US Satellite Photographs a South Korean Satellite from Lunar Orbit

This Lunar Reconnaissance Orbiter image shows the Republic of Korea's Danuri lunar orbiter travelling above the lunar surface. Capturing the image wasn't easy. Image Credit: NASA/Goddard/Arizona State University

In 2009, NASA launched the Lunar Reconnaissance Orbiter (LRO.) Its ongoing mission is to map the lunar surface in detail, locating potential landing sites, resources, and interesting features like lava tubes. The mission is an ongoing success, another showcase of NASA’s skill. It’s mapped about 98.2% of the lunar surface, excluding the deeply shadowed regions in the polar areas.

But recently, the LRO team’s skill was on display for another reason: it captured images of another satellite speeding over the lunar surface.

Continue reading “US Satellite Photographs a South Korean Satellite from Lunar Orbit”

Here's the Total Solar Eclipse, Seen From Space

Credit: NASA/Keegan Barber

On Monday, April 8th, people across North America witnessed a rare celestial event known as a total solar eclipse. This phenomenon occurs when the Moon passes between the Sun and Earth and blocks the face of the Sun for a short period. The eclipse plunged the sky into darkness for people living in the Canadian Maritimes, the American Eastern Seaboard, parts of the Midwest, and northern Mexico. Fortunately for all, geostationary satellites orbiting Earth captured images of the Moon’s shadow as it moved across North America.

Continue reading “Here's the Total Solar Eclipse, Seen From Space”

What Could We Build With Lunar Regolith?

A close-up view of astronaut Buzz Aldrin's bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11's sojourn on the moon. There'll soon be more boots on the lunar ground, and the astronauts wearing those boots need a way to manage the Moon's low gravity and its health effects. Image by NASA

It has often been likened to talcum powder. The ultra fine lunar surface material known as the regolith is crushed volcanic rock. For visitors to the surface of the Moon it can be a health hazard, causing wear and tear on astronauts and their equipment, but it has potential. The fine material may be suitable for building roads, landing pads and shelters. Researchers are now working to analyse its suitability for a number of different applications.

Continue reading “What Could We Build With Lunar Regolith?”

Start Your Engines: NASA Picks 3 Teams to Work on Lunar Terrain Vehicle

Illustration: NASA's Lunar Terrain Vehicle concept
An artist's conception shows NASA's generic concept for the Lunar Terrain Vehicle. (NASA Illustration)

Some of the biggest names in aerospace — and the automotive industry — will play roles in putting NASA astronauts in the driver’s seat for roving around on the moon.

The space agency today selected three teams to develop the capabilities for a lunar terrain vehicle, or LTV, which astronauts could use during Artemis missions to the moon starting with Artemis 5. That mission is currently scheduled for 2029, three years after the projected date for Artemis’ first crewed lunar landing.

The teams’ leading companies may not yet be household names outside the space community: Intuitive Machines, Lunar Outpost and Venturi Astrolab. But each of those ventures has more established companies as their teammates.

Continue reading “Start Your Engines: NASA Picks 3 Teams to Work on Lunar Terrain Vehicle”

Mapping Lava Tubes on the Moon and Mars from Space

Sometimes, all you need for a new discovery is some creative math. That was the case for a new paper by Edward Williams and Laurent Montési of the University of Maryland’s Department of Geology. They released a brief paper at the Lunar and Planetary Science Conference last month that describes a mathematical way to estimate the size of a lava tube using only remote sensing techniques.

Continue reading “Mapping Lava Tubes on the Moon and Mars from Space”

A Robot Hopper to Explore the Moon’s Dangerous Terrain

Intuitive Machines recently had a major breakthrough, successfully becoming the first non-governmental entity to land on the Moon in February. At least the landing was partially successful – the company’s Odysseus lander ended up on its side, though its instruments and communication links remained at least partially functional. That mission, dubbed IM-1, was the first in a series of ambitious missions the company has planned. And they recently released a paper detailing features of a unique hopping robot that will hitch a ride on its next Moon mission.

Continue reading “A Robot Hopper to Explore the Moon’s Dangerous Terrain”

Against all Odds. Japan’s SLIM Lander Survived a Second Lunar Night Upside Down

Illustration: SLIM lander on the moon
An artist's conception shows Japan's SLIM lander in its upended position on the lunar surface. Credit: JAXA

You might remember the SLIM lunar lander that managed to land upside-down! The probe from the Japanese Space Agency has survived its second night on the Moon and returns a new photograph. Despite the solar panels pointing away from the Sun during the day it was still able to capture the image and transmit to Earth. All that while surviving the harsh -130C lunar night. 

Continue reading “Against all Odds. Japan’s SLIM Lander Survived a Second Lunar Night Upside Down”

China's Relay Satellite is in Lunar Orbit

Animation of Queqiao-2 satellite establishing orbit around the Moon. Credit: CGTN

On March 20th, China’s Queqiao-2 (“Magpie Bridge-2”) satellite launched from the Wenchang Space Launch Site LC-2 on the island of Hainan (in southern China) atop a Long March-8 Y3 carrier rocket. This mission is the second in a series of communications relay and radio astronomy satellites designed to support the fourth phase of the Chinese Lunar Exploration Program (Chang’e). On March 24th, after 119 hours in transit, the satellite reached the Moon and began a perilune braking maneuver at a distance of 440 km (~270 mi) from the lunar surface.

The maneuver lasted 19 minutes, after which the satellite entered lunar orbit, where it will soon relay communications from missions on the far side of the Moon around the South Pole region. This includes the Chang’e-4 lander and rover and will extend to the Chang’e-6 sample-return mission, which is scheduled to launch in May. It will also assist Chang’e-7 and -8 (scheduled for 2026 and 2028, respectively), consisting of an orbiter, rover, and lander mission, and a platform that will test technologies necessary for the construction of the International Lunar Research Station (ILRS).

Continue reading “China's Relay Satellite is in Lunar Orbit”

Lunar Night Permanently Ends the Odysseus Mission

Image of Odysseus moon landing
This image shows one of the Odysseus lander's legs breaking due to the shock of first contact on the moon. (Credit: Intuitive Machines)

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space Center in Florida atop a SpaceX Falcon 9 rocket. On February 22nd, the spacecraft – codenamed Odysseus (or “Odie”) – became the first American-built vehicle to soft-land on the lunar surface since the Apollo 17 mission in 1972. While the landing was a bit bumpy (Odysseus fell on its side), the IM-1 mission successfully demonstrated technologies and systems that will assist NASA in establishing a “sustained program of lunar exploration and development.”

After seven days of operation on the lunar surface, Intuitive Machines announced on February 29th that the mission had ended with the onset of lunar night. While the lander was not intended to remain operational during the lunar night, flight controllers at Houston set Odysseus into a configuration that would “call home” if it made it through the two weeks of darkness. As of March 23rd, the company announced that their flight controllers’ predictions were correct and that Odie would not be making any more calls home.

Continue reading “Lunar Night Permanently Ends the Odysseus Mission”

NASA Reveals its Planetary Science Goals for Artemis III

Artist's illustration of Artemis III astronauts on the Moon. Credit: NASA.

If all goes well, NASA’s Artemis III mission will bring humans back to the Moon as early as 2026, the first time since the Apollo 17 crew departed in 1972. It won’t be a vacation, though, as astronauts have an enormous amount of science to do, especially in lunar geology. A team from NASA recently presented their planetary science goals and objectives for Artemis III surface activities, which will guide the fieldwork the astronauts will carry out on the lunar surface.

The Artemis III Geology Team presented their priorities at the Lunar and Planetary Science Conference in March 2024. In addition, NASA also announced their choices for the first science instruments that astronauts will deploy on the surface of the Moon during Artemis III.

Continue reading “NASA Reveals its Planetary Science Goals for Artemis III”