith will flow properly, in vacuum chambers to make sure nothing overheats or jams, and in rugged field locations like a desert or on a volcano to check for dust problems or other unexpected effects. After that, you are ready to start designing the actual version that is going into space, to do the final qualification testing where you shake it and bake it half to death, to assemble and test the flight version, and to launch it.

Deputy Program Manager Matthew Napoli examines a 3D printed piece at Marshall Space Flight Center. Image courtesy Made In Space.
Deputy Program Manager Matthew Napoli examines a 3D printed piece at Marshall Space Flight Center. Image courtesy Made In Space.

So there are years of work ahead before all that is done. NASA’s direction is to put humans on Mars by the mid-2030’s, so we also have time and there is no rush. If we start to bootstrap space industry in the near-Earth region of space in parallel with getting ready for a Mars campaign then we will probably start testing regolith printers at field sites and making them interoperable with other equipment sooner than NASA presently needs them.

UT: What are the main barriers to robotic exploration on the Moon and beyond?

Budget is the only barrier. But taking a step back we might say a lack of vision is the only barrier because if enough of us understand what is now possible in space and how revolutionary it will be for humanity then there will be no lack of budget.

UT: Is there anything else you would like to add that I haven’t brought up yet?

We live in a very exciting time when these possibilities are being opened to us. It is exciting to think about the world our grandchildren will see, and it is exciting to think of what we can do to bring it about.

Whenever I speak on this topic, afterward the young people in the audience come up and start asking what they can do to get involved in space industry. They tell me that this is how they want to spend their lives. It gets that response because it is so compelling, so logical, and so right.

This is the third in a three-part series about building a space base. Two days ago: Why mine on the moon or an asteroid? Yesterday: How much money would it take?

Building A Space Base, Part 2: How Much Money Would It Take?

Artist's concept for a Lunar base. Credit: NASA

How much would it cost to establish a space base close to Earth, say on the Moon or an asteroid? To find out, Universe Today spoke with Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center, who has explored this subject extensively on his website and in published papers.

Yesterday, Metzger outlined the rationale for establishing a base in the first place, while today he focuses on the cost.

UT: Your 2012 paper specifically talks about how much development is needed on the Moon to make the industry “self-sustaining and expanding”, but left out the cost of getting the technology ready and of their ongoing operation. Why did you leave this assessment until later? How can we get a complete picture of the costs?

PM: As we stated at the start of the paper, our analysis was very crude and was intended only to garner interest in the topic so that others might join us in doing a more complete, more realistic analysis. The interest has grown faster than I expected, so maybe we will start to see these analyses happening now including cost estimates. Previous analyses talked about building entire factories and sending them into space. The main contribution of our initial paper was to point out that there is this bootstrapping strategy that has not been discussed previously, and we argued that it makes more sense. It will result in a much smaller mass of hardware launched into space, and it will allow us to get started right away so that we can figure out how to make the equipment work as we go along.

Moonbase rover concept - could be used for long-term missions (NASA)
Moonbase rover concept – could be used for long-term missions (NASA)

Trying to design up front everything in a supply chain for space is impossible. Even if we got the budget for it and gave it a try, we would discover that it wouldn’t work when we sent it into the extraterrestrial environments.  There are too many things that could go wrong.  Evolving it in stages will allow us to work out the bugs as we develop it in stages. So the paper was arguing for the community to take a look into this new strategy for space industry.

Now, having said that, I can still give you a very crude cost estimate if you want one. Our model shows a total of about 41 tons of hardware being launched to the Moon, but that results in 100,000 tons of hardware when we include what was made there along the way. If 41 tons turns out to be correct, then let’s take 41% of the cost of the International Space Station as a crude estimate, because that has a mass of 100 tons and we can roughly estimate that a ton of space hardware costs about the same in every program. Then let’s multiply by four because it takes four tons of mass launched to low Earth orbit to land one ton on the Moon.

That may be an over-estimate, because the biggest cost of the International Space Station was the labor to design, build, assemble, and test before launch, including the cost of operating the space shuttle fleet. But the hardware for space industry includes many copies of the same parts so design costs should be lower, and since human lives will not be at stake they don’t need to be as reliable. As discussed in the paper, the launch costs will also be much reduced with the new launch systems coming on line.

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

Furthermore, the cost can be divided by 3.5 according to the crude modeling, because 41 tons is needed only if the industry is making copies of itself as fast as it can. If we slow it down to making just one copy of the industry along the way as it is evolving, then only 12 tons of hardware needs to be sent to the Moon. Now that gives us an estimate of the total cost over the entire bootstrapping period, so if we take 20 or 30 or 40 years to accomplish it, then divide by that amount to get the annual cost. You end up with a number that is a minority fraction of NASA’s annual budget, and a miniscule fraction of the total U.S. federal budget, and even tinier fraction of the US gross domestic product, and an utterly insignificant cost per human being in the developed nations of the Earth.

Even if we are off by a factor of 10 or more, it is something we can afford to start doing today. And this doesn’t account for the economic payback we will be getting while starting space industry. There will be intermediate ways to get a payback, such as refueling communications satellites and enabling new scientific activities. The entire cost needn’t be carried by taxpayers, either. It can be funded in part by commercial interests, and in part by students and others taking part in robotics contests.  Perhaps we can arrange shares of ownership in space industry for people who volunteer time developing technologies and doing other tasks like teleoperating robots on the Moon. Call that “telepioneering.”

Perhaps most importantly, the technologies we will be developing – advanced robotics and manufacturing – are the same things we want to be developing here on Earth for the sake of our economy, anyway. So it is a no-brainer to do this! There are also intangible benefits: giving students enthusiasm to excel in their education, focusing the efforts of the maker community to contribute tangibly to our technological and economic growth, and renewing the zeitgeist of our culture.  Civilizations fall when they become old and tired, when their enthusiasm is spent and they stop believing in the inherent value of what they do. Do we want a positive, enthusiastic world working together for the greater good? Here it is.

The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA
The Japanese Kibo robotic arm on the International Space Station deploys CubeSats during February 2014. The arm was holding a Small Satellite Orbital Deployer to send out the small satellites during Expedition 38. Credit: NASA

UT: We now have smaller computers and the ability to launch CubeSats or smaller accompanying satellites on rocket launches, something that wasn’t available a few decades ago. Does this reduce the costs of sending materials to the Moon for the purposes of what we want to do there?

Most of the papers about starting the space industry are from the 1980’s and 1990’s because that is when most of the investigations were performed, and there hasn’t been funding to continue their work in recent decades.  Indeed, changes in technology since then have been game-changing! Back then some studies were saying that a colony would need to support 10,000 humans in space to do manufacturing tasks before it could make a profit and become economically self-sustaining. Now because of the growth of robotics we think we can do it with zero humans, which drastically cuts the cost.

The most complete study of space industry was the 1980 Summer Study at the Ames Research Center. They were the first to discuss the vision of having space industry fully robotic.  They estimated mining robots would need to be made with several tons of mass. More recently, we have actually built lunar mining robots at the Swamp Works at the Kennedy Space Center and they are about one tenth of a ton, each. So we have demonstrated a mass reduction of more than 10 times.

But this added sophistication will be harder to manufacture on the Moon. Early generations will not be able to make the lightweight metal alloys or the electronics packages.  That will require a more complex supply chain. The early generations of space industry should not aim to make things better; they should aim to make things easier to make. “Appropriate Technology” will be the goal. As the supply chain evolves, eventually it will reach toward the sophistication of Earth. Still, as long as the supply chain is incomplete and we are sending things from Earth, we will be sending the lightest and most sophisticated things we can to be combined with the crude things made in space, and so the advances we’ve made since the 1980’s will indeed reduce the bootstrapping cost.

This is the second in a three-part series about building a space base. Yesterday: Why mine on the moon or an asteroid? Tomorrow: Making remote robots smart.